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Preface 

This report presents results from the monitoring of greenhouse gases and aerosol properties in 

2014. The aerosol results are focusing on the understanding of the interactions between 

aerosols and radiation. The observations are done at two atmospheric supersites; one regional 

background site in southern Norway and one Arctic site. The observations made are part of the 

national monitoring programme conducted by NILU on behalf of The Norwegian Environment 

Agency. 

The monitoring programme includes measurements of 24 greenhouse gases at the Zeppelin 

Observatory in the Arctic; and this includes a long list of halocarbons, which are not only 

greenhouse gases but also ozone depleting substances. In 2009, NILU upgraded and extended 

the observational activity at the Birkenes Observatory in Aust-Agder and from 2010, the national 

monitoring programme was extended to also include the new greenhouse gas observations from 

Birkenes and selected aerosol observations particularly relevant for the understanding of the 

interactions between aerosols and radiation.  

The present report is one out of a series of four annual reports for 2014, which all cover the 

national monitoring of atmospheric composition in the Norwegian rural background 

environment. The other three reports are published separately, of which the first focuses on 

atmospheric composition and deposition of air pollution of particulate and gas phase of 

inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate 

matter. The second one focuses on persistent organic pollutants and heavy metals, the third 

covers the monitoring of the ozone layer and UV, whereas this is the final one covering climate 

gases and aerosol particles influence on radiation and climate. 

Data and results from the national monitoring programme are also included in various 

international programmes, including: EMEP (European Monitoring and Evaluation Programme) 

under the CLTRAP (Convention on Long-range Transboundary Air Pollution), AGAGE (Advanced 

Global Atmospheric Gases Experiment), CAMP (Comprehensive Atmospheric Monitoring 

Programme) under OSPAR (the Convention for the Protection of the marine Environment of the 

North-East Atlantic) and AMAP (Arctic Monitoring and Assessment Programme). Data from this 

report are also contributing to European Research Infrastructure network ACTRIS (Aerosols, 

Clouds, and Trace gases Research InfraStructure Network) and implementation in ICOS 

(Integrated Carbon Observation System) is under development. 

All measurement data presented in the current report are public and can be received by 

contacting NILU, or they can be downloaded directly from the database: http://ebas.nilu.no.  

A large number of persons at NILU have contributed to the current report, including those 

responsible for sampling, technical maintenance, chemical analysis and quality control and data 

management. In particular Cathrine Lund Myhre (coordinating the program), Ove Hermansen, 

Chris Lunder, Terje Krognes, Stephen M. Platt, Norbert Schmidbauer, Ann Mari Fjæraa, Kerstin 

Stebel, Markus Fiebig, and Tove Svendby.  

 

Kjeller, 30th November 2015 

 

Cathrine Lund Myhre 

Senior Scientist, 

Dep. Atmospheric and Climate Research 

http://ebas.nilu.no/
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Summary  

This annual report describes the activities and main results of the programme “Monitoring of 

greenhouse gases and aerosols at the Zeppelin Observatory, Svalbard, and Birkenes 

Observatory, Aust-Agder, Norway”. This is a part of the Governmental programme for 

monitoring pollution in Norway. The report comprises the 2014 measurements of all natural 

well mixed greenhouse gases, the most important anthropogenic greenhouse gases and various 

particle’s properties with high relevance to climate and climate change. Many of the gases do 

also have strong ozone depleting effect. For the 23 greenhouse gases the report include the 

development and trends for the period 2001-2014, in addition to daily and annual mean 

observations.  

The measurements at Zeppelin Observatory characterises the development in the Arctic region, 

and Birkenes Observatory is located in an area in southern Norway most affected by long-range 

transport of pollutants. The observations of CO2 and CH4 at Birkenes is also highly influenced 

by the local vegetation and terrestrial interactions, important for the understanding of the 

carbon cycle. 

The results and measurements show that the concentration in the atmosphere of the main 

greenhouse gases with high anthropogenic emissions has been increasing over the period of 

investigation since 2001, except for Chlorofluorocarbons (CFCs) and a few halogenated gases. 

Our measurements from 2014 reveal a strong new record in the observed CH4 level, both at 

Zeppelin and Birkenes- There were also new record levels on the other main greenhouse gases 

CO2, and N2O at Zeppelin Observatory, and also in CO2 measured at Birkenes.  

The development in the CFCs and a few of the replacement gases are promising. These gases 

have strong ozone depleting effect and are regulated through the successful Montreal protocol. 

The positive effect of this regulation on the recovery of the ozone layer is well documented, 

and the CFCs measured at Zeppelin are now declining or at least stabilised. For the 

Hydrochlorofluorocarbons (HCFC) which are CFC replacement gases, we detect stabilization in 

the development of the concentration for one of these components, HCFC-142b. Furthermore 

it is worth to note that dichloromethane (CH2Cl2) has had a strong increase of ca. 20% in recent 

years, after a stable period. This gas has both natural and anthropogenic sources and also a 

short lifetime, and, therefore, responds rapidly to emission changes. Larger focus on the 

understanding of the sources and recent development are important.  

Aerosol properties at Birkenes are mainly determined by long-range transport of air pollution 

from continental Europe, Arctic air, as well as regional sources like biogenic particle formation 

and regional pollution events. These sources show distinct and opposite annual cycles. 

Occurrence of regional pollution events is associated with a higher fraction of absorbing aerosol 

particles. The main observation is that the particles become less absorbing year by year over 

the period. For 2014 we also observe higher number of particles explained by larger biological 

activity related to higher temperature than normal during winter, spring, and summer.   
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Sammendrag (Norwegian)  

Denne årsrapporten beskriver aktiviteter og hovedresultater fra programmet "Overvåking av 

klimagasser og aerosoler på Zeppelin-observatoriet, Svalbard og Birkenesobservatoriet, Aust-

Agder, Norge". Programmet er en del av det statlige programmet for overvåking av forurensning 

i Norge. Rapporten inkluderer 2014-målingene av alle naturlige godt blandede drivhusgasser de 

viktigste klimagassene med utelukkende menneskeskapte kilder, og ulike partiklers egenskaper 

som har høy relevans for stråling og klimaendringer. Mange av klimagassene som rapporteres 

har også sterk ozonreduserende effekt. Rapporten omfatter utvikling og trender for perioden 

2001-2014 for alle de 23 inkluderte klimagassene, i tillegg til daglige og årlige 

gjennomsnittsobservasjoner. 

Målingene på Zeppelin-observatoriet karakteriserer utviklingen i Arktis, og Birkenes-

observatoriet ligger i det området i Sør-Norge som er mest berørt av langtransportert 

forurensning. Observasjonene av CO2 og CH4 på Birkenes er også sterkt påvirket av den lokale 

vegetasjonen og terrestriske vekselvirkninger, noe som er viktig for forståelsen av 

karbonkretsløpet. 

Resultater og målinger viser at konsentrasjonen av de viktigste klimagassene med høye utslipp 

fra menneskelig aktivitet har økt i løpet av overvåkningsperioden siden 2001. Unntakene er 

klorfluorkarboner (KFK) og noen halogenerte gasser.  

Våre målinger fra 2014 viser en høy ny rekord i det observerte CH4 nivået, både på Zeppelin og 

Birkenes. Det var også nye rekordnivåer på den andre viktigste klimagassene CO2 og N2O på 

Zeppelin-observatoriet, og i CO2 målt på Birkenes. Utviklingen for KFK-er og noen av 

erstatningsgassene er lovende. Disse gassene har sterk ozonreduserende effekt, og er regulert 

gjennom den vellykkede Montreal-protokollen. Den positive effekten av denne protokollen om 

styrking av ozonlaget er godt dokumentert, og KFK-nivåene målt ved Zeppelin er nå fallende 

eller i det minste stabilisert. For hydroklorfluorkarboner (HKFK-er), som er erstatningsgasser 

for KFK-er har vi registrert en reduksjon og stabilisering i utviklingen av HKFK-142b. Videre er 

det verdt å merke seg at både diklormetan (CH2Cl2) har økt kraftig de siste par årene, mer enn 

ca 20%. Denne gassen har både naturlige og menneskeskapte kilder, i tillegg til kort levetid, 

dermed reagerer den raskt på utslippsendringer. Det er viktig å legge større vekt på å forstå 

årsaken til den nye utviklingen av denne gassen i kommende år. 

Aerosolegenskapene ved Birkenes er i hovedsak bestemt av den langtransporterte 

luftforurensningen fra det kontinentale Europa, den arktiske lufta, samt regionale kilder som 

biogen partikkeldannelse og regionale forurensningshendelser. Disse kildene viser tydelige og 

motsatte årlige sykluser. Forekomsten av regionale forurensningshendelser assosieres med en 

høyere andel av absorberende aerosolpartikler. Partiklene har blitt mindre absorberende over 

perioden 2010-2014.  Partikkelantallet i 2014 var større enn i årene før. Dette skyldes 

sannsynligvis økt biologisk aktivitet som en følge av varmere vinter, vår og sommer enn normalt. 

Tidsseriene med aerosolegenskaper er fortsatt for korte for trendanalyse. 
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1. The monitoring programme in 2014  

 The atmospheric monitoring programme 

presented in this report focuses on the level of 

greenhouse gases and aerosols properties relevant 

for the interaction of aerosols and radiation in the 

Norwegian background air and in the Arctic. The 

main objectives are to quantify the levels of 

greenhouse gases including ozone depleting 

substances, describe the relevant optical and 

physical properties of aerosols, and document the 

development over time. Measurements of the 

amount of greenhouse gases and aerosol 

properties are core data for studies and 

assessments of climate change, and also crucial in 

order to evaluate mitigation strategies and if they 

work as expected. The Norwegian monitoring sites 

are located in areas where the influence of local 

sources are minimal, hence the sites are 

representative for a wider region and for the 

detection of long-term atmospheric 

compositional changes. 

 

 

 

 

1.1 Central frameworks and relevant protocols  
The Norwegian greenhouse gas and aerosol monitoring programme is set up to meet national 

and international needs for greenhouse gas and aerosol measurement data, both for the 

scientific community, environmental authorities and stakeholders. The targets set by the Kyoto 

protocol first and second commitment periods is to reduce the total emissions of greenhouse 

gases from the industrialized countries. To follow up on this, negotiations under the UNFCCC 

are under way to develop a new international climate change agreement that will cover all 

countries. The new agreement is expected to be adopted in 2015, at the Paris climate 

conference. As preparation for this, EU Heads of State and Governments agreed in October 

2014 on the headline targets and the architecture for the EU framework on climate and energy 

for 2030. The agreed targets include a cut in greenhouse gas emissions by at least 40% by 2030 

compared to 1990 levels1. 

In 1987 the Montreal Protocol was signed and entered into force in 1989 in order to reduce the 

production, use and eventually emission of the ozone-depleting substances (ODS). The amount 

                                                 

1 Details here here http://ec.europa.eu/clima/policies/strategies/2030/ and here 
http://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf  

 

Figure 1: Location of NILU’s atmospheric 

supersites measuring greenhouse gases and 

aerosol properties. 

http://ec.europa.eu/clima/policies/strategies/2030/
http://www.consilium.europa.eu/uedocs/cms_data/docs/pressdata/en/ec/145397.pdf
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of most ODS in the troposphere is now declining slowly and is expected to be back to pre-1980 

levels around year 2050. It is central to follow the development of the concentration of these 

ozone depleting gases in order to verify that the Montreal Protocol and its amendments work 

as expected. The development of the ozone layer above Norway is monitored closely, and the 

results of the national monitoring of ozone and UV is presented in “Monitoring of the 

atmospheric ozone layer and natural ultraviolet radiation: Annual report 2013” (Svendby et 

al, 2014). The ozone depleting gases and their replacement gases are strong greenhouse gases 

making it even more important to follow the development of their concentrations.  

As a response to the need for monitoring of greenhouse gases and ozone depleting substances, 

the Norwegian Environment Agency and NILU – Norwegian Institute for Air Research signed a 

contract commissioning NILU to run a programme for monitoring greenhouse gases at the 

Zeppelin Observatory, close to Ny-Ålesund in Svalbard in 1999. This national programme 

includes now monitoring of 23 greenhouse gases at the Zeppelin Observatory in the Arctic, many 

of them also ozone depleting substances. In 2009, NILU upgraded and extended the 

observational activity at the Birkenes Observatory in Aust-Agder. From 2010, the Norwegian 

Environment Agency/NILU monitoring programme was extended to also include the new 

observations from Birkenes of the greenhouse gases CO2 and CH4 and selected aerosol 

observations particularly relevant for the understanding of climate change. Relevant 

components are also reported in “Monitoring of long-range transported air pollutants in 

Norway, annual report 2013” (Aas et al, 2015), this incudes particulate and gaseous inorganic 

constituents, particulate carbonaceous matter, ground level ozone and particulate matter for 

2013. This report also includes a description of the weather in Norway in 2014 in Chap. 2, which 

is relevant for the observed concentrations of greenhouse gases and aerosols.   

 

1.2 The ongoing monitoring programme and 

the link to networks and research 

infrastructures 
The location of both sites are shown in Figure 1, and pictures of the sites are shown in 

Figure 2. The unique location of the Zeppelin Observatory at Svalbard, together with the 

infrastructure of the scientific research community in Ny-Ålesund, makes it ideal for monitoring 

the global changes of concentrations of greenhouse gases and aerosols in the atmosphere. There 

are few local sources of emissions, and the Arctic location is also important as the Arctic is a 

particularly vulnerable region. The observations at the Birkenes Observatory complement the 

Arctic site. Birkenes Observatory is located in a forest area with few local sources. However, 

the Observatory often receives long-range transported pollution from Europe and the site is 

ideal to analyse the contribution of long range transported greenhouse gases and aerosol 

properties. 
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Data and results from the national monitoring programme are also included in various 

international regional programmes. Both sites are contributing to EMEP (European Monitoring 

and Evaluation Programme) under the CLTRAP (Convention on Long-range Transboundary Air 

Pollution). Data from the sites are also reported to CAMP (Comprehensive Atmospheric 

Monitoring Programme) under OSPAR (the Convention for the Protection of the marine 

Environment of the North-East Atlantic, http://www.ospar.org); AMAP (Arctic Monitoring and 

Assessment Programme http://www.amap.no), WMO/GAW (The World Meteorological 

Organization, Global Atmosphere Watch programme, http://www.wmo.int) and AGAGE 

(Advanced Global Atmospheric Gases Experiment) 

Zeppelin and Birkenes are both integrated into two central EU research infrastructures (RI) 

focusing on climate forcers. This ensure high quality data with harmonised methods and 

measurements across Europe (and also with a global link through GAW), to have comparable 

data and results. This is essential to reduce the uncertainty on trends and in the observed levels 

of the wide range of climate forcers. International collaboration and harmonisation of these 

types of observations are crucial for improved processes understanding and satisfactory quality 

to assess trends. 

The two central RIs are ICOS (Integrated Carbon Observation System) focusing on the 

understanding of carbon cycle, and ACTRIS (Aerosols, Clouds, and Trace gases Research 

InfraStructure Network, www.actris.net) focusing on short-lived aerosol climate forcers and 

related reactive gases, and clouds. NILU host the data centres of the European Monitoring and 

Evaluation Programme (EMEP), ACTRIS (Aerosols, Clouds, and Trace gases Research 

InfraStructure Network) and the WMO Global Atmosphere Watch (GAW) World Data Centre for 

Aerosol (WDCA) and numerous other projects and programs (e.g. AMAP, HELCOM) and all the 

Figure 2: The two atmospheric supersites 

included in this programme, Zeppelin above 

and Birkenes to the left 

 

http://www.ospar.org/
http://www.amap.no/
http://www.wmo.int/
http://www.actris.net/
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data reported are found in the EBAS data base: http://ebas.nilu.no. All data from these 

frameworks are reported to this data base. 

Compiled key information on the national monitoring programme at the sites are listed in 

Table 1. More detailed information on the monitoring program and measurement frequencies 

are provided in Appendix II. For the measurements of aerosol properties more details are also 

presented in Table 6 in chapter 4. 

  

http://ebas.nilu.no/
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Table 1: Summary of the ongoing relevant measurement program run under NILU responsibility at 

Birkenes and Zeppelin Observatory 2014. 

 Birkenes Zeppelin   

Component Start  Start  
Report to international 
networks 

Comment 

CO2 2009 2012  
ICOS (labelling and 
implementation 
scheduled in 2016) 

Measured at Zeppelin since 1988 by 
Univ. Stockholm. NILU measures 
CO2 at Zeppelin since 20092 

CH4 2009 2001 
EMEP, ICOS (labelling 
and implementation 
scheduled in 2016) 

 

N2O  - 2009 
ICOS (labelling and 
implementation 
scheduled in 2017) 

 

CO -  2001 
ICOS (labelling and 
implementation 
scheduled in 2016) 

 

Ozone (surface) 1985 1989 EMEP 
Reported in M-367/2015, Aas et al, 
2015. 

CFC-11* 

2001 2001 AGAGE 

*The measurements of “*” these 
components are not within the 
required precision of AGAGE, but a 
part of the AGAGE quality assurance 
program. Other components are 
also measured (like new 
replacements). This is included in 
the national monitoring program 
from 2015, and will be reported in 
in 2016.   

CFC-12* 

CFC-113* 

CFC-115* 

HCFC-22 

HCFC-141b 

HCFC-142b 

HFC-125 

HFC-134a 

HFC-152a 

H-1211 

H-1301 

CH3Cl 

CH3Br 

CH2Cl2 

CHCl3 

CH3CCl3 

CHClCCl2 

CCl2CCl2 

SF6, 

NMHC and VOC 
1994 
(carbonyls) 

2010 
AGAGE, ACTRIS (ethane, 
propane, benzene, 
toluene) 

Other components are also 
measured This is included in the 
national monitoring program from 
2015, and will be reported in in 2016 

Aerosol measurements 

Absorption properties 2009 -  EMEP, ACTRIS 
Measured by Univ. of Stockholm at 
Zeppelin 

Scattering properties 2009 -  EMEP, ACTRIS 
Measured by Univ. of Stockholm at 
Zeppelin 

Number Size Distribution 2009 - EMEP, ACTRIS 
Measured by Univ. of Stockholm at 
Zeppelin 

Cloud Condensation Nuclei 2012 - ACTRIS 
Zeppelin: In collaboration with 
Korean Polar Research Institute 

Aerosol Optical depth 2010 2007 
AERONET (Birkenes), 
GAW-PFR (Ny-Ålesund) 

 

PM10  2001  EMEP 

Reported in M-367/2015, Aas et al, 
2015. 

PM2.5 2001  EMEP 

Chemical composition  
-inorganic 

1978 1979 EMEP 

Chemical composition  

- carbonaceous matter 
2001  EMEP 

                                                 

2 CO2 at Zeppelin is not included in the national monitoring program, but the results are included in the report due to 

the high relevance. 
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2. Introduction to greenhouse gases, 

aerosols and their climate effects 

The IPCC's Fifth Assessment Report (IPCC AR5) and the contribution from Working Group I 

“Climate Change 2013: The Physical Science Basis“ was published in September 2013. This 

substantial climate assessment report presents new evidence of past and projected future 

climate change from numerous independent scientific studies ranging from observations of the 

climate system, paleoclimate archives, theoretical studies on climate processes and simulations 

using climate models. Their main conclusion is that: 

 

Their conclusions are based on a variety of independent indicators, some of them are 

observations of atmospheric compositional change. The overall conclusion with respect to the 

development of the concentrations of the main greenhouse gases is: 

 

In particular chapter 2, “Observations: Atmosphere and Surface”, presents all types of 

atmospheric and surface observations, including observations of greenhouse gases since the 

start of the observations in mid-1950s and changes in aerosols since the 1980s. In the IPCC AR5 

report was the first time long term changes of aerosols were included in the report, based on 

global and regional measurement networks and satellite observations. The main conclusion with 

respect to development of the aerosol levels is that “It is very likely that aerosol column 

amounts have declined over Europe and the eastern USA since the mid-1990s and increased 

over eastern and southern Asia since 2000” (Hartmann et al, 2013). This is important since the 

total effect of aerosols is atmospheric cooling, counteracting the effect of greenhouse gases. 

The changes in Europe and USA is mainly due to mitigation strategies of e.g. sulphur, while the 

emissions are increasing rapidly in Asia, including increasing emissions of the warming 

component black carbon.  

The basic metric to compare the effect of the various climate change drivers is radiative forcing 

(RF), as in previous reports. Most other metrics include this concept. RF is the net change in 

the energy balance of the Earth system due to some imposed perturbation. RF provides a 

quantitative basis for comparing some aspects of the potential climate response to different 

imposed agents. Forcing is often presented as the radiative change from one time-period to 

“Warming of the climate system is unequivocal, and since the 1950s, many of the 
observed changes are unprecedented over decades to millennia. The atmosphere and 

ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, 
and the concentrations of greenhouse gases have increased” 

(IPCC, Summary for policy makers, WG I, 2013) 

“The atmospheric concentrations of carbon dioxide, methane, and nitrous oxide have 
increased to levels unprecedented in at least the last 800,000 years. Carbon dioxide 

concentrations have increased by 40% since pre-industrial times, primarily from fossil 
fuel emissions and secondarily from net land use change emissions. The ocean has 
absorbed about 30% of the emitted anthropogenic carbon dioxide, causing ocean 

acidification”  
(IPCC, Summary for policy makers, 2013) 
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another, such as pre-industrial to present-day. In the last report it was also introduced a new 

concept, the effective radiative forcing (ERF). For many forcing agents the RF is an appropriate 

way to compare the relative importance of their potential climate effect. However, rapid 

adjustments in the troposphere can either enhance or reduce the perturbations, leading to 

large differences in the forcing driving the long-term climate change. The ERF concept aims to 

take this into account and is the change in net TOA (Top Of Atmosphere) downward radiative 

flux after allowing for atmospheric temperatures, water vapour and clouds to adjust, but with 

surface temperature or a portion of surface conditions unchanged (Myhre et al, 2013b). 

Figure 3 shows the RF and ERF of the main components referring to a change in the atmospheric 

level since 1750, pre-industrial time.  

  

Total adjusted anthropogenic forcing is 2.29 W m-2, [1.13 to 3.33], and the main anthropogenic 

component driving this is CO2 with a total RF of 1.82 W m-2. The direct and indirect effect of 

aerosols are cooling and calculated to -0.9 W m-2. The diagram in Figure 4 shows a comparison 

in percent % of the various contribution from the long-lived greenhouse gases to the total 

forcing of the well-mixed greenhouse gases, based on 2011 levels. 

 

 

Figure 3: Bar chart for RF (hatched) and ERF (solid) for the period 1750–2011. Uncertainties (5 to 95% 

confidence range) are given for RF (dotted lines) and ERF (solid lines). (Taken from Myhre et al, 2013b). 
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Figure 4: The contribution in % of the well-mixed greenhouse gases to the total forcing of the well-

mixed greenhouse gases for the period 1750-2011 based on estimates in Table 8.2 in Chap 8, of IPCC 

(Myhre et al, 2013b). 
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An interesting and more detailed 

picture of the influence of various 

emissions on the RF is illustrated in 

Figure 5. This Figure shows the forcing 

since 1750 by emitted compounds, to 

better illustrate the effects of emissions 

and potential impact of mitigations. As 

seen, the number of emitted 

compounds and changes leading to RF is 

larger than the number of compounds 

causing RF directly. This is due to 

indirect effects, in particular 

components involved in atmospheric 

chemistry that affects e.g. CH4 and 

ozone. Emissions of CH4, CO, and 

NMVOC all lead to excess CO2 as one end 

product if the carbon is of fossil origin, 

and this is the reason why the RF of 

direct CO2 emissions is slightly lower 

than the RF of abundance change of CO2 

in Figure 3. Note also that for CH4, the 

contribution from emission is estimated 

to be almost twice as large as that from 

the CH4 concentration change, 0.97 W 

m–2 versus 0.48 W m–2 shown in Figure 3 

and Figure 5 respectively. This is 

because emission of CH4 leads to ozone 

production (shown in green colour in the 

CH4 bar in Figure 5), stratospheric water 

vapour, CO2 (as mentioned above), and 

importantly affects its own lifetime. As 

seen from the Figure, there is also a 

particularly complex picture of the 

effects of aerosols. Black carbon heats 

the atmosphere, originating from both 

fossil fuel, biofuel and biomass burning. 

The direct effect of black carbon from 

fossil and biofuel is +0.4 W m–2, while 

black carbon from biomass burning is 0 

in total due to co-emitted effects of 

organic carbon, cooling the atmosphere 

and cancelling out the heating effect.  

In addition there is a small heating effect of black carbon on snow (0.04 W m–2 since 1750). The 

effect of black carbon on snow since 1750 is currently in the order of one year increase of CO2 

concentration in the atmosphere (around 2 ppm).  

 

Figure 5: RF bar chart for the period 1750–2011 based on 

emitted compounds (gases, aerosols or aerosol 

precursors) or other changes. Red (positive RF) and blue 

(negative forcing) are used for emitted components 

which affect few forcing agents, whereas for emitted 

components affecting many compounds several colours 

are used as indicated in the inset at the upper part the 

figure. The vertical bars indicate the relative 

uncertainty of the RF induced by each component. Their 

length is proportional to the thickness of the bar, that 

is, the full length is equal to the bar thickness for a ±50% 

uncertainty. The net impact of the individual 

contributions is shown by a diamond symbol and its 

uncertainty (5 to 95% confidence range) is given by the 

horizontal error bar. ERFaci is ERF due to aerosol–cloud 

interaction. BC and OC are co-emitted, especially for 

biomass burning emissions (given as Biomass Burning in 

the figure) and to a large extent also for fossil and 

biofuel emissions (given as Fossil and Biofuel in the 

figure where biofuel refers to solid biomass fuels) (The 

Figure is taken from Myhre et al, 2013b). 
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3. Observations of greenhouse gases at 

the Birkenes and Zeppelin 

Observatories  
NILU measures 24 climate gases at the Zeppelin Observatory at Svalbard and 2 at Birkenes, in 

addition to surface ozone reported in Aas et al (2014). The results from these measurements, 

and analysis are presented in this chapter. Also observations of CO2 since 1989 at Zeppelin 

performed by the Stockholm University - Department of Applied Environmental Science (ITM), 

are included in the report.  

Table 2 summarize the main results for 2014 and the trends over the period 2001-2014.  Also a 

comparison of the main greenhouse gas concentrations at Zeppelin and Birkenes compared to 

annual mean values given in the 5th Assessment Report of the IPCC (Myhre et al. 2013b) is 

included.  

Table 2: Greenhouse gases measured at Zeppelin and Birkenes; lifetimes in years, global warming 

potential (GWP) for 100 year horizon, and global mean for 2011 is taken from 5th Assessment Report of 

the IPCC, Chapter 8 (Myhre et al, 2013b).Global mean is compared to annual mean values at Zeppelin 

and Birkenes for 2011. Annual mean for 2014, change last year, the trends per year over the period 2001-

2014 is included. All concentrations are mixing ratios in ppt, except for methane, nitrous oxide and 

carbon monoxide (ppb) and carbon dioxide (ppm).  

Component   Life-time GWP 
Global 
mean 2011  

Annual 
mean 2011 

Annual 
mean 
2014 

Absolute 
change 

last year 

Trend 
/yr 

Carbon dioxide - 
Zeppelin 

CO2 *3 1 391 ± 0.2 
392.5 

399.6 2.3 2.12 

Carbon dioxide - 
Birkenes 397.4 

402.8 2.1 - 

Methane - Zeppelin 
CH4 12.4 28 1803 ± 2  

1879.6 1910.0 12.1 4.9 

Methane - Birkenes 1895.5 1917.4 15.1 - 

Carbon monoxide    CO 
few 

months 
- - 115.4 113.0 0.4 -0.8 

Nitrous oxide N2O 121 265 324 ± 0.1  324.2 327.1 1.1 - 

Chlorofluorocarbons 

CFC-11* CCl3F 45 4660 238 ± 0.8  238.3 235.2 -1.0 -2.0 

CFC-12* CF2Cl2 640 10200 528 ± 1  531.5 525.9 -2.4 -2.0 

CFC-113* CF2ClCFCl2 85 13900 74.3 ± 0.1  74.6 73.5 -0.6 -0.7 

CFC-115* CF3CF2Cl 1 020 7670 8.37 8.42 8.4 0.0 0.0 

Hydrochlorofluorocarbons 

HCFC-22 CHClF2 11.9 1760 213 ± 0.1  226 236.51 4.7 6.7 

HCFC-141b C2H3FCl2 9.2 782 21.4 ± 0.1  23 24.78 0.7 0.6 

HCFC-142b* CH3CF2Cl 17.2 1980 21.2 ± 0.2  22.7 23.30 0.0 0.8 

Hydrofluorocarbons                 

HFC-125 CHF2CF3 28.2 3170 9.58 ± 0.04  10.9 15.60 2.3 1.1 

                                                 

3 Measurements of CO2 is performed by Stockholm University until 2011, from 2012 NILU has own measurements. No 

single life time can be given for CO2. 
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Component   Life-time GWP 
Global 
mean 2011  

Annual 
mean 2011 

Annual 
mean 
2014 

Absolute 
change 

last year 

Trend 
/yr 

HFC-134a CH2FCF3 13.4 1300 62.7 ± 0.3  68.4 78.92 5.6 4.8 

HFC-152a CH3CHF2 1.5 506 6.4 ± 0.1  10.1 10.22 -0.1 0.6 

Halons                 

H-1211* CBrClF2 16 1750   4.2 3.97 0.0 0.0 

H-1301 CBrF3 65 7800   3.3 3.36 0.0 0.0 

Halogenated compounds 

Methylchloride CH3Cl 1 12 - 508.2 519.08 -4.2 -0.2 

Methylbromide CH3Br 0.8 2 - 7.04 6.96 -0.1 -0.2 

Dichloromethane  CH2Cl2 0.4 9 - 41.2 54.00 0.9 1.6 

Chloroform CHCl3 0.4 16 - 11.9 12.70 0.8 0.2 

Methylchloroform CH3CCl3 5 160 6.32 ± 0.07  6.48 4.51 -0.7 -1.1 

Trichloroethylene CHClCCl2 - - - 0.549 0.55 -0.1 1.6 

Perchloroethylene CCl2CCl2 - - - 2.8 2.54 0.0 0.0 

Sulphurhexafluoride* SF6 3 200 23500 7.28 ± 0.03  7.49 8.11 0.32 0.2 

 

Greenhouse gases have numerous sources, both anthropogenic and natural. Trends and future 

changes in concentrations are determined by their sources and the sinks, and in section 3.1 are 

observations and trends of the monitored greenhouse gases with both natural and 

anthropogenic sources presented in more detail. In section 3.2 are the detailed results of the 

ozone depleting substances with purely anthropogenic sources presented.  

We have used the method described in Appendix II in the calculation of the annual trends, and 

also include a description of the measurements at Zeppelin at Svalbard and Birkenes 

Observatory in southern Norway in more details. Generally, Zeppelin Observatory is a unique 

site for observations of changes in the background level of atmospheric components. All peak 

concentrations of the measured gases are significantly lower here than at other sites at the 

Northern hemisphere, due to the station’s remote location. Birkenes is closer to the main 

source areas. Further, the regional vegetation is important for regulating the carbon cycle, 

resulting in much larger variability in the concentration level compared to the Arctic region.  
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3.1 Greenhouse gases with natural and 

anthropogenic sources  
The annual mean concentrations for all gases included in the program for all years are given in 

Appendix I, Table A 1 at page 69. All the trends, uncertainties and regression coefficients are 

found in Table A 2 at page 70. Section 3.1 focuses on the measured greenhouse gases that have 

both natural and anthropogenic sources. 

 

 Carbon dioxide at the Birkenes and Zeppelin Observatories 

Carbon dioxide (CO2) is the most important greenhouse gas with a radiative forcing of 1.82 W 

m-2 since the year 1750, and an increase since the previous IPCC report (AR4, 2007) of 0.16 Wm-

2 (Myhre et al., 2013b). The increase in forcing is due to the increase in concentrations over 

these last years. CO2 is the end product in the atmosphere of the oxidation of all main organic 

compounds, and it has shown an increase of as much as 40 % since the pre industrial time 

(Hartmann et al, 2013). This is mainly due to emissions from combustion of fossil fuels and land 

use change. CO2 emissions from fossil fuel burning and cement production increased by 2.3% in 

2013 since 2012, with a total of 9.9±0.5 GtC (billion tonnes of carbon) equal to 36 GtCO2 emitted 

to the atmosphere, 61% above 1990 emissions (the Kyoto Protocol reference year). Emissions 

are projected to increase by a further 2.5% in 2014 according to Global Carbon Project 

estimates http://www.globalcarbonproject.org. New estimates from the Global Carbon project 

are expected to be published mid-December 2015. 

NILU started CO2 measurements at the Zeppelin Observatory in 2012. These measurements are 

not a part of the national monitoring programme, but the results are presented in this report 

and in Figure 6, together with the time series provided by ITM, University of Stockholm. ITM 

provides all data up till 2012 and we acknowledge the effort they have been doing in monitoring 

CO2 at the site. Note that the data from ITM are preliminary, and have not undergone full 

quality assurance. Until 2009 the only Norwegian site measuring well-mixed greenhouse gases 

(LLGHG) greenhouse gases was Zeppelin, but after upgrading Birkenes there are continuous 

measurements of CO2 and CH4 from mid May 2009 also at this site.  

 

The atmospheric daily mean CO2 concentration measured at Zeppelin Observatory for the 

period mid 1988-2014 is presented in Figure 6 upper panel, together with the shorter time 

series for Birkenes in the lower panel.  
  

http://www.globalcarbonproject.org/
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The results show continuous increase since the start of the observations at both sites. As can 

be seen there are much stronger variability at Birkenes than Zeppelin. At Zeppelin the largest 

variability is during winter/spring. For Birkenes hourly mean, (lower panel, grey) it is clear that 

the variations are largest during the summer months. In this period, there is a clear diurnal 

variation with high values during the night and lower values during daytime. This is mainly due 

to changes between plant photosynthesis and respiration, but also the general larger 

 

 

 

 

Figure 6: The atmospheric daily mean CO2 concentration measured at Zeppelin Observatory for the 

period mid 1988-2014 is presented in the upper panel. Prior to 2012, ITM University of Stockholm 

provides all data, shown as orange dots and the green solid line is from the Picarro instrument installed 

by NILU in 2012. The measurements for Birkenes are shown in the lower panel, the green line is the 

daily mean and the hourly mean is shown as the grey line. 
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meteorological variability, particularly during summer contributes to larger variations in the 

concentrations. In addition to the diurnal variations, there are also episodes with higher levels 

at both sites due to transport of pollution from various regions. In general, there are high levels 

when the meteorological situation results in transport from Central Europe or United Kingdom 

at Birkenes, and central Europe or Russia at Zeppelin. The maximum daily mean value for CO2 

in 2014 was 416.6 ppm at the 7th of August at Birkenes, and at Zeppelin the highest daily mean 

value was 410 ppm the 10h February.  

Figure 7 shows the development of the annual mean concentrations of CO2 measured at 

Zeppelin Observatory for the period 1988-2014 in orange together with the values from Birkenes 

in green since 2010. The global mean values as given by WMO in black. The yearly annual change 

is shown in the lower panel. 

 

 

Figure 7: Upper panel: the annual mean concentrations of CO2 measured at Zeppelin Observatory for 

the period 1988-2014 shown in orange. Prior to 2012, ITM University of Stockholm provides all data. 

The annual mean values from Birkenes are shown as green bars. The global mean values as given by 

WMO are included in black (2015). The yearly annual change is shown in the lower panel, orange for 

Zeppelin, green for Birkenes.  
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The time series for CO2 at Birkenes is too short to be used for trend calculations, but the annual 

change shown in the lower panel shows an increase of ca 2.3 ppm at Zeppelin sicne 2013, and 

2.0 at Birkenes since last year, comparing well with the global mean growth from 2013-2014 

which was 1.9 ppm. This is slightly lower than last year, for all reported values. 

 

 Methane at the Birkenes and Zeppelin Observatories 

Our measurements from 2014 reveal a pronounced new record in the observed CH4 level, both 

at Zeppelin and Birkenes. Methane (CH4) is the second most important greenhouse gas from 

human activity after CO2. The radiative forcing is 0.48 W m-2 since 1750 and up to 2011 (Myhre 

et al., 2013b), but as high as 0.97 W m–2 for the emission based radiative forcing (Figure 5, page 

14) due to complex atmospheric effects. In addition to being a dominant greenhouse gas, 

methane also plays central role in the atmospheric chemistry. The atmospheric lifetime of 

methane is approx. 12 years, when indirect effects are included, as explained in section 2. 

The main sources of methane include boreal and tropical wetlands, rice paddies, emission from 

ruminant animals, biomass burning, and extraction and combustion of fossil fuels. Further, 

methane is the principal component of natural gas and e.g. leakage from pipelines; off-shore 

and on-shore installations are a known source of atmospheric methane. The distribution 

between natural and anthropogenic sources is approximately 40% natural sources, and 60% of 

the sources are direct result of anthropogenic emissions. Of natural sources there is a large 

unknown potential methane source under the ocean floor, so called methane hydrates and 

seeps. Further, a large unknown amount of carbon is bounded in the permafrost layer in Siberia 

and North America and this might be released as methane if the permafrost layer melts as a 

feedback to climate change. 

The average CH4 concentration in the atmosphere is determined by a balance between emission 

from the various sources and reaction and removal by free hydroxyl radicals (OH) to produce 

water and CO2. A small fraction is also removed by surface deposition. Since the reaction with 

OH also represents a significant loss path for the oxidant OH, additional CH4 emission will 

consume additional OH and thereby increasing the CH4 lifetime, implying further increases in 

atmospheric CH4 concentrations (Isaksen and Hov, 1987; Prather et al., 2001). The OH radical 

has a crucial role in the tropospheric chemistry by reactions with many emitted components 

and is responsible for the cleaning of the atmosphere (e.g. removal of CO, hydrocarbons, HFCs, 

and others). A stratospheric impact of CH4 is due to the fact that CH4 contributes to water 

vapour build up in this part of the atmosphere, influencing and reducing stratospheric ozone.  

The atmospheric mixing ratio of CH4 was, after a strong increase during the 20th century, 

relatively stable over the period 1998-2006. The global average change was close to zero for 

this period, also at Zeppelin. Recently an increase in the CH4 levels is evident from our 

observations both at Zeppelin and Birkenes as well as observations at other sites, and in the 

global mean (see e.g. section 2.2.1.1.2 in Hartmann et al, 2013, WMO, 2014).  

Figure 8 depicts the daily mean observations of CH4 at Zeppelin since the start in 2001 in the 

upper panel and Birkenes since start in 2009 in the lower panel.  
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Figure 8: Observations of daily averaged methane mixing ratio for the period 2001-2014 at the Zeppelin 

Observatory in the upper panel. Grey: all data, orange dots: daily concentrations, black solid line: 

empirical modelled background methane mixing ratio (fit does not include transport episodes). The 

right panel show the transport of air to Zeppelin the 15th February, where maximum CH4 is observed 

(see the green circle). Daily mean observations for Birkenes are shown in the lower panel as green 

dots. 

As can be seen from the Figure there has been an increase in the concentrations of CH4 observed 

at both sites the last years, and in general the concentrations are much higher at Birkenes than 

at Zeppelin. The highest ever ambient background  CH4 concentration detected at Zeppelin was 

on the 15th February 2014. This was 1991.3 ppb, and the transport pattern of that day is shown 

in the right panel. This demonstrates a strong influence from Russian industrial pollution. 

Fugitive emission from Russian gas installations is a possible source of this CH4 However, on this 

particular day, both CO and CO2 levels were also very high (see Figure 6 and Figure 15), 

indicative of an industrial and urban pollution episode.  

For both Zeppelin and Birkenes, the diurnal variations are clearly visible, although stronger at 

Birkenes than Zeppelin. This is due longer distance to the sources at Zeppelin, and thus the 

sink through reaction with OH dominates the variation. The larger variations at Birkenes are 

explained by both the regional sources in Norway, as well as a stronger impact of pollution 

episodes from long range transport of pollution from Europe. For the daily mean in Figure 8, 

the measurements show very special characteristics in 2010 and 2011 at Zeppelin. As shown, 

there is remarkably lower variability in the daily mean in 2011 with fewer episodes than the 

typical situation in previous and subsequent e.g. summer/autumn 2012. The reason for this is 
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being intensively investigated as part of various national and international research 

programmes, also at NILU.  No conclusions have been reached at the present time  

At Zeppelin there are now almost 14 years of data, for which the trend has been calculated. 

To retrieve the annual trend in the methane for the entire period, the observations have been 

fitted by an empirical equation. The empirical modelled methane values are shown as the black 

solid line in Figure 8. Only the observations during periods with clean air arriving at Zeppelin 

are used in the model, thus the model represents the background level of methane at the site 

(see Appendix I for details). This corresponds to an average increase of 4.9 ppb per year, or ca 

0.25%. The pronounced increase started in November/December 2005 and continued 

throughout the years 2007 - 2009, and is particularly evident in the late summer-winter 2007, 

and summer-autumn 2009. For Birkenes shown in the lower panel, the time series is too short 

for trend calculations, but a yearly increase is evident since the start 2009. There are also 

episodes with higher levels due to transport of pollution from various regions. In general, there 

are high levels when the meteorological situation results in transport from Central Europe. 

The year 2014 showed new high record for ambient CH4 concentrations globally (1833 ppb), and 

at Zeppelin and Birkenes (see Figure 9). The annual mean increase in the CH4 levels the last 

years is visualised in Figure 9 showing the CH4 annual mean mixing ratio for the period 2001-

2014 from Zeppelin (orange) and for Birkenes (green) from 2010-2014. The global mean value 

given by WMO (WMO, 2015) is included for comparison, together with the IPCC global mean 

value for 2011. 

 

Figure 9: Development of the annual mean mixing ratio of methane in ppb measured at the Zeppelin 

Observatory (orange bars) for the period 2001-2014, Birkenes for the period 2010-2014 in green bars, 

compared to global mean provided by WMO as black bars (WMO, 2015). The global annual mean in 2011 as 

given in IPCC, Chapter 8 (Myhre et al, 2013b) are included as grey bar. 

The annual means are based on the measured methane values. Modelled empirical background 

values are used, when data is lacking in the calculation of the annual mean. The diagram in 
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Figure 9 clearly illustrates the increase in the concentrations of methane at Zeppelin since 2005 

a small decrease from 2010 to 2011, and then now a new record level in 2014. The annual mean 

mixing ratio for 2014 was 1910 ppb while the level was 1898 ppb in 2013, an increase of 12 ppb 

which is the strongest yearly increase observed over the 14 years of observations. The increase 

at Birkenes was also high from 2013-2014; 15 ppb. The increase since 2005 at Zeppelin is 58 

ppb (approx. 3.1 %) which is large compared to the development of the methane mixing ratio 

in the period from 1999-2005 at Zeppelin, Svalbard and globally. It is also slightly larger than 

the global mean increase since 2005 which was 50 ppb, as published in the yearly bulletins by 

WMO (WMO, 2011, 2012, 2013, 2014, 2015). The global mean shows an increase since 2006, 

which over the years 2009-2013 was eg. 5-6 ppb per year but as high as 9 ppb from 2013-2014. 

Larger fluctuations are evident at Zeppelin. This is explained by the distribution of the sources; 

there are more sources in the northern hemisphere, and thus larger interannual variations. The 

global mean is lower as this includes all areas of the globe, e.g. remote locations such as 

Antarctica and is therefore lower than the values at Zeppelin and Birkenes, located closer to 

the sources. There is a time lag in the development. For comparison, during the 1980s when 

the methane mixing ratio showed a large increase, the annual global mean change was around 

15 ppb per year. 

Currently, the observed increase over the last years is not explained or understood. The recent 

observed increase in the atmospheric methane concentrations has led to enhanced focus and 

intensified research to improve the understanding of the methane sources and changes 

particularly in responses to global and regional climate change. Leaks from gas installations, 

world-wide, both onshore and offshore might be an increasing source. Hence, it is essential to 

find out if the increase since 2005 is due to emissions from large point sources, or if it is caused 

by newly initiated processes releasing methane to the atmosphere e.g. the thawing of the 

permafrost layer. Recent and ongoing scientific discussions point in the direction of increased 

emissions from wetlands located both in the tropical region and in the Arctic region. Gas 

hydrates at the sea floor are widespread in thick sediments in this area between Spitsbergen 

and Greenland. If the sea bottom warms, this might initiate further emissions from this source. 

This is the core of the large polar research project MOCA - Methane Emissions from the Arctic 

OCean to the Atmosphere: Present and Future Climate Effects4, which started at NILU in 

October 2013, and is expected to be finalized by spring 2017 (see http://moca.nilu.no)  

 

 Nitrous Oxide at the Zeppelin Observatory 

Nitrous Oxide (N2O) is a greenhouse gas with both natural and anthropogenic sources. The 

sources include oceans, tropical forests, soil, biomass burning, cultivated soil and use of 

particular synthetic fertilizer, and various industrial processes. There are large uncertainties in 

the major soil, agricultural, combustion and oceanic sources of N2O. Also frozen peat soils in 

Arctic tundra is reported as a potential source (Repo et al., 2009), but recent studies lead by 

NILU identify tropical and sub-tropical regions as the largest source regions (Thompson et al, 

2013). N2O is an important greenhouse gas with a radiative forcing of 0.17 W m-2 since 1750 

contributing around 6 % to the overall well-mixed greenhouse gas forcing over the industrial 

era. N2O is also the major source of the ozone-depleting nitric oxide (NO) and nitrogen dioxide 

(NO2) in the stratosphere, thus the component is also influencing the stratospheric ozone layer. 

                                                 

4 http://moca.nilu.no/  

http://moca.nilu.no/
http://moca.nilu.no/
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The Assessment of the ozone depletion (WMO, 2011) suggests that current emissions of N2O are 

presently the most significant substance that depletes ozone. 

N2O has increased from around 270 ppb prior to industrialization and up to an average global 

mean of 327.1 ppb in 2014 (WMO, 2015). In 2009, NILU installed a new instrument at Zeppelin 

measuring N2O with high time resolution; 15 minutes. The instrument was in full operation in 

April 2010 and the results for 2010 -2014 are presented in Figure 10, with the global mean 

included as horizontal lines for each year.  

 

Figure 10: Measurements of N2O at the Zeppelin Observatory for 2010-2014.The grey shaded areas 

are global annual mean, with the given uncertainty (WMO, 2011, 2012, 2013, 2014, 2015) 

 

The time series is too short for trend calculations, but according to WMO (WMO, 2015) the 

global mean increase of 1.1 ppb since 2014, slightly stronger than previous years. Annual mean 

for Zeppelin in 2014 was 326.1 with a standard deviation of 0.38 ppb. Due to instrumental 

problems last 6 months, there was a higher uncertainty this year, compared to earlier periods. 

A new instrument is planned to be implemented at Zeppelin during 2016 as a part of the new 

ICOS-Norway infrastructure project, funded under Norwegian Research Council.  

 

 Methyl Chloride at the Zeppelin Observatory 

Methyl chloride (CH3Cl) is the most abundant chlorine containing organic gas in the atmosphere, 

and it contributes approx. 16% to the total chlorine from the well-mixed gases in the 

troposphere (WMO, 2011). The main sources of methyl chloride are natural, and dominating 

source is thought to be emissions from warm coastal land, particularly from tropical islands are 

shown to be a significant source but also algae in the ocean, and biomass burning. Due to the 

dominating natural sources, this compound is not regulated through any of the Montreal or 

Kyoto protocols, but is an important natural source of chlorine to the stratosphere. To reach 
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the stratosphere, the lifetime in general needs to be in the order of 2-4 years to have significant 

chorine contribution, but this is also dependant on the source strength and their regional 

distribution. Methyl chloride has relatively high mixing ratios, and contributes to the 

stratospheric chlorine burden.  

The results of the observation of this substance for the period 2001-2014 are shown in 

Figure 11. 

 

Figure 11: Observations of methyl chloride, CH3Cl, for the period 2001-2014 at the Zeppelin Observatory. 

Dots: daily averaged concentrations from the observations, solid line: empirical modelled background mixing 

ratio. The right panel show the transport of air to Zeppelin the 11th February, where maximum CH3Cl is 

observed, and the minimum day 24th   August 2014. 

The lifetime of the compound is only one year resulting in large seasonal fluctuations, as shown 

in the Figure, and rapid response to changes in sources. To illustrate the influence of regional 

sources, the small figures in the right panel show the transport of air to Zeppelin the maximum 

day, 11th February 2013, and the minimum day, 24th August, 2014. There is a decrease the last 

years, but this seems to stop in 2011-2012, and a large increase was detected in 2013. However, 

it is positive to note that in 2014, the levels were lower, back on the same concentration as in 

2012, see also Figure 12 with the annual means.  

No annual trend over the period 2001-

2014 is detected due to the large 

variability. The annual means of 

methyl chloride for the period 2001-

2014 is presented in Figure 12. The 

period 2002-2009 was relatively 

stable, but since 2009 there is larger 

variability. From 2011 to 2013 there 

was an increase of more than 30 ppt 

in our data corresponding to an 

increase of eg. 20%. 2014 showed a 

reduction compared to 2013. The 

reasons to this are not clear, and 

sources resulting the rapid observed 

changed the last years will be 
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Figure 12: Development of the annual means methyl 

chloride measured at the Zeppelin Observatory for the 

period 2001-2014.   
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investigated at NILU the coming year. A closer study of source variation for this compound is 

also recommended by WMO (WMO, 2011), as the sources are also related to atmospheric 

temperature change and ocean. 

 

 Methyl Bromide at the Zeppelin Observatory 

The sources of methyl bromide (CH3Br) are both from natural and anthropogenic activities. The 

natural sources such as the ocean, plants, and soil, can also be a sink for this substance. 

Additionally there are also significant anthropogenic sources; it is used in a broad spectrum of 

pesticides in the control of pest insects, nematodes, weeds, pathogens, and rodents. Biomass 

burning is also a source and it is used in agriculture primarily for soil fumigation, as well as for 

commodity and quarantine treatment, and structural fumigation. Even though methyl bromide 

is a natural substance, the additional methyl bromide added to the atmosphere by humans 

contributes to the man-made thinning of the ozone layer. Total organic bromine from halons 

and methyl bromide peaked in 1998 and has declined since. The tropospheric abundance of 

bromine is decreasing, and the stratospheric abundance is no longer increasing (WMO, 2011).  

The results of the daily averaged observations of this compound for the period 2001-2014 are 

shown in Figure 13. A relatively large change is evident after the year 2007, a reduction of 

approx. 20% since the year 2005 at Zeppelin. Methyl bromide is a greenhouse gas with a lifetime 

of 0.8 years and it is 2 times stronger greenhouse gas than CO2 (Myhre et al, 2013b) if the 

amount emitted of both gases were equal. The short lifetime explains the large annual and 

seasonal variations of this compound. 

 

 

Figure 13: Observations of methyl bromide, CH3Br, for the period 2001-2014 at the Zeppelin Observatory. 

Dots: daily averages mixing ratios from the observations, solid line: empirical modelled background mixing 

ratio. 
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For the period 2001-2014 there is a 

reduction in the mixing ratio of -0.2 

ppt per year, with a relaxation in 

the trend the last years. However, 

note that the observed changes are 

small (approx. 1.7 ppt since 2005). 

The development of the annual 

means for the period 2001-2014 is 

presented in Figure 14, clearly 

illustrating the decrease in the last 

years. In general atmospheric 

amounts of methyl bromide have 

declined since the beginning in 1999 

when industrial production was 

reduced as a result of the Montreal 

protocol. The global mean mixing 

ratio was 7.3-7.5 ppt in 2011 (Myhre et al, 2013b), slightly lower than at Zeppelin. The differences 

are explained by slower inter hemispheric mixing. The recent reduction is explained by 

considerable reduction in the use of this compound; in 2008 the use was 73% lower than the 

peak year in late 1990s (WMO, 2011). 

 

 Carbon monoxide at the Zeppelin Observatory 

Atmospheric CO sources are the oxidation of various organic gases (volatile organic compounds, 

VOC) from sources as fossil fuel, biomass burning, and also oxidation of methane is important. 

Additionally, emissions from plants and ocean are important sources. CO is also emitted from 

biomass burning. Carbon monoxide (CO) is not considered as a direct greenhouse gas, mostly 

because it does not absorb terrestrial thermal IR energy strongly enough. However, CO is able 

to modulate the level of methane and production of tropospheric ozone, which are both very 

important climate components. CO is closely linked to the cycles of methane and ozone and, 

like methane; CO plays a key role in the control of the OH radical.  

CO at Zeppelin is include in the national monitoring programme and the observed CO mixing 

ratios for the period September 2001-2014 are shown in Figure 15. 

 

Figure 14: Development of the annual means of methyl 

bromide measured at the Zeppelin Observatory for the 

period 2001-2014. 
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Figure 15: Observations of carbon monoxide (CO) from September 2001 to 31.12.2014 at the Zeppelin 

observatory. Red dots: daily averaged observed mixing ratios. The solid line is the modelled 

background mixing ratio.  

The concentrations of CO show characteristic seasonal variations. This seasonal cycle is driven 

by variations in OH concentration as a sink, emission by industries and biomass burning, and 

transportation on a large scale. As seen from the Figure there are also peak values due to long-

range transport of polluted air to Zeppelin and the Arctic. The highest mixing ratio of CO ever 

observed at Zeppelin; is 217.2 ppb on the 2nd of May 2006. These peak values are due to 

transport of polluted air from lower latitudes; urban pollution (e.g. combustion of fossil fuel). 

The maximum in 2014 was on 10th of February; 201.7 ppb. The maximum value is caused by 

transport of pollution from Central Russia, and also CH4 and CO2 had yearly maximum value this 

day (See Figure 8 as well). We calculated a trend at Zeppelin of -1.3 ppb per year for the period 

2001-2014. 

Carbon monoxide (CO) has a clear annual cycle with a late winter (March) maximum and a late 

summer (August) minimum, but in 2014 the month of July differs slightly from the expected 

behaviour. Where usually a decline in concentration is expected, the last half of the month 

shows elevated values of carbon monoxide measured at Zeppelin Observatory. CO is an 

excellent tracer for transport of smoke from fires (biomass burning, agricultural- or forest 

fires). The summer of 2014 was a challenging wildfire season in Canada and in particular in the 

district of British Columbia. Large scale, landscape level wildfires contributed to the burning 

of almost 360,000 hectares of land - the third highest in this province’s history. Wildfire activity 

peaked in mid-July, in a heat wave across the province. The elevated concentrations observed 

at Zeppelin from 15.July and onwards are related to long-range transport in the Arctic. An 

analysis of the meteorological situation is the period 15.-23. July reveals transport from Canada 

and North-America to Zeppelin. The 7 days back trajectories at Zeppelin from 22.July is shown 

in the right panel in Figure 15. Smoke from wildfires is often injected in the stratosphere and 

can be transported around the globe with the prevailing jet streams. Soot can stay in the 

atmosphere for years.  
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The development of the annual means for the period 2001-2014 are presented in Figure 16, 

clearly illustrating a maximum in the year of 2003, and a decrease from 2003-2009. 

In general the CO concentrations 

measured at Zeppelin show a 

decrease during the period 2003 to 

2009, and stable levels the last years 

with a small increase in 2010.   

  

 

Figure 16: Development of the annual means of CO 

measured at the Zeppelin Observatory for the period 2001-

2014. 
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3.2 Greenhouse gases with solely 

anthropogenic source  
All the gases presented in this chapter have solely anthropogenic sources. These are purely 

man-made greenhouse gases and are called CFCs, HCFCs, HFCs, SF6 and halons, and most of the 

gases did not exist in the atmosphere before the 20th century. All these gases except for SF6 are 

halogenated hydrocarbons. Although the gases have much lower concentration levels than most 

of the natural gases mentioned in the previous section, they are strong infrared absorbers, 

many of them with extremely long atmospheric lifetimes resulting in high global warming 

potentials; see Table 2. Together as a group, the gases contribute to around 12% to the overall 

global radiative forcing since 1750 (Myhre et al, 2013b). The annual mean concentrations for 

all the gases included in the monitoring program for all years are given in Appendix I, 

Table A 1 at page 69, while all trends, uncertainties and regression coefficients are found in 

Table A 2 at page 70. 

Some of these gases are ozone depleting, and consequently regulated through the Montreal 

protocol. Additional chlorine and bromine from CFCs, HCFCs and halons added to the 

atmosphere contributes to the thinning of the ozone layer, allowing increased UV radiation to 

reach the earth's surface, with potential impact not only to human health and the environment, 

but to agricultural crops as well. In 1987 the Montreal Protocol was signed in order to reduce 

the production and use of these ozone-depleting substances (ODS) and the amount of ODS in 

the troposphere reached a maximum around 1995. The amount of most of the ODS in the 

troposphere is now declining slowly and one expects to be back to pre-1980 levels around year 

2050. In the stratosphere the peak is reached somewhat later, around the year 2000, and 

observations until 2004 confirm that the level of stratospheric chorine has not continued to 

increase (WMO, 2011). 

The CFCs, consisting primarily of CFC-11, -12, and -113, accounted for ~62% of total 

tropospheric chlorine in 2004 and accounted for a decline of 9 ppt chlorine from 2003-2004 (or 

nearly half of the total chlorine decline in the troposphere over this period) (WMO, 2011).  

There are two generations of substitutes for the CFCs, the main group of the ozone depleting 

substances. The first generation substitutes is now included in the Montreal protocol as they 

also deplete the ozone layer. This comprises the components called HCFCs listed in Table 2. 

The second-generation substitutes, the HFCs, are included in the Kyoto protocol. The general 

situation now is that the CFCs have started to decline, while their substitutes are increasing, 

and many of them have a steep increase. 

 

  Chlorofluorocarbons (CFCs) at Zeppelin Observatory  

This section includes the results of the observations of the CFCs: CFC-11, CFC-12, CFC-113, and 

CFC-115. These are the main ozone depleting gases, and the anthropogenic emissions started 

around 1930s and were restricted in the first Montreal protocol. The main sources of these 

compounds were foam blowing, aerosol propellant, temperature control (refrigerators), 

solvent, and electronics industry. The highest production of the observed CFCs was around 1985 

and maximum emissions were around 1987. The lifetimes of the compounds are long, as given 

in Table 2, and combined with strong infrared absorption properties, the GWP is high.  

Figure 17 shows the daily averaged observed mixing ratios of these four CFCs.  
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The instrumentation employed at Zeppelin is not in accordance with recommendations and 

criteria of AGAGE for measurements of CFCs, and there are relatively large uncertainties in the 

observations of these compounds, see also Appendix I. As a result, the trends are connected 

with large uncertainties. From September 2010, new and improved instrumentation was 

installed at Zeppelin providing more accurate observations of these compounds. The higher 

precisions are clearly visualised in Figure 17. 

 

Figure 17: Daily averaged mixing ratios of the monitored CFCs: CFC-11 (dark blue), CFC-12 (red), CFC-

113 (green) and CFC-115 (light blue) for the period 2001-2014 at the Zeppelin observatory. The solid 

lines are modelled background mixing ratio. 

The trends per year for the substances CFC-11, CFC12 and CFC-113 given in Table 2 are all 

negative, and the changes in the trends are also negative, indicating acceleration in the 

decline5. For the compound CFC-115, the trend is still slightly positive, +0.02 ppt/year, but the 

change in trend is negative and thus we expect the trend to be negative in few years. In total, 

the development of the CFC levels at the global background site Zeppelin is very promising, 

and as expected in accordance with the compliance of the Montreal protocol. 

The development of the annual means for all the observed CFCs is shown in Figure 18. The 

global annual mean of 2011 as given in IPCC (Chapter 8, Myhre et al, 2013b) is included as black 

bars for comparison. As can be seen, the concentrations at Zeppelin are very close to the global 

mean for these compounds, as the lifetimes are long and there are hardly any present-day 

emissions. 

 

                                                 

5 The current instrumentation is not in accordance with recommendations and criteria of AGAGE for measurements 

of the CFCs and there are larger uncertainties in the observations of this compound, see also Appendix I. 
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Figure 18: Development of the annual means all the observed CFCs at the Zeppelin Observatory for the 

period 2001-2014. Upper left panel: CFC-11, upper right panel: CFC-12, lower left panel: CFC-113, lower 

right panel: CFC-115. See Appendix I for data quality and uncertainty. The global annual mean as given 

in IPCC (Chapter 8, Myhre et al, 2013b) is included as grey bars. All units are ppt.  

According to WMO (WMO, 2011) the global mean mixing ratios of CFC-11 are decreasing with 

approximately 2.0 ppt +/-0.01 ppt. This is in accordance with our results at Zeppelin (2.1 

ppt/year). CFC-12 (the red diagram) has high GWP, 10200, the third highest of all gases 

observed at Zeppelin. The global averaged atmospheric mixing ratio of CFC-12 has been 

decreasing at a rate of 0.5% over the year 2004-2008 (WMO, 2011). This fits well with our 

observations as CFC-12 has the maximum in 2003-2004. There is a clear reduction the last years 

of -23 ppt since the maximum year 2005. 

 

  Hydrochlorofluorocarbons (HCFCs) at Zeppelin Observatory  

This section includes the observations of the following components: HCFC-22, HCFC-141b and 

HCFC-142b. These are all first generation replacement gases for the CFCs and their lifetimes 

are rather long, see Table 2. The main sources of these gases are temperature control 

(refrigerants), foam blowing and solvents, as for the CFCs, which they are supposed to replace. 

All these gases are regulated through the Montreal protocol as they all contain chlorine. The 

use of the gases is now frozen, but they are not completely phased out. The gases they have 

potentially strong warming effects, depending on their concentrations and absorption 

properties; their GWPs are high (see Table 2). The compound HCFC-142b has the highest GWP, 

and the warming potential is 1980 times stronger than CO2, per kg gas emitted. These gases 

also contain chlorine, and thus are contributing to the depletion of the ozone layer.  

The daily averaged observations of these gases are shown in Figure 19 for the period 2001-2014.  
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Figure 19: Daily average mixing ratios of the monitored HCFCs: HCFC-22 (red), HCFC-141b (dark blue) 

HCFC-142b (green) for the period 2001-2014 at the Zeppelin observatory. The solid lines are modelled 

background mixing ratios. All units are ppt. 

The trends per year for the compounds HCFC-22, HCFC-141b and HCFC-142b are all positive. 

HCFC-22 is the most abundant of the HCFCs and is currently increasing at a rate of 6.7 ppt/year 

over the period 2001-2014. The concentration of the two other HCFCs included are a factor of 

ten lower, and also the annual increase is about a factor ten lower; HCFC-141b and HCFC-142b 

have increased by 0.6 ppt/yr and 0.8 ppt/year, respectively over the same period.  

Figure 20 shows the annual means for the full period for the three compounds, clearly 

illustrating the development; a considerable increase over the period, but for HCFC142b reveal 

a stabilisation over the last years. With lifetimes in the order of 10-20 years, it is central to 

continue monitoring the development of these compounds for many years to come as they have 

an influence both on the ozone layer and are strong climate gases. The global annual mean of 

2011 as given in IPCC (Chapter 8, Myhre et al, 2013b) is included as black bars for comparison. 

As can be seen, the development and concentrations at Zeppelin are ca 2-3 ppt ahead of the 

global mean, indicating the development of the global mean values the next years. 
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 Hydrofluorocarbons 
(HFCs) at Zeppelin Observatory  

The substances called HFCs are the so called 

second generation replacements of CFCs, 

which means that they are considered as 

better alternatives to the CFCs with respect 

to the ozone layer than HCFCs. This sub-

section includes the following components: 

HFC-125, HFC-134a, and HFC-152a with 

lifetimes in the order of 1.5-29 years. These 

substances do not contain chlorine thus they 

do not have a direct influence on the ozone 

layer, but they are infrared absorbers and 

contribute to the global warming. The three 

main HFCs are HFC-23 (not part of the 

national monitoring program, but measured 

at Zeppelin from 2010), HFC-134a and 

HFC152a. HFC-134a is the most widely used 

refrigerant for temperature control, and 

also in air conditioners in cars. Since 1990, 

when it was almost undetectable in the 

atmosphere, concentrations of HFC-134a 

have risen massively, and it is the one with 

the highest concentration of these 

compounds. 

Even if these compounds are better 

alternatives for the protection of the ozone 

layer as they do not contain chlorine or 

bromine, they are still problematic as they 

are highly potent greenhouse gases. 1 kg of 

the gas HFC-125 is as much as 3170 times 

more powerful greenhouse gas than CO2 (See 

Table 2). However, their mixing ratios are 

currently rather low, but the background 

mixing ratios are increasing rapidly, except 

for HFC-152a, see Figure 21.  

The seasonal cycle in the observed mixing 

ratios of these substances is caused by the 

variation in the incoming solar radiation and 

is clearly visible in the time series shown in Figure 21 for HFC-152a. HFC-152a has the shortest 

lifetime and is mainly destroyed in the lowest part of the atmosphere by photolysis and 

reactions with OH. This is the first year we detected a reduction of the development of the 

concentration for one of these components. This is clearly illustrated in Figure 22 showing the 

development of the annual means. 

 

 

 

 

 

Figure 20: Development of the annual means the 

observed HCFCs at the Zeppelin Observatory for the 

period 2001-2014. Red: HCFC-22, Blue: HCFC-141b, 

and green: HCFC-142b.  All units are ppt. The global 

annual mean in 2011 as given in IPCC, Chapter 8 

(Myhre et al, 2013b) are included as black bars. 
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Figure 21: Daily average concentrations of the monitored HFCs: HFC-125 (red), HFC-134a (dark blue), 

and HFC-152a (green) for the period 2001-2014 at the Zeppelin observatory. The solid lines are 

empirical modelled background mixing ratio.  

HFC-152a reveals a reduction since last year. For the period 2001-2014, we find an increasing 

trend of 4.8 ppt per year for HFC-134a which leaves this compound as the one with the second 

highest change per year of the all the halocarbons measured at Zeppelin, after HCFC-22. The 

mixing ratios of HFC-125, HFC-134a and HFC-152a have increased by as much as 688%, 305% and 

260% respectively since 2001, and HFC-125 show even an acceleration on the development and 

trend.  

The development of the annual mean is shown in Figure 22. The global annual means of 2011 

as given in IPCC (Chapter 8, Myhre et al, 2013b) are included as black bars for comparison. As 

for HCFCs the development and concentrations at Zeppelin is ca 2-3 years ahead of the global 

mean, indicating the development of the global mean values the next years. HFC-152a is an 

exception from this. This compound has much shorter lifetime, and is thus more sensitive to 

emission strength and rapid variations in this.  
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Figure 22: Development of the annual means of the 

observed HFCs at the Zeppelin Observatory for the 

period 2001-2014. Red: HFC-125, Blue: HFC-134a, and 

green: HFC-152a. The global annual mean in 2011 as 

given in IPCC, Chapter 8 (Myhre et al, 2013b) are 

included as black bars. All units are in ppt. 

 

  Halons measured at Zeppelin Observatory  

Of the halons, H-1301 and H-1211 are measured at the Zeppelin Observatory. These greenhouse 

gases contain bromine, thus also contributing to the depletion of the ozone layer. Actually, 

bromine is even more effective in destroying ozone than chlorine. The halons are regulated 

trough the Montreal protocol, and are now phased out. The main source of these substances 

were fire extinguishers. The ambient concentrations of these compounds are very low, both 

below 4 ppt. Figure 23 presents the daily average concentrations of the monitored halons at 

Zeppelin.  



Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2014 – Annual report   M-454|2015 

 

37 

 

 

Figure 23: Daily average concentrations of the monitored halons: H-1301 (red in the upper panel) and H-1211 (blue 

in the lower panel) for the period 2001-2014 at the Zeppelin Observatory. The solid lines are empirical modelled 

background mixing ratio. 

The trends of the compounds given in Table 2 shows that for the period 2001-2014 there is an 

increase for H-1301, and a relaxation for H1211. The concentration of the compound H-1211 is 

considerable lower now than when we started the measurements, almost 10% as also depicted 

in the development of the annual means in Figure 24. 

The development of the annual means 

are shown in Figure 24 to the left, and 

the mixing ratios are relatively stable 

over the measured period, explained by 

low emissions and relatively long 

lifetimes (11 years for H-1211 and 65 

years for H-1301). However, a clear 

reduction is evident in Halon-1211, with 

the shortest lifetime. According to the 

last Ozone Assessment (WMO, 2011), 

the total stratospheric bromine 

concentration is no longer increasing, 

and bromine from halons stopped 

increasing during the period 2005-2008. 

H-1211 decreased for the first time in 

this period, while H-1301 continued to 

increase, but at a slower rate than 

previously.  
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Figure 24: Development of the annual means of the 

observed Halons at the Zeppelin Observatory for the 

period 2001-2014. Red: Halon-1301, Blue: H-1211.  All 

units are in ppt. 
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  Other chlorinated hydrocarbons at Zeppelin Observatory  

This section includes observations of the components: trichloromethane (also called methyl 

chloroform, CH3CCl3), dichloromethane (CH2Cl2), chloroform (CHCl3), trichloroethylen 

(CHClCCl2), perchloroethylene (CCl2CCl2). The main sources of all these substances are solvents. 

Chloroform do also has natural sources, and the largest single source being in offshore seawater. 

The daily averaged concentrations are shown in Figure 25.  

 

Figure 25: Daily average concentrations chlorinated hydrocarbons: From the upper panel: 

perchloroethylene (dark blue) methylchloroform (red), trichloroethylen (green), chloroform (light blue) 

and dichloromethane (pink) for the period 2001-2014 at the Zeppelin observatory. The solid lines are the 

empirical modelled background mixing ratio. 

Methylchloroform (CH3CCl3) has continued to decrease, and accounted only for 1% of the total 

tropospheric chlorine in 2008, a reduction from a mean contribution of 10% in the 1980s (WMO, 

2011). Globally averaged surface mixing ratios were around 10.5 ppt in 2008 (WMO, 2011) versus 

22 ppt in 2004 (WMO, 2011). The measurements at Zeppelin show that the component has 

further decreased to 3.8 ppt, a reduction of more than 90% since the measurement start in 

2001. 
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It is worth noting the strong recent increase in dichloromethane (violet), and chloroform (light 

blue). Dichloromethane, has a lifetime of less than 6 months, and respond rapidly to emissions 

changes, and about 90 % has industrial origin. Its main applications include use in paint 

strippers, degreasers and solvents; in foam production and blowing applications; and as an 

agricultural fumigant (WMO et al., 2011). The most recent estimation for its natural 

components suggests it is comprised of a 10% combined biomass burning and marine source. At 

Zeppelin, the increase since 2005 is about 73%, and as much as 20% since 2012. The 

concentration is currently 55.5 ppt. 

Large seasonal variations are observed for chloroform due to a relatively short lifetime of 1 

year, thus the response to emission changes are also for this compound rapid. The annual mean 

value of chloroform has increased with as much as 28% since 2005 at Zeppelin, this is also 

observed at other sites (e.g. Mauna Loa at Hawaii and Barrow in Alaska). From known emissions 

of this compound this increase is not expected, and the reason for this increase is not yet clear, 

it might also be related to natural sources.  

The concentration of trichloroethylene is very low and the annual variability is quite high, this 

may partly be due to uncertainty in the measurements and missing data  

  

  

 

 

Figure 26: Annual means of the chlorinated 

hydrocarbons. From upper panel: perchloroethylene 

(grey), trichloromethane (red), mid panels; 

trichloroethylen (green), chloroform (blue) and 

lower panel dichloromethane (violet) for the period 

2001-2014. For trichloromethane is the global 

annual mean in 2011 as given in IPCC, Chapter 8 

(Myhre et al, 2013b) included as black bars.  All 

units are ppt. 
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  Perfluorinated compounds at Zeppelin Observatory  

The only perfluorinated compound measured and included in the monitoring programme at 

Zeppelin is sulphurhexafluoride, SF6. This is an extremely strong greenhouse gas emitted to the 

atmosphere mainly from the production of magnesium and electronics industry. The 

atmospheric lifetime of this compound is as much as 3200 years, and the global warming 

potential is 23500, which means that the emission of 1 kg of this gas has a warming potential 

which is 23500 times stronger than 1 kg emitted CO2 (Myhre et al, 2013b). 

The other perfluorinated compounds are also very powerful greenhouse gases thus NILU has 

from 2010 extended the monitoring with carbon tetrafluoride (CF4) and hexafluoroethane 

(C2F6), as we have new and improved instrumentation installed at Zeppelin. These compounds 

will be a part of the national monitoring programme from 2015. 

The daily averaged concentration of SF6 is presented in Figure 27.  

 

 

 

Figure 27: Daily average concentrations of SF6 for the period 2001-2014 in the left panel, and the 

development of the annual mean concentrations in the right panel.  

The compound is increasing with a rate of 0.26 ppt/year, and has increased by more than 60% 

since the start of our measurements in 2001. The instrumentation before 2010 is not the best 

suited for measurements of SF6 thus there are larger uncertainties for this compound’s mixing 

ratios than for most of the other compounds reported (see Appendix I). The diurnal variations 

through the years are not due to seasonal variations, but rather to instrumental adjustments. 

The improvement with the new instrumentation in 2010 is very easy to see for this component. 
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3.3 Satellite observations of methane above 

Norway and the Norwegian Arctic region 
Satellites give an important contribution to the global GHG mapping, but they cannot replace 

the ground-based monitoring network. Earlier studies (Vik et al., 2011, Stebel et al., 2013) have 

shown that the uncertainty in satellite products, particularly in polar areas, are too large to be 

used alone in reporting to national authorities and international projects and programs. 

However, the satellite products make it possible to investigate the geographical extent of e.g. 

enhanced methane concentrations, emission and long-range transport. In the project “NEOS-

ACCM”, jointly financed by the Norwegian Space Center (NRS, Norsk Romsenter) and NILU, 

various methane satellite products are investigated, with work particularly focusing on Norway 

and the Norwegian Arctic region. In the course of the last 10 years, several satellites have 

provided methane data for Norway. Figure 28 gives an overview of the various methane 

measuring satellites and their time of operation, together with the duration of in-situ 

measurements at Zeppelin, Ny-Ålesund, and Birkenes. The ground-based (GB) observations at 

Zeppelin started in 2001, two years prior to the starting date in Figure 28.  

 

Figure 28: Overview of methane measuring satellites and their time of operation. The duration of 

Norwegian ground-based measurements are also marked. 

For the GB/satellite comparison, two satellite products are presented in this chapter: AQUA-

AIRS and GOSAT-IBUKI. For the methane GB/satellite inter-comparison an area of 1x1 degrees 

around Zeppelin and Birkenes have been defined, and the satellite pixels (within this area) 

closest to the observational sites and with existing CH4 data, have been extracted.  

 

 

 Atmospheric Infrared Sounder - AIRS 

The Atmospheric Infrared Sounder (AIRS) is an instrument onboard the polar-orbiting Earth 

Observing System (EOS) Aqua satellite. It was launched in 2002 and is still in operation. In the 

current chapter daily and monthly L3 gridded data, product AIRX3STM, for the period 2009-

2014 are presented. The AIRX3STM product uses a combination of data from AIRS and AMSU-A. 

The latter is a multi-channel microwave temperature/humidity sounder that measures global 

atmospheric temperature profiles and provides information on atmospheric water. Information 

from AMSU-A in the presence of clouds is used to correct the AIRS infrared measurements for 

the effects of clouds. The L3 gridded products are derived from the V6 Level 2 (L2) swath 
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products. These L3 files contain geophysical and quality parameters that have been averaged 

and binned into 1x1 grid cells. 

 

The L3 data are separated into ascending (A) and descending (D) orbits, where “ascending or 

descending” refers to the direction of movement of the satellite track. The ascending direction 

of movement is from Southern Hemisphere to Northern Hemisphere, with an equatorial crossing 

time of 1:30 PM local time; the descending direction of movement is from Northern Hemisphere 

to Southern Hemisphere, with an equatorial crossing time of 1:30 AM local time. AIRS provides 

both total column and methane profile data. For the standard AIRX3STM satellite product 

methane is retrieved at 24 pressure levels. Since the Zeppelin observatory is located at an 

altitude of 447 m.a.s.l., satellite data at the two lowest pressure layers are used for comparison 

to the GB observations; Altitude level 0 (L0: ~110 m.a.s.l.) and level 1 (L1: ~750 m.a.s.l.). 

 

Figure 29 shows daily and monthly mean methane data from AIRS together with ground based 

observations at Zeppelin. Daily data from AIRS are marked as orange dots, whereas daily data 

from GB observations are marked in blue. Monthly mean values from AIRS and GB observations 

are black and red lines, respectively. In Figure 2 descending data at altitude level 1 (second 

lowest pressure level) is shown. The seasonal cycle with maximum in winter and minimum in 

summer is seen for all observations. For the monthly mean comparison, the GB/AIRS correlation 

is as high as 0.74, however, a large bias is evident from Figure 2. The AIRS L1 data are in average 

52 ppb higher than the GB observations. A similar comparison for AIRS L0 data gives and even 

higher bias of ~62 ppb.  

 

 

Figure 29: Daily and monthly mean methane data at Zeppelin, upper panel and Birkenes, lower panel. 

In-situ data are marked in blue (daily) and red (monthly), whereas AIRS data are marked as orange 

dots (daily) and a black line (monthly mean). 
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In the lower panel the GB/AIRS comparison for Birkenes is shown. Since Birkenes is located 

closer to the surface (~190 m.a.s.l.) only the AIRS L0 layer is used in the comparison. The 

correlation of GB and AIRS descending data is 0.69. This is slightly lower than for Zeppelin. On 

the other hand the bias is considerably reduced. Whereas the bias at Zeppelin was 62 ppb, the 

bias at Birkenes is around 10 ppb.  

As seen from Figure 29 the day-to-day fluctuations in methane can be very large. At Zeppelin 

the GB/AIRS correlation for daily data is 0.38 (using AIRS L1 descending data), whereas the 

correlation is 0.27 for GB/AIRS descending daily data at Birkenes. A summary of AIRS statistics, 

compared to in-situ measurements, is presented in Table 3.  

Table 3: Bias, scatter and correlation (R) between AIRS AQUA satellite and ground-based methane data. 

Monthly Period Bias Scatter R N 

Zeppelin (L0, ascending) Daily 63.0 35.4 0.32 1645 

 Monthly 61.9 16.8 0.64 72 

Zeppelin (L1, ascending) Daily 52.3 29.3 0.38 2000 

 Monthly 51.3 12.9 0.74 72 

Zeppelin (L0, descending) Daily 62.9 35.6 0.36 1625 

 Monthly 62.9 16.6 0.71 72 

Zeppelin (L1, descending) Daily 52.6 31.5 0.38 1996 

 Monthly 51.8 14.1 0.74 72 

Birkenes (L0, ascending) Daily 15.9 39.1 0.22 1630 

 Monthly 17.0 17.3 0.57 67 

Birkenes (L0, descending) Daily 9.7 35.5 0.27 1603 

 Monthly 10.2 14.4 0.69 67 

 

 

AIRS sensitivity in the polar region 

is usually smaller than in the mid-

latitude and tropics. Large 

sensitivities suggest the variability 

of CH4 better retrieved, while 

smaller sensitivities indicate that 

the retrieved CH4 will be closer to 

the first-guess (Xiong, 2008). 

Figure 30 shows monthly mean 

methane from AIRS L0 in December 

2014. High AIRS methane 

concentrations in the polar region 

might reflect the reduced 

sensitivity and uncertain retrieval 

algorithms at high latitudes.  
  

 

Figure 30: AIRS average methane concentrations (L0 surface 

layer) in December 2014 



Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2014 – Annual report   M-454|2015 

 

44 

 

 

 The Greenhouse gases Observing SATellite (GOSAT)   

GOSAT is a joint project of the Japanese Ministry of the Environment (MOE), the National 

Institute for Environmental Studies (NIES) and the Japan Aerospace Exploration Agency (JAXA) 

to monitor the global distribution of atmospheric CO2 and CH4 from space (Yokota et al., 2009). 

The GOSAT satellite was launched in 2009 and is still in operation. For comparison between 

GOSAT and the Norwegian in-situ measurements, the GOSAT XCH4 Level 3 Product (V02.21) is 

used. This product includes CH4 monthly data with a spatial resolution of 2.5 x 2.5 degrees.  

 

Only total methane columns (average ppb) are available from the current GOSAT satellite 

product, which makes a GB/satellite comparison less relevant with respect to absolute values. 

However, annual and year-to-year variations can still be compared. Unfortunately, no satellite 

data are available for the Zeppelin station, and consequently a GB/satellite comparison is only 

made for Birkenes.  

 

Figure 31 shows comparisons of GOSAT satellite data (orange dots) and in-situ observations 

(blue dots) at Birkenes from 2009 to 2014. Even if the surface (GB) and GOSAT total column 

methane represent two different products, the correlation is still as high as 0.70. Figure 31 also 

shows that the GB and GOSAT data exhibit the same CH4 change for the past 6 years – both time 

series reveal an annual CH4 increase of ~0.4% per year. The “trend” estimates are based on a 

linear regression from all monthly mean values, without taking the annual methane cycle into 

account. This is a rather crude analysis method, nevertheless, the comparison shows that the 

satellite total column data to a large extend supports the increased surface methane 

concentrations observed at Birkenes the past 6 years. 

 

 

Figure 31:  Monthly mean ground-based CH4 measurements at Birkenes (blue) and the corresponding 

total column CH4 from the GOSAT satellite (orange). 
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4. Aerosols and climate: Observations 

from Zeppelin and Birkenes 

Observatories 

Atmospheric aerosol influences climate by scattering incoming visible solar radiation back into 

space before it can reach the ground, be absorbed there and warm the earth surface. This so 

called direct aerosol climate forcing results mostly in cooling, but can be moderated if the 

aerosol itself absorbs solar radiation, e.g. if it consists partly of light absorbing carbon or light 

absorbing minerals. In this case, the aerosol warms the surrounding atmosphere, the so-called 

semi-direct effect. Atmospheric aerosol particles also affect the reflectivity and lifetime of 

clouds, which is termed the indirect aerosol climate effect. Here as well, the effect can be 

cooling as well as warming for climate, but in most cases, the cloud reflectivity and lifetime 

are increased, leading again to a cooling effect (see Figure 3). Figure 32 gives an overview of 

the main natural and anthropogenic sources of atmospheric aerosols. 

 

Figure 32: Illustration of the main natural and anthropogenic sources of atmospheric aerosols taken from Myhre 

et al (2013b). Top: local and large scale air pollution. Sources include (bottom, counter clockwise) volcanic 

eruptions (producing volcanic ash and sulphate), sea spray (sea salt and sulphate aerosols), desert storms 

(mineral dust), savannah biomass burning (BC and OC), coal power plants (fossil fuel BC and OC, sulphate, 

nitrate), ships (BC, OC, sulphates, nitrate), cooking* (domestic BC and OC), road transport (sulphate, BC, VOCs 

yielding OC). Center: Electron microscope images of (A) sulphates, (B) soot, (C) fly ash, a product of coal 

combustion (Posfai et al., 1999). 
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Uncertainties in assessing aerosol climate forcing hamper the attribution of changes in the 

climate system. IPCC AR5 (IPCC, 2013) has high confidence in stating that atmospheric aerosol 

in the past has offset a significant fraction of greenhouse gas radiative warming, although the 

magnitude is connected with uncertainty. Due to the decline of aerosol concentrations as 

reported in Tørseth et al (2012), Collaud Coen et al., (2013), and Asmi et al., (2013), and 

summarized in Hartmann et al, 2013) the total anthropogenic radiative forcing will be even 

larger in the future.  

IPCC AR5 mentions progress since AR4 concerning observations of climate relevant aerosol 

properties such as particle size distribution, particle hygroscopicity, chemical composition, 

mixing state, optical and cloud nucleation properties. This includes the parameters covered by 

the Norwegian climate monitoring programme, and underlines the importance of these 

observations. IPCC AR5 also mentions a lack of long time series on these parameters and stresses 

that existing time series need to be continued for maximising their informative value. This is 

the core of the EU project ACTRIS, now continued in ACTRIS-2, that NILU is highly involved in. 

Due to hosting the data centre of the European Monitoring and Evaluation Programme (EMEP), 

ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) and the WMO 

Global Atmosphere Watch (GAW) World Data Centre for Aerosol (WDCA), NILU has a position 

connecting the community for measuring air quality and climate relevant atmospheric aerosol 

properties with the community using this data to constrain models for assessing and predicting 

the aerosol climate effects. This community is represented by the AeroCom project, an 

initiative for comparing these models among each other and with various data sources, which 

is hosted by the Norwegian Meteorological Institute. It is important to highlight and mention 

that NILUs work in hosting the WMO GAW World Data Centre for Aerosol, among many other 

synergy effects, ensures a rather efficient dissemination of the data on atmospheric aerosol 

properties collected within the Norwegian climate monitoring programme, and increases its 

visibility. In the reporting period, the AeroCom Phase III project, a collaboration between the 

Norwegian Meteorological Institute, NILU, and CICERO, funded by the Norwegian Research 

Council, continued with starting designated tasks using the results of the Norwegian programme 

for monitoring climate relevant aerosol properties. The tasks involve confronting climate 

models in AeroCom with data collected at atmospheric observatories such as those operated by 

Norway. Compared parameters will include the aerosol particle size distribution, as well as the 

optical properties scattering and absorption, in order to improve the accuracy of the climate 

models. Further projects relevant in this context that started in the reporting period and where 

the Norwegian atmospheric monitoring programme is involved through NILU include the above 

mentioned ACTRIS-2 project, and the Environmental Research Infrastructures Providing Shared 

Solutions for Science and Society (ENVRIplus) project. Among others, ACTRIS-2 will develop a 

primary standard for calibrating instruments measuring aerosol absorption, one of the 

properties of atmospheric black carbon, and develop quality standards for measuring the 

aerosol particle size distribution in the coarse size range (Dp > 1 µm) in order to further improve 

assessments of aerosol climate forcing. ENVRIplus is an umbrella project for all geoscientific 

research infrastructures funded or supported by the EU. One of its objectives will be to put 

data from the atmospheric, marine, tectonic, and biosphere domains into a common context 

by making the data interoperable, i.e. visible in common services. The efforts started with 

achieving this goal first within the atmospheric domain. 

NILU continues to operate 3 observatories measuring aerosol properties relevant for quantifying 

the direct and indirect aerosol climate effects: 1) Zeppelin Mountain / Ny Ålesund (in 

collaboration with the Norwegian Polar Institute and Stockholm University); 2) Birkenes 
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Atmospheric Observatory, Aust-Agder, Southern Norway; 3) Troll Atmospheric Observatory, 

Antarctica (observatory operated by NILU, main station operated by Norwegian Polar Institute). 

The station locations represent the focal areas of the polar regions, which are more vulnerable 

to climate change, as well as the regions where the largest fraction of the Norwegian population 

lives. Recent developments at these stations include: 

1. Zeppelin Mountain: Within the Swedish - Norwegian co-operation operating the 
atmospheric observatory on Zeppelin mountain, Stockholm University maintains a set 
of instruments measuring the fine-range (Dp < 1 µm) particle number size distribution, 
and the aerosol particle scattering and absorption coefficients. In previous years, 
Stockholm University had problems with timely delivery of data due to funding 
limitations on the Swedish side. Beginning in 2015, these issues could essentially be 
resolved due to additional funding from the Norwegian side covering the Swedish rental 
of the lab facilities at the station. Through the additional Norwegian funding for 
Zeppelin observatory, a number of additional measurements have been or are planned 
to be installed. Due to this funding, NILU is now operating a latest generation 
aethalometer at Zeppelin since June 2015. The Magee AE33 instrument is a filter 
absorption photometer providing the spectral aerosol particle absorption coefficient at 
7 wavelengths from the UV to the infra-red. The instrument is designed to be less prone 
to systematic uncertainties than the previous instrument generation, and complements 
existing observations of that type at Zeppelin. The new instrument is due to replace a 
previous generation instrument operated at Zeppelin by the Greek Demokritos Research 
Institute (Athens). Both instruments are operated in collaboration between Greece and 
Norway. Another instrument operated by NILU due to be installed at Zeppelin is a time-
of-flight Aerosol Chemical Speciation Monitor (ACSM-ToF) that will yield the particle 
chemical speciation with high (~hourly) time resolution. 

2. Birkenes Atmospheric Observatory: In 2014, operation of the extended aerosol 
instrument set at Birkenes resumed according to the quality standards of WMO GAW 
and the European infrastructure project ACTRIS. A focus for 2014, as well as the year 
before, has been placed on workshop inter-comparisons of selected instruments. 
Despite strictly following the operating procedures agreed within the station networks, 
certain instrument malfunctions can pass unnoticed if the instruments within a network 
are not inter-compared directly on the same sample. On the other hand, participating 
in such inter-comparisons comes at the expense of decreasing data coverage in time 
due to the loss of data while the instrument is being inter-compared. Thus, quality 
assurance, both by off-site calibration or inter-comparison, comes at the expense and 
needs to be balanced with data coverage. Instruments affected by this balance in 2014 
are the differential mobility particle size spectrometer (DMPS) and the optical particle 
size spectrometer (OPSS), measuring the particle number size distribution in the fine 
(Dp < 1 µm) and coarse (Dp > 1 µm) size range, respectively. Since both instruments are 
needed to cover the full range of the aerosol particle size distribution, an outage of 
either one will produce a gap in the size distribution. In the reporting year, the DMPS 
was subject to a component failure, while the OPSS underwent off-site calibration and 
inter-comparison. Another focus concerning atmospheric aerosol observations at 
Birkenes was placed on data analysis and interpretation in order to make the results 
more accessible also for the non-expert. Funded by a Strategic Institute Focus (SIS-
miljø) project, a cluster analysis was performed using the aerosol particle size 
distribution and aerosol optical property data collected at Birkenes. The analysis 
yielded 8 statistically distinct clusters. By considering the clusters’ particle size 
distribution, fine / coarse-mode partitioning, particle absorption, monthly frequency 
of occurrence, and spatial source distribution provided by transport modelling, it is 
possible to associate all clusters to specific sources or source combinations. The sources 
include fresh and aged biogenic aerosol, Arctic marine aerosol, regional domestic 
biomass burning, but also rather source specific types from Central and Eastern Europe.  

3. Troll Atmospheric Observatory: Work around Troll Atmospheric Observatory followed 
up on a 2014 publication (Fiebig et al., 2014) funded by a base funding project 
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controlled by the Norwegian Research Council (Strategisk Instituttsatsing, SIS). The 
article investigates the annual cycle of the baseline aerosol at Troll as observed in the 
particle number size distribution and aerosol scattering coefficient data collected at 
Troll. It is shown that the baseline aerosol annual cycles in both parameters have the 
same physical origin. A comparison with data collected at the Antarctic stations South 
pole and Dome C, yields that the baseline air annual cycle observed at Troll is common 
to the whole Central Antarctic plateau. Following the Troll baseline air masses 
backwards with the Lagrangian transport model FLEXPART, the article demonstrates 
that these air masses descend over Antarctica after being transported in the free 
troposphere and lower stratosphere from mid-latitudes (there uplifted in fronts) or 
from the inter tropical convergence zone (uplifted by convection). The article shows 
further that the aerosol particles contained in Antarctic baseline air are formed in situ 
by photochemical oxidation of precursor substances. Early in 2014, the station has been 
moved to a new location to avoid exposure to local contamination that affected up to 
80% of the data collected at the old location. A project following up on the discussed 
previous findings was applied for and approved by the NFR Norwegian Antarctic 
Research Expeditions (NARE) programme. Among others, the project will investigate 
the Antarctic background aerosol further by collecting an ultra-long exposure filter 
sample for chemical analysis despite the low concentrations, and use the cluster 
analysis method developed with Birkenes to identify the source regions and aerosol 
types found at Troll. This work is intended to further improve our knowledge about the 
aerosol and aerosol processes in pristine regions of the globe, which are often used as 
proxy for pre-industrial aerosol. Uncertainty about the climate effect of pre-industrial 
aerosol is still one of the main sources of uncertainty in climate predictions (Carslaw 
et al., 2013). 

An overview of all aerosol parameters currently measured at the 3 observatories can be found 

in Table 4. Parameters where observations are funded by Miljødirektoratet (and which are 

covered in this report) are written in green type. 
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Table 4: Aerosol observations at Zeppelin, Birkenes and Troll Observatory following the GAW 

recommendations. Parameters in green are funded by the Norwegian Environment Agency and included 

in this report. 

 

 Zeppelin/Ny-Ålesund Birkenes Troll 

Particle Number Size 
Distribution 
(fundamental to all 
aerosol processes) 

fine mode (0.01 µm < Dp < 
0.8 µm) in collaboration 
with Stockholm University 

fine and coarse mode 
(0.01 µm < Dp < 10 µm) 

fine mode (0.03 µm < Dp < 
0.8 µm) 

Aerosol Scattering 
Coefficient  
(addressing direct 
climate effect) 

spectral at 450, 550, 700 
nm, in collaboration with 
Stockholm University 

spectral at 450, 550, 
700 nm 

spectral at 450, 550, 700 
nm 

Aerosol Absorption 
Coefficient  
(addressing direct 
climate effect) 

single wavelength at 525 
nm, (Stockholm 
University); single 
wavelength at 670 nm 
(Stockholm University); 7-
wavelength (Demokritos 
Athens); 7-wavelength 
(NILU) 

single wavelength 
(525 nm) and spectral at 3 
wavelengths 

single wavelength at 525 
nm and spectral at 3 
wavelengths. 

Aerosol Optical Depth 
(addressing direct 
climate effect) 

spectral at 368, 412, 500, 
862 nm in collaboration 
with WORCC 

spectral at 340, 380, 440, 
500, 675, 870, 1020, 
1640 nm, in collaboration 
with Univ. Valladolid 

spectral at 368, 412, 500, 
862 nm 

Aerosol Chemical 
Composition (addressing 
direct + indirect climate 
effect) 

main components (ion 
chromatography), heavy 
metals (inductively-
coupled-plasma mass-
spectrometry) 

main components (daily 
resolution, offline filter-
based, ion chromatogra-
phy), heavy metals 
(inductively-coupled-
plasma mass-
spectrometry) 

main components (ion 
chromatography), 
discontinued from 2011 
due to local 
contamination. 

Aerosol Chemical 
Speciation (direct + 
indirect climate effect, 
source attribution, 
transport) 

--- Particle main chemical 
species (hourly resolution, 
online mass spectrometry) 

--- 

Particle Mass 
Concentration 

--- PM2.5, PM10 PM10, discontinued from 
2011 due to local 
contamination 

Cloud Condensation 
Nuclei 
(addressing indirect 
climate effect) 

size integrated number 
concentration at variable 
supersaturation in 
collaboration with Korean 
Polar Research Institute 

number concentration at 
variable supersaturation, 
installed in 2012 

--- 

 

  



Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2014 – Annual report   M-454|2015 

 

50 

 

4.1 Physical and optical aerosol properties at 

Birkenes Observatory 
 Properties Measured In Situ at the Surface 

Figure 33 summarises the optical aerosol properties measured at Birkenes, not only for the 

reporting year of 2014, but for the whole period since January 2010 when the upgraded station 

was in full routine operation. The optical aerosol properties quantify the direct climate effect 

of the aerosol, locally at the station and at surface level. All panels of the figure depict time 

series of daily averages, the 2 topmost panels for the spectral scattering coefficient σsp and the 

absorption coefficient σap. These properties are extensive properties, i.e. they scale with the 

total concentration of aerosol particles. The scattering coefficient quantifies the amount of 

light scattered by the aerosol particle population in a sample per distance a light beam travels 

through the sample. The absorption coefficient is the corresponding property quantifying the 

amount of light absorbed by the particle population in the sample. The 2 lower panels depict 

intensive optical aerosol properties, i.e. properties that don’t scale with the particle 

concentration and that represent properties of the individual “average” particle in the aerosol. 

The scattering Ångström coefficient åsp parameterises the wavelength dependence of σsp. 

Normally, σsp decreases with wavelength. The stronger this decrease, the more positive åsp 

becomes. Higher values of åsp correlate with higher concentration ratios of particle surface in 

the fine size range (Dp < 1 µm) as compared to the coarse size range (Dp > 1 µm). The single 

scattering albedo 0 depicted in the fourth panel quantifies the fraction of incident light 

interacting with the particles in an aerosol volume by scattering, rather than being absorbed 

by the particles. For a purely scattering aerosol, 0 is 1, and decreases with increasing fraction 

of light absorbing components in the aerosol particle phase. Since 0 is derived from σsp and 

σap, the 0 wavelength plotted matches one of the wavelength of the integrating nephelometer, 

and is close to a wavelength of the filter absorption photometers. All panels include not only 

the time series of the daily averages, but also the 8-week running median centred around the 

data point, plotted as heavy line, to facilitate detection of possible seasonal variations. All 

properties are measured for particles with aerodynamic diameter Dp,aero < 10 µm and at relative 

humidity below 40%, thus avoiding water uptake by the aerosol particles, for best comparability 

between stations in the network. This protocol follows the recommendations of the WMO GAW 

aerosol network, and is identical with the recommendations of the relevant European networks 

(EUSAAR, ACTRIS). To facilitate an easier and quantitative comparison, Table 4 lists the annual 

and seasonal averages of the optical properties at Birkenes as well. 
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Figure 33: Time series of aerosol optical property daily means measured for 2010 - 2014 at Birkenes. 

The top panel shows the aerosol scattering coefficient σsp at 450, 550, and 700 nm wavelength 

measured by integrating nephelometer. The second panel depicts the aerosol absorption coefficient σap 

at 550 nm wavelength measured by filter absorption photometer, shifted from the instrument 

wavelength at 525 nm to 550 nm for consistent comparison assuming an absorption Ångström 

coefficient of -1. The third and forth panels show the scattering Ångström coefficient åsp and the single 

scattering albedo 0 as derived properties, respectively. All plots also depict the running 8-week 

medians of the respective properties as heavy lines to visualize seasonal variations. 

The time series of surface aerosol optical properties at Birkenes now comprises 5 years, which 

is on the edge of the threshold for discovering trends. So far, the time series of σsp and åsp don’t 

show any visible underlying trend, which is consistent with the findings for other European 

continental background stations at Jungfraujoch (Switzerland, mountain top), 

Hohenpeissenberg (Southern Germany, elevated boundary layer), and Pallas (Northern Finland, 

boreal background) (Collaud Coen et al., 2013). Also the range of σsp values encountered, 3 - 
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50 Mm-1 with an annual average of about 12.5  Mm-1, is consistent with findings at comparable 

stations (Delene & Ogren, 2002). The variation of σsp and åsp is rather driven by synoptic scale 

transport patterns of the air masses arriving at Birkenes on a time scale of a few days, as 

discussed in detail in last year’s report. For åsp which varies between 1 and 2 over the year, a 

slight seasonal dependence can be detected, with a tendency for higher values in summer than 

in winter. This is due to a seasonal cycle in the concentration of fine-mode particles, with 

higher values in summer than in winter, which will be discussed below. 

Also the variability of σap and 0 are dominated by synoptic scale transport of air masses to 

Birkenes on the time scale of hours to days. The values of σap fall in the range of 0.3 – 4 Mm-1 

with annual means around 1 Mm-1, whereas 0 varies between 0.86 – 0.96. Both properties 

characterizing aerosol absorption show in Birkenes an annual cycle and a tendency towards an 

underlying trend, as far as possible to detect this with a time series of 5 years duration. Both 

features are visible best in the time series of 0, which shows a clear annual cycle with lower 

values (more aerosol absorption) in winter due to black carbon (BC) emissions from domestic 

heating with wood stoves. Underlying the annual cycle, 0 shows a tendency to higher values, 

i.e. decreasing aerosol absorption. Bearing in mind the uncertainty of such a trend based on a 

5-year time series, 0 has increased at Birkenes by 4.2% over the years 2010 – 2014 disregarding 

the annual cycle. A tendency towards less aerosol absoprtion has also been observed for stations 

in the continental U.S. and Alaska (Barrow), but only few stations in continental Europe 

(Hohenpeissenberg, Germany) (Collaud Coen et al., 2013). This tendency to decreasing aerosol 

absorption would most likely be caused by decreasing BC emissions due to stricter regulations 

for both traffic emissions and those from domestic heating. On the other hand, it is likely that 

the tendency towards less absorbing aerosol observed in Birkenes will decrease in the years to 

come, simply because further reductions will be harder to achieve. 
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Figure 34: 2014 time series of particle number size distribution at Birkenes, panel a) winter, panel b) 

spring, panel c) summer, panel d) autumn 

 

Figure 35: 2010-2014 time series of particle number concentration integrated over selected size ranges 

representing the different physical processes governing the atmospheric aerosol. The dotted graphs 

represent daily averages of the respective size range. 

Figure 34 shows the time series of the particle number size distribution (PNSD) measured at 

Birkenes in 2014, separated into 4 different panels by season. In this plot type, the x-axis holds 

the time of the observation, whereas the y-axis holds the particle diameter Dp on a logarithmic 

scale. The logarithmic colour scale holds the particle concentration, normalised to the 

logarithmic size interval, dN / dlog Dp. The use of logarithmic axis is common when displaying 

PNSD information since both, particle diameter and particle concentration, tend to span several 

orders of magnitude while containing relevant information over the whole scale. In this report, 

the PNSD reported for Birkenes covers for the first time the whole size range between 0.01 – 

10 µm by combining the information of 2 instruments, one each focussing on the fine and coarse 

size ranges, into a common PNSD product (see appendix for details). Where existing, operating 

procedures and quality standards defined by the WMO Global Atmosphere Watch Programme 

and the European research infrastructure ACTRIS have been used (Wiedensohler et al., 2012). 

Even though the PNSD isn’t uniquely connected to a specific air mass type, it is normally fairly 

characteristic for the air mass, and can serve, together with the single scattering albedo 0, 

and the scattering Ångström coefficient åsp, as valuable indication of air mass origin, which at 

Birkenes shifts with the synoptic weather situation. Consequently, the information content of 

a PNSD time series plot is too high to be discussed in detail in this overview-type annual report. 

The PNSD and 0 observations reconfirm previous findings on the dominant air mass types at 

Birkenes, which consist of: 1) clean Arctic background aerosol; 2) Central and Eastern European 

aerosol; 3) Arctic haze; 4) biogenic aerosol, i.e. vegetation emitted precursor gases condensing 

to the particle phase by photooxidation; 5) wood combustion aerosol from domestic heating. A 

detailed analysis of the predominant air mass types at Birkenes and their occurrence is in the 
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course of being completed in the base-funded project “Strategic Aerosol Observation and 

Modelling Capacities for Northern and Polar Climate and Pollution” (SACC). 

In order to condense the information in the PNSD time series, Figure 35 shows the time series 

of selected PNSD integrals, i.e. the concentration of particles falling into selected size 

intervals. The size intervals are chosen to represent characteristic processes governing the 

atmospheric aerosol (see appendix for more details): 1) the Aitken-mode size range, 0.02 – 

0.1 µm; 2) the accumulation mode size range, 0.1 – 1 µm; 3) the coarse mode size range, 1 – 

10 µm. The time series in Figure 35 represent daily averages over these PNSD integrals for the 

whole period since the Birkenes station upgrade in 2010. The respective size range integral 

particle concentrations, Nait for the Aitken mode, Nacc for the accumulation mode, and Ncoa for 

the coarse mode, are also included in Table 5 to show the respective seasonal and annual 

average concentrations.  

As to be expected, the particle concentration in the Birkenes aerosol in absolute terms is 

dominated by the Aitken mode particles, followed by the accumulation mode. Also the most 

prominent feature in Figure 35 is exhibited by the particle concentrations in these 2 modes, a 

clear annual cycle caused by the same underlying physical process. In summer, the vegetation 

emits gaseous aerosol precursors, which are photo oxidised and condense onto Aitken-mode 

particles or form those directly. These particles coagulate, increasing the concentration of 

accumulation mode particles. The processes controlling Ncoa are decoupled from those 

controlling Nait and Nacc. Coarse mode particles are formed from bulk material, their 

concentration is affected by wind speed (levitating dust, spores, pollen), snow cover, and rain 

(both inhibiting dust levitation). 

In terms of particle concentration, the year 2014 is somewhat different from the previous years. 

As can be seen from Table 5, the particle concentrations in Aitken and accumulation mode Nait 

Table 5: 2010 - 2014 seasonal and annual means of size distribution integrals, scattering coefficient, 

absorption coefficient, and single scattering albedo. 

Year Season Nait / 
cm-3 

Nacc / cm-3 Ncoarse / 
cm-3 

Ntotal / 
cm-3 

σsp (550 
nm) / 
Mm-1 

σap (550 
nm) / 
Mm-1 

0 (550 
nm) 

2009/10 Winter 440 384 0.087 824 16.82 3.09 0.88 

2010 Spring 1030 324 0.311 1354 12.33 0.78 0.93 

2010 Summer 1511 488 0.323 1999 11.30 0.70 0.94 

2010 Autumn 835 299 0.260 1135 7.26 0.71 0.90 

2010 Whole Year 973 362 0.256 1336 11.52 1.24 0.91 

2010/11 Winter 454 285 0.311 739 16.96 2.18 0.89 

2011 Spring 1127 369 0.639 1496 18.67 1.26 0.93 

2011 Summer 1391 438 0.572 1829 15.43 0.74 0.95 

2011 Autumn 1594 464 0.966 2059 29.74 2.87 0.92 

2011 Whole Year 1047 371 0.565 1418 20.26 1.69 0.93 

2011/12 Winter 424 213 0.305 637 11.29 1.00 0.91 

2012 Spring 1107 271 0.386 1378 15.10 0.86 0.93 

2012 Summer 1314 392 0.485 1706 12.62 0.67 0.95 

2012 Autumn 661 152 0.365 814 9.80 0.65 0.92 

2012 Whole Year 889 263 0.375 1152 12.22 0.83 0.92 

2012/13 Winter 383 183 0.183 566 12.48 0.92 0.90 

2013 Spring 1190 352 0.411 1543 17.03 0.68 0.95 

2013 Summer 1519 447 0.467 1967 13.81 0.56 0.96 

2013 Autumn 701 162 0.417 864 8.89 0.64 0.91 

2013 Whole Year 1020 304 0.391 1324 13.73 0.67 0.94 

2013/14 Winter 699 333 0.347 1033 22.89 1.45 0.93 

2014 Spring 1464 402 0.334 1866 12.95 1.09 0.93 

2014 Summer 1723 625 0.343 2349 15.85 0.57 0.96 

2014 Autumn 1122 446 0.385 1568 18.76 0.91 0.94 

2014 Whole Year 1279 456 0.338 1735 16.99 0.99 0.94 
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and Nacc are higher in winter, spring, and summer as compared to previous years. These 

deviations are caused by the unusual meteorological conditions in the reporting year, with 

winter temperatures falling rarely below freezing, very early onset of spring, and high summer 

temperatures. These conditions caused stronger and prolonged biogenic emissions of aerosol 

precursor substances, leading to the observed higher particle concentrations on seasonal and 

annual average for Aitken and accumulation mode size range. 

 

 Column integrated aerosol properties  

Ground-based remote sensing of the optical characteristics of aerosols in the atmospheric total 

column is conducted with multi-wavelength sun-photometers. A sun-photometer is oriented 

towards the sun to detect the solar radiation attenuated along the slant path from the top-of-

atmosphere to the ground. The atmospheric aerosol load leads to a decrease in the solar 

radiation transmitted through the atmosphere. This decrease depends on the aerosol optical 

depth (AOD), which is given by the integral of the volume aerosol extinction coefficient along 

the vertical path of the atmosphere. The wavelength dependence of AOD, described by the 

Ångström exponent (Å) is a qualitative indicator of the particle size and contains information 

about the aerosol type. The larger the Ångström exponent, the smaller the size of the particles 

measured.  
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Photos of instruments used for monitoring of spectral resolved AOD at Birkenes and Ny-Ålesund 

(see below), their main characteristics are given in Appendix II, and detailed Tables with 

monthly data for all years are given in Appendix I. 

AOD measurements started at the Birkenes Observatory in spring 2009, utilizing an automatic 

sun and sky radiometer (CIMEL type CE-318, instrument #513). The retrieval method is that of 

the AERONET version 2 direct sun algorithm (for details: http://aeronet.gsfc.nasa.gov). Quality 

assured (Level 2) data are available for the six years of operation, 2009 - 2014. The Cimel 

instrument was post-calibrated by the University of GOA-UVA in Valladolid in October and 

November 2014, therefore quality assured AERONET level 2 data are available for the whole 

period when solar elevation allows reasonable data, i.e. from March to September 2014.    

 

 

Figure 36: 2009 - 2014 time series of aerosol optical depth (AOD) at 500 nm wavelength in the 

atmospheric column above Birkenes (upper panel) and Ångström coefficient describing the AOD 

wavelength dependence (lower panel). Mean values and standard deviations are given. 
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Figure 37: Monthly mean aerosol optical depth (AOD) at 500 nm wavelength in the atmospheric column 
above Birkenes (upper panel) and Ångström coefficient describing the AOD wavelength dependence 
(lower panel). Mean values and standard deviations are given. 

The AOD and Ångström coefficient time series and seasonal variations are shown Figure 37 and 
Figure 37. The 2014 monthly mean and mean values for all years are shown in Table 6. Data for 
all years are given in Appendix I. There are no obvious trends visible in the six years of 
observations. Data gaps are caused by lack of sun light hours during the winter months 
(November through February) as well as due to the need to send the instrument to Spain for 
calibration. In general, AOD measured at Birkenes are relative low, compared to central 
European observations (e.g. AERONET climatological values for Cabauw, the Netherlands, vary 
between 1.2 ± 0.06 in December and 3.1 ±0.19 in April). In 2014, the highest monthly average 
AOD were observed in March and August (∼0.15 in both months). Especially in March daily 
averages show a large spread of values; on two days AOD daily mean values of around 0.4 were 
observed. These increase the monthly mean from 0.10 to 0.16. In the period July – September, 
on the other hand, there are extended periods of increased AOD. The lowest values are found 
in June with an extended period of AOD values of around 0.04. The seasonality observed in 
Birkenes is comparable to other southern Scandinavian sites (Toledano et al., 2012). AOD values 
for 2014 are within the spread observed during the years 2009 – 2014, except in September 
when AOD values are clearly higher than the average over the whole observation period.  
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However, the observation statistics was also poor in this month in 2014. On the other hand, 

Ångström exponent monthly means are smaller – which means particles in the total column are 

larger- than the multi-year average throughout the year, and in June 2014, the value is outside 

the standard deviation from the five years. In general, the seasonal variation of both 

parameters observed is a-typical compared to the multi-year behaviour, but not so much that 

values are outside the standard deviations. 
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4.2 Optical, column-integrated aerosol 

properties from Ny-Ålesund  
In 2002, Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center 

(PMOD/WRC) in collaboration with NILU, started AOD observations in Ny-Ålesund (at the 

Sverdrup station, 46 m a.s.l.) as part of the global AOD network on behalf of the WMO GAW 

program. A precision filter radiometer (PFR) measures the extinction in four narrow spectral 

bands at 368 nm, 415 nm, 500 nm and 862 nm. Data quality control includes instrumental 

control like detector temperature and solar pointing control as well as objective cloud 

screening. Ångström coefficients are derived for each set of measurements using all four PFR 

channels. Calibration is performed annually at PMOD/WRC. Quality assured data are available 

at the World Data Center of Aerosols (WDCA), hosted at NILU (see https://ebas.nilu.no). 

In Ny-Ålesund, the solar elevation is less than 5° before 4 March and after 10 October, limiting 

the period with suitable sun-photometer observations to the spring-summer-early autumn 

seasons (NILU contributes to a Lunar Arctic initiative to fill the gap in the wintertime AOD 

climatology by using Lunar photometer, see Appendix II). In 2014, sun-photometer observations 

were made from early April to early September; reliable AOD values are available on 58 days. 

The AOD and Ångström coefficients time series of monthly means and standard deviation are 

shown in Figure 38, while the 2014 values on the background of the average data and their 

standard deviation from the whole 13-year period are shown in Figure 39. The 2014 monthly 

mean and mean values for all years are given in Table 7. Data for all years are given in Appendix 

I. 

Table 6: Monthly mean values for 2014 and mean for the time period 2009-2014, plus standard 

deviations, for aerosol optical depth (AOD) and Ångström coefficient observed in Birkenes. In addition, 

the number of days with cloud free and quality assured observations are given. 

Month/Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Aerosol optical depth (AOD) 

2014   
0.15 

±0.14 

0.11 

±0.06 

0.10 

±0.03 

0.08 

±0.03  

0.13 

±0.06 

0.15 

±0.07 

0.14 

±0.06 
   

Mean 

09-14 

0.02 

0.01 

0.03 

±0.01 

0.09 

±0.06 

0.14 

±0.11 

0.10 

±0.05 

0.09 

±0.04 

0.13 

±0.08 

0.12 

±0.06 

0.08 

±0.03 

0.07 

±0.03 

0.04 

±0.01 

Ångström coefficient (Å) 

2014   
0.9 

± 0.5 

1.0 

± 0.3 

1.1 

± 0.3 

1.0 

± 0.2   

1.4 

± 0.3  

1.1 

±0.3 

1.2  

±0.2 
    

Mean 

09-14 

1.0 

±0.2 

1.0  

±0.1 

1.0  

±0.4 

1.2  

±0.4  

1.2 

±0.3 

1.3 

±0.3  

1.4  

±0.3  

1.4 

±0.2  

1.1 

±0.2  

1.2 

±0.3 

1.2 

±0.2 

Number of days with cloud-free and quality assured observations (AERONET level 2) 

2014   12 17 16 25  20 13 6    

Total 

09-14 
7 2 43 53 79 93 106 90 59 41 8 
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In contrast to previous years, only short episodes with elevated AOD values were observed in 

the Arctic haze spring season, leaving daily means and the April and May monthly mean value 

at relatively low values (0.07, 0.10). Between winter/spring and summer the AOD considerable 

decrease by around 40 – 50%. The summer values show less variability. With typical lower values 

during summer (0.06 in both June and July), a slightly rising August mean value, and a higher 

September value (which may be due to the poor measurement statistics of only 4 days 

included), one ends up with a series without somewhat lower seasonal variations than on 

average. Accordingly, Ångström coefficient monthly means were very stable throughout the 

measurement period and close to a value of 1.4. Only few daily means in April, June and August 

showed markedly lower values of around 1.2 (April), 0.8 (June) and 1.3 (August). Generally, in 

Ny-Ålesund seasonal variation of the Ångström coefficient is very week and the monthly mean 

Ångström coefficient in 2014 lie within the standard deviation range of the long-term monthly 

means.  

 

 

Figure 38: 2002 - 2014 time series of aerosol optical depth (AOD) at 500.5 nm wavelength in the 

atmospheric column above Ny-Ålesund (upper panel) and Ångström coefficient (lower panel). Monthly 

mean values and standard deviations are given. 
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The observations made by NILU are in good agreement with sun-photometer measurements 

performed by the Alfred-Wegener Institute (Bremerhaven, Germany) at a closely location in 

Ny-Ålesund (Tomasi et al., 2015). The authors give a comprehensive review of aerosol remote 

sensing in Polar Regions, including NILU's sun-photometer observations made in Ny-Ålesund. 

  

 

 

Figure 39: Seasonal variation of the aerosol optical depth (AOD) (upper panel) and Ångström coefficient 

(lower panel) observed in Ny-Ålesund. Values marked in grey are the mean and standard deviations for 

the time period 2009-2014; the 2014 monthly mean and standard deviations are shown in green. 
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Table 7: Monthly mean values for 2014 and mean for the time period 2002-2014 for March to 

September, plus standard deviations, for aerosol optical depth (AOD) and Ångström coefficient 

observed in Ny-Ålesund. In addition, the number of days with cloud free and quality assured 

observations are given. 

Month/Year Mar Apr May Jun Jul Aug Sep 

Aerosol optical depth (AOD) 

2014  0.07±0.01 0.10±0.02 0.06±0.02 0.06±0.03 0.08±0.01 0.11±0.05 

Mean 2002-
2014 

0.11±0.04 0.11±0.05 0.11±0.04 0.06±0.02 0.06±0.03 0.07±0.03 0.05±0.03 

Ångström coefficient (Å) 

2014  1.4±0.1 1.4±0.1 1.3±0.3 1.5±0.1 1.5±0.1 1.5±0.2 

Mean 2002-
2014 

1.2±0.2 1.3±0.3 1.3±0.3 1.4±0.3 1.4±0.2 1.4±0.3 1.4±0.3 

Number of days with cloud-free and quality assured observations 

2014 0 13 9 9 9 14 4 

Total 2002-
2014 

56 143 138 136 150 112 105 
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Table A 1: Annual mean concentration for all greenhouse gases included in the programme at Zeppelin 

and Birkenes. All concentrations are mixing ratios in ppt, except for methane and carbon monoxide (ppb) 

and carbon dioxide (ppm). The annual means are based on a combination of the observed methane values 

and the modelled background values; during periods with lacking observations, we have used the 

modelled background mixing ratios in the calculation of the annual mean. All underlying measurement 

data can be downloaded directly from the database: http://ebas.nilu.no/ 

Component 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Carbondioxide - 
Zeppelin6 - - - - - - - - - - - 

394.8 393.1 397.9 

Carbondioxide - 
Birkenes - - - - - - - - - 

393.7 396.5 397.9 400.8 402.8 

Methane - Zeppelin 1844.6 1842.6 1855.2 1852.8 1852.0 1853.2 1863.6 1873.5 1888.3 1881.1 1879.6 1891.8 1897.9 1910.0 

Methane - Birkenes 
- - - - - - - - - 

1885.3 1895.5 1900.5 1902.3 1917.4 

Carbon monoxide    124.0 126.0 140.4 131.4 128.3 126.6 120.0 119.7 117.7 127.0 115.2 120.5 113.0 113.4 

Nitrous oxide 
- - - - - - - - - - 

324.2 325.0 326.1 327.1 

Chlorofluorocarbons   

CFC-11* 258.9 257.2 255.3 253.6 251.4 249.4 246.6 244.6 242.7 240.7 238.3 236.8 235.2 234.1 

CFC-12* 547.1 547.7 548.0 546.0 547.2 546.4 542.4 541.5 537.6 534.4 531.5 528.6 525.9 523.4 

CFC-113* 81.5 80.8 80.1 79.4 78.8 77.9 77.4 76.8 76.2 75.4 74.6 74.1 73.5 72.9 

CFC-115* 8.22 8.19 8.24 8.28 8.41 8.39 8.38 8.40 8.43 8.42 8.42 8.44 8.43 8.45 

Hydrochlorofluorocarbons   

HCFC-22 159.4 164.3 170.0 175.3 181.0 188.8 196.1 204.6 212.5 219.9 225.9 231.5 236.5 241.2 

HCFC-141b 16.6 17.9 18.7 19.4 19.6 20.0 20.5 21.1 21.5 22.1 23.0 23.9 24.8 25.5 

HCFC-142b* 14.5 15.0 15.7 16.5 17.1 18.2 19.3 20.4 21.3 22.1 22.7 23.1 23.3 23.3 

Hydrofluorocarbons   

HFC-125 2.27 2.96 3.53 4.29 4.87 5.62 6.46 7.48 8.59 10.02 11.77 13.54 15.61 17.88 

HFC-134a 20.8 26.0 30.8 35.6 40.0 44.2 48.6 53.4 57.8 63.5 68.5 73.5 78.9 84.5 

HFC-152a 2.81 3.48 4.20 4.93 5.66 6.78 7.75 8.64 9.05 9.56 10.04 10.34 10.19 10.12 

Halons   

H-1211* 4.39 4.44 4.49 4.53 4.52 4.48 4.43 4.39 4.33 4.26 4.18 4.09 3.97 3.86 

H-1301 2.99 3.06 3.12 3.17 3.21 3.24 3.26 3.28 3.29 3.30 3.32 3.34 3.36 3.39 

Other halocarbons   

Methylchloride 504.2 521.2 528.0 524.2 520.7 521.5 523.6 524.5 526.2 520.5 509.6 513.6 519.1 514.9 

Methylbromide 8.90 9.08 8.95 8.93 8.62 8.61 8.34 7.76 7.36 7.28 7.20 7.02 6.96 6.87 

Dichloromethane  30.7 31.1 32.3 32.3 31.8 33.1 35.1 37.0 38.0 41.5 42.1 45.2 54.0 54.9 

Chloroform 10.9 10.6 10.8 10.5 10.5 10.5 10.6 10.4 10.8 11.4 11.9 12.0 12.7 13.5 

Methylchloroform 38.2 32.1 27.2 22.8 19.1 15.9 13.3 11.1 9.2 7.8 6.5 5.4 4.5 3.8 

Trichloroethylene 0.67 0.58 0.40 0.45 0.39 0.38 0.29 0.33 0.52 0.53 0.54 0.51 0.55 0.47 

Perchloroethylene 4.59 4.08 3.68 3.67 3.09 2.80 3.01 2.64 2.92 3.05 2.80 2.72 2.54 2.56 

Sulphurhexafluoride* 4.96 5.14 5.37 5.61 5.82 6.08 6.31 6.63 6.93 7.19 7.49 7.78 8.11 8.43 

 

 

                                                 

6 Measurements of CO2 is performed by Stockholm University until 2011, from 2012 NILU maintained own measurements.  

http://ebas.nilu.no/
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Table A 2: All calculated trends per year, standard error and regression coefficient for the fit. The trends 

are all in pptv per year, except for CH4 N2O, and CO which are in ppbv. 

Component Formula Trend /yr Error R2 

Carbon dioxide - Zeppelin 
CO2 

- - - 

Carbon dioxide - Birkenes - - - 

Methane - Zeppelin 
CH4 

4.89 0.064 0.805 

Methane - Birkenes - - - 

Carbon monoxide    CO -1.29 0.063 0.794 

Nitrous oxide N2O - - - 

Chlorofluorocarbons 

CFC-11* CCl3F -2.01 0.005 0.987 

CFC-12* CF2Cl2 -2.0 0.014 0.925 

CFC-113* CF2ClCFCl2 -0.66 0.002 0.984 

CFC-115* CF3CF2Cl 0.019 0.001 0.390 

Hydrochlorofluorocarbons 

HCFC-22 CHClF2 6.679 0.007 0.997 

HCFC-141b C2H3FCl2 0.620 0.002 0.980 

HCFC-142b* CH3CF2Cl 0.773 0.001 0.996 

Hydrofluorocarbons 

HFC-125 CHF2CF3 1.138 0.001 0.998 

HFC-134a CH2FCF3 4.793 0.003 0.999 

HFC-152a CH3CHF2 0.624 0.002 0.987 

Halons 

H-1211* CBrClF2 -0.043 0.000 0.979 

H-1301 CBrF3 0.026 0.000 0.738 

Halogenated compounds 

Methylchloride CH3Cl -0.16 0.070 0.883 

Methylbromide CH3Br -0.192 0.002 0.867 

Dichloromethane  CH2Cl2 1.79 0.012 0.945 

Chloroform CHCl3 0.175 0.003 0.796 

Methylchloroform CH3CCl3 -2.506 0.002 0.999 

Trichloroethylene CHClCCl2 0.000 0.002 0.370 

Perchloroethylene CCl2CCl2 -0.123 0.005 0.331 

Sulphurhexafluoride* SF6 0.269 0.000 0.997 
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Table A 3:Monthly means and standard deviation of aerosol optical depth (AOD) at 500 nm at Ny-Ålesund.’ 

Month/Year Mar Apr May Jun Jul Aug Sep 

Aerosol optical depth (AOD) 

2002  0.06±0.01 0.08±0.03 0.06±0.02 0.07±0.12 0.07±0.08 0.06±0.05 

2003 0.15±0.12 0.11±0.05 0.15±0.06 0.10±0.03 0.04±0.01 0.05±0.02 0.06±0.03 

2004 0.06±0.00 0.12±0.08 0.13±0.09 0.06±0.01 0.10±0.07 0.05±0.02 0.04±0.02 

2005 0.08±0.03 0.12±0.07 0.10±0.03 0.05±0.02 0.05±0.02 0.04±0.03 0.03±0.01 

2006 0.12±0.03 0.16±0.07  0.04±0.00 0.05±0.02 0.05±0.04 0.04±0.03 

2007  0.10±0.05 0.10±0.12 0.07±0.03 0.05±0.01 0.05±0.02 0.04±0.03 

2008 0.13±0.05 0.14±0.06 0.14±0.04 0.06±0.02 0.06±0.02 0.09±0.03 0.16±0.03 

2009   0.11±0.03 0.08±0.02 0.11±0.04 0.10±0.02 0.09±0.01 

2010 0.11±0.03 0.08±0.03 0.08±0.01 0.06±0.01 0.05±0.01 0.05±0.01  

2011   0.08±0.02 0.08±0.01 0.05±0.01 0.06±0.02 0.05±0.01 

2012 0.10±0.03 0.10±0.02 0.10±0.03 0.06±0.02 0.06±0.02 0.07±0.03 0.07±0.03 

2013 0.11±0.04 0.09±0.04 0.06±0.02 0.05±0.01 0.06±0.02 0.05±0.01 0.04±0.02 

2014  0.07±0.01 0.10±0.02 0.06±0.02 0.06±0.03 0.08±0.01 0.11±0.05 

Mean  

(2002-2014) 

0.11±0.04 0.11±0.04 0.11±0.04 0.06±0.02 0.06±0.03 0.07±0.03 0.05±0.03 
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Table A 4: Monthly means and standard deviation of the Ångström coefficient (Å) at Ny-Ålesund. There 

are no observatiosn of this parameter during the winter months due to polar night. 

Month/Year Mar Apr May Jun Jul Aug Sep 

Ångström coefficient (Å) 

2002  0.9±0.1 1.4±0.1 1.2±0.3 1.2±0.2 1.3±0.4 1.2±0.5 

2003 0.9±0.5 1.3±0.3 1.3±0.2 1.5±0.1 1.5±0.3 1.4±0.5 1.4±0.3 

2004 1.3±0.1 1.2±0.3 1.4±0.5 1.7±0.2 1.6±0.4 1.5±0.3 1.3±0.3 

2005 1.1±0.3 1.4±0.4 1.0±0.2 1.6±0.3 1.7±0.2 1.4±0.7 1.5±0.4 

2006 0.9±0.1 0.9±0.3  1.7±0.2 1.4±0.3 1.3±0.6 1.4±0.3 

2007  1.4±0.4 1.4±0.6 1.7±0.2 1.6±0.2 1.7±0.3 1.5±0.4 

2008 1.4±0.2 1.3±0.2 1.4±0.2 1.4±0.4 1.2±0.2 1.3±0.3 1.4±0.3 

2009   1.3±0.4 1.4±0.2 1.3±0.3 1.2±0.1 1.1±0.1 

2010 1.0±0.3 1.4±0.2 1.3±0.2 1.3±0.3 1.4±0.2 1.0±0.1  

2011   1.7±0.3 1.8±0.1 1.5±0.1  1.4 ±0.3 1.6±0.2 

2012 1.1±0.2 1.3±0.2 1.2±0.2 1.1±0.1 1.3±0.2 1.4±0.2 1.5±0.2 

2013 1.3±0.2 1.2±0.3 1.4±0.2 1.6±0.3 1.3±0.2 1.4±0.2 1.2±0.5 

2014  1.4±0.1 1.4±0.1 1.3±0.3 1.5±0.1 1.5±0.1 1.5±0.2 

Mean (2002 -2014) 1.2±0.2 1.3±0.3 1.3±0.3 1.4±0.3 1.4±0.2 1.4±0.3 1.4±0.3 
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Table A 5: Number of days with AOD observations at Ny-Ålesund made within the months. 

Month/Year Mar Apr May Jun Jul Aug Sep 

Number of days with cloud-free and quality assured observations 

2002  4 15 11 6 9 14 

2003 3 12 16 8 15 17 12 

2004 2 8 13 9 5 12 12 

2005 12 17 24 15 10  11 

2006 6 12  5 12 4 13 

2007  16 9 12 17 10 9 

2008 15 12 14 20 16 13 2 

2009   7 10 17 8 8 

2010 7 18 7 10 12 3 1 

2011   2 2 7 4 6 

2012 6 18 12 15 16 11 4 

2013 5 13 10 10 8 7 9 

2014  13 9 9 9 14 4 

Total (2002-2014) 56 143 138 136 150 112 105 
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Table A 6: Monthly means and standard deviation of aerosol optical depth (AOD) at 500 nm at Birkenes. 

Month/Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Aerosol optical depth (AOD) 

2009    

0.29 

±0.00  

0.09 

±0.05 

0.09 

±0.05 

0.18 

±0.06 

0.17 

± 0.07 

0.10 

± 0.04 

0.08 

±0.03 

 

2010     

0.10 

±0.04 

0.09 

±0.04 

0.10 

±0.07 

0.10  

±0.05 

0.05 

±0.02 

0.07 

±0.03 

0.04  

±0.01 

2011 

0.02 

±0.01 

0.03 

±0.01 

0.07 

±0.02 

0.21 

±0.19 

0.13 

±0.07 

0.10 

±0.04 

0.13 

±0.06 

0.09 

±0.05 

   

2012   

0.07  

±0.05 

0.05  

±0.02 

0.08  

±0.04 

0.09  

±0.04 

0.07  

±0.03 

0.08  

±0.03 

0.07 

±0.01 

0.06 

±0.03 

0.04  

±0.00  

2013        

0.17 

±0.17 

0.12 

±0.09 

0.05 

±0.03 

0.05 

±0.03 

  

2014   
0.15 

±0.14  

0.11 

±0.06 

0.10 

±0.03 

0.08 

±0.03 

0.13 

±0.06 

0.15 

±0.07 

0.14 

±0.06 
  

Mean 

09-14 

0.02 

0.01 

0.03 

±0.01 

0.09 

±0.06 

0.14 

±0.11 

0.10 

±0.05 

0.09 

±0.04 

0.13 

±0.08 

0.12 

±0.06 

0.08 

±0.03 

0.07 

±0.03 

0.04 

±0.01 
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Table A 7: Monthly means and standard deviation of the Ångström coefficient (Å) at Birkenes 

Month/Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Ångström coefficient (Å) 

2009    

1.5 

±0.0 

1.2  

±0.3  

1.4   

±0.3 

1.4  

±0.4  

1.1   

±0.2  

1.0 

±0.2  

1.1 

±0.2 

 

2010     

1.3   

±0.3 

1.4 

±0.3 

1.4   

±0.2  

1.4  

±0.2  

1.3   

±0.3 

1.3   

±0.3 

1.3   

±0.23 

2011 

1.0 

±0.2 

1.0   

±0.1 

1.0 

±0.3  

1.2  

±0.5 

1.3   

±0.3 

1.5  

±0.3 

1.6 

±0.3 

1.6  

± 0.1 

   

2012   

1.1  

±0.4 

1.6 

±0.3 

1.4   

±0.4 

1.7   

±0.1 

1.6  

±0.3 

1.5  

±0.3 

1.1   

±0.3 

1.4  

±0.4 

0.8  

±0.3 

2013        

1.3 

± 0.2  

1.2 

±0.3 

0.8  

±0.2 

0.8  

±0.3  

  

2014   
0.9 

  ±0.5 

1,0 

 ±0.3 

1.1 

 ±0.3 

1.0 

 ±0.2 

1.4 

 ±0.3 

1.1 

 ±0.3 

1.2 

 ±0.2 
  

Mean 09-

14 

1.0 

±0.1  

1.0  

±0.0 

1.0  

±0.4 

1.2  

±0.4  

1.2 

±0.3 

1.3 

±0.2  

1.4  

±0.3  

1.4 

±0.2  

1.2 

±0.3  

1.2 

±0.3 

1.2 

±0.3 

 

Table A 8: Number of days with AOD observations at Birkenes made within the months. 

Month/Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Number of days with cloud-free and quality assured observations (lev 2; lev 1.5 for 2013) 

2009    1 22 25 11 13 15 12  

2010     13 16 18 15 16 10 6 

2011 7 2 20 23 18 20 15 13    

2012   11 12 10 7 16 18 9 12 2 

2013        26 18 13 7   

2014   12 17 16 25 20 13 6   

Total 7 2 43 53 79 93 106 90 59 41 8 
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APPENDIX II 

 

Description of instruments and 

methodologies  
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In this appendix are the instrumental methods used for the measurements of the various 

greenhouse gases presented. Additionally we explain the theoretical methods used in the 

calculation of the trends.  

Details about greenhouse gas measurements and recent improvement and extensions  

Table A 9: Instrumental details for greenhouse gas measurements at Zeppelin and Birkenes. 

Component   Instrument and 
method 

Time 
res. 

Calibration 
procedures 

Start - End Comment 

Methane 
(Birkenes) 

CH4 Picarro CRDS 
G1301 
CO2/CH4/H2O 

5 s Working std. 
calibrated 
against GAW 
stds at EMPA 

19. May 
2009 -> 

Data coverage 
in 2014: 100%  

Methane 
(Zeppelin) 

CH4 GC-FID/ 1h NOAA 
reference 
standards 

Aug 2001-
Apr 2012 

 

Methane 
(Zeppelin) 

CH4 Picarro CRDS  5 sec NOAA 
reference 
standards 

20.Apr. 
2012 -> 

Data coverage 
2014: 100% 

Nitrous 
oxide 
(Zeppelin) 

N2O GC-FID 30 
min 

Hourly, working 
std. calibrated 
vs. NOAA stds 

 
Data coverage 
2014 70% 

Carbon 
monoxide 
(Zeppelin) 

CO GC-HgO/UV 20 
min 

Every 20 min, 
working std. 
calibrated vs. 
GAW std. 

Sep. 2001 - 
2012 

Data coverage 
2012: 
discontinued  
after 2012 

Carbon 
monoxide 
(Zeppelin) 

CO Picarro CRDS  5 sec NOAA 
reference 
standards. 

20.Apr 
2012 -> 

Data coverage 
2014: 100% 

Carbon 
dioxide 
(Zeppelin) 

CO2 Picarro CRDS 
from 20.4.2012 

1 h 
5 sec 

NOAA 
reference 
standards 

1989 - 2012 
20.Apr. 
2012 -> 

CO2 
measurements 
in cooperation 
with  ITM 
Stockholm 
University (SU). 
Data coverage 
2014: 100% 

Carbon 
dioxide 
(Birkenes) 

CO2 Picarro CRDS 
G1301 
CO2/CH4/H2O 

5 s Working std. 
calibrated 
against GAW 
stds at EMPA 

Measureme
nts started 
19 May 
2009.   

Data coverage 
in 2014: 100% 
 

CFC-11 
CFC-12 
CFC-113 
CFC-115 
HFC-125 
HFC-134a 
HFC-152a 
HFC-365mfc 
HCFC-22 
HCFC-141b 
HCFC-142b 
H-1301 
H-1211 

CFCl3 
CF2Cl2 
CF2ClCFCl2 
CF3CF2Cl 
CHF2CF3 
CH2FCF3 
CH3CHF2 
CF3CH2CHF2C
H3 
CHF2Cl 
CH3CFCl2 
CH3CF2Cl 
CF3Br 
CF2ClBr 

ADS-GCMS 4 h 

Every 4 hours, 
working std. 
calibrated vs. 
AGAGE std. 

4.Jan 2001- 
2010 

This instrument 
was not in 
operation in 
2012 (se next 
row). Data 
coverage 2011: 
no data 
reported from 
this instrument 
after 
31.12.2010 
The 
measurements 
of the CFCs 
have higher 
uncertainty and 
are not within 
the required 
precision of 
AGAGE. See 
next section for 
details. 
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Table cont.: 

  

Component   Instrument 
and method 

Time 
res. 

Calibration 
procedures 

Comment 

Methyl Chloride 
Methyl Bromide 
Methylendichloride 
Chloroform 
Methylchloroform 
TriChloroethylene 
Perchloroethylene 
Sulphurhexafluoride 

CH3Cl 
CH3Br 
CH2Cl2 
CHCl3 
CH3CCl3 
CHClCCl2 
CCl2CCl2 
SF6 

    

Tetrafluormethane 
PFC-116 
PFC-218 
PFC-318 
Sulphurhexafluoride 
Sulfuryl fluoride  
HFC-23 
HFC-32 
HFC-125 
HFC-134a 
HFC-143a 
HFC-152a 
HFC-227ea 
HFC-236fa 
HFC-245fa 
HFC-365mfc 
HCFC-22 
HCFC-124 
HCFC-141b 
HCFC-142b 
CFC-11 
CFC-12 
CFC-113 
CFC-114 
CFC-115 
H-1211 
H-1301 
H-2402 
Methyl Chloride 
Methyl Bromide 
Methyl Iodide 
Methylendichloride 
Chloroform 
Methylchloroform 
Dibromomethane 
Bromoform 
TriChloroethylene 
Perchloroethylene 
Ethane 
Benzene 
Carbonyl Sulfide 

CF4  
C2F6 
C3F8 
c-C4F8 

SF6 

SO2F2 

CHF3 

CH2F2 

CHF2CF3 
CH2FCF3 
CH3CF3 
CH3CHF2 

CF3CHFCF3 

CF3CH2CF3 

CF3CH2CHF2 

CF3CH2CHF2CH3 

CHF2Cl 
CHClFCF3 
CH3CFCl2 
CH3CF2Cl 
CFCl3 
CF2Cl2 
CF2ClCFCl2 
CF2ClCF2Cl 
CF3CF2Cl 
CF3Br 
CF2ClBr 
CF2BrCF2Br 
CH3Cl 
CH3Br 
CH3I 
CH2Cl2 
CHCl3 
CH3CCl3 
CH2Br2 
CHBr3 
TCE 
PCE 
C2H6 
C6H6 

COS 

Medusa-GCMS  
No. 19 

2 h 
 

Every 2 
hours, 
working std. 
calibrated 
vs. AGAGE 
std 

Data coverage 2014: 
85% 
 

Ozone O3  5 min   
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DATA QUALITY AND UNCERTAINTIES  
HALOCARBONS 

In 2001 – 2010 measurements of a wide range of hydrochlorofluorocarbons, hydrofluorocarbons 

(HCFC-141b, HCFC-142b, HFC-134a etc.), methyl halides (CH3Cl, CH3Br, CH3I) and the halons 

(e.g. H-1211, H-1301) were measured with good scientific quality by using ADS-GCMS. The 

system also measured other compounds like the chlorofluorocarbons, but the quality and the 

precision of these measurements was not at the same level. Table A 10 shows a list over those 

species measured with the ADS-GCMS at Zeppelin Observatory. The species that are in blue are 

of acceptable scientific quality and in accordance with recommendations and criteria of the 

AGAGE network for measurements of halogenated greenhouse gases. Those listed in red have 

higher uncertainty and are not within the required precision of AGAGE. There are various 

reasons for this increased uncertainty; unsolved instrumental problems e.g. possible electron 

overload in detector (for the CFC’s), influence from other species, detection limits (CH3I, 

CHClCCl2) and unsolved calibration problems (CHBr3). Since 1.September 2010 the ADS-GCMS 

was replaced by a Medusa-GCMS system. The uncertainty improved for almost all species (Table 

A 9 for details), but there are periods where measurements of the CFC’s are still not 

satisfactory. This is an unsolved problem within the AGAGE network.    

 

Table A 10: ADS-GCMS measured species at Zeppelin from 4.January 2001 to 1. September 2010. Good 

scientific quality data in Blue; Data with reduced quality data in Red. The data are available through 

http://ebas.nilu.no.  Please read and follow the stated data policy upon use. 

Compound 
Typical 

precision (%) 
Compound 

Typical precision 

(%) 

SF6 
1.5 H1301 1.5 

HFC134a 0.4 H1211 0.4 

HFC152a 0.6 CH3Cl 0.6 

HFC125 0.8 CH3Br 0.8 

HFC365mfc 1.7 CH3I 
5.1 

HCFC22 0.2 CH2Cl2 
0.4 

HCFC141b 0.5 CHCl3 
0.3 

HCFC142b 0.5 CHBr3 
15 

HCFC124 2.3 CCl4 
0.5 

CFC11 0.3 CH3CCl3 
0.6 

CFC12 0.3 CHClCCl2 
1.2 

CFC113 0.2 CCl2CCl2 
0.7 

CFC115 0.8   

 

  

http://ebas.nilu.no/
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Table below gives an overview over the species measured with the Medusa-GCMS systems at 

the AGAGE stations and the typical precision with the different instruments. The Medusa-GCMS 

instrument at the Zeppelin Observatory meet the same criteria as shown in the Table.   

Table A 11: AGAGE measured species. 

Compound 
Typical 

precision (%) 
Compound 

Typical precision 

(%) 

CF4 0.15 H1301 1.5 

C2F6 0.9 H1211 0.5 

C3F8 3 H2402 2 

SF6 0.4 CH3Cl 0.2 

SO2F2 1.6 CH3Br 0.5 

HFC23 0.7 CH3I 2 

HFC32 5 CH2Cl2 0.8 

HFC134a 0.4 CHCl3 0.6 

HFC152a 1.2 CHBr3 0.6 

HFC125 1 CCl4 1 

HFC143a 1.2 CH3CCl3 0.7 

HFC365mfc 10 CHClCCl2 2.5 

HCFC22 0.3 CCl2CCl2 0.5 

HCFC141b 0.4 C2H2 0.5 

HCFC142b 0.6 C2H4 2 

HCFC124 2 C2H6 0.3 

CFC11 0.15 C6H6 0.3 

CFC12 0.05 C7H8 0.6 

CFC13 2   

CFC113 0.2   

CFC114 0.3   

CFC115 0.8   

      

 

 

METHANE  

Harmonisation of historic concentration measurements (http://www.ingos-infrastructure.eu/) 

during 2012. All original measurement signals have been processed with new improved software 

to recalculate every single measurement over the last 12 years. This new software facilitates 

systems for QA/QC and detection of measurement errors. The data series has got a clean-up 

and the precision of existing measurements has improved.Over the last 12 years period a 

selected number of working standards have been stored and in 2012 it was analysed against 

new reference standards using new improved instrumentation. All other working standards are 

linked to these through comparative measurements. Hence, all calibrations over the 12 year 

period have been recalculated and the whole time series adjusted accordingly. 

There were two instruments, the GC-FID and a new Picarro (Cavity Ring-Down Spectrometer) 

run in parallel in 2012. The Picarro also participated in a GAW audit during autumn 2012 with 

http://www.ingos-infrastructure.eu/
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good results. Comparisons of the data from the two instruments are shown below. The revised 

data series I reported to InGOS and also available in http://ebas.nilu.no.  

 

N2O MEASUREMENTS  

N2O is measured using a gas chromatograph with an electron capture detector. The instrument 

has performed well during the period, but have a gap in measurements late fall 2012 due to 

problems with delivery of carrier gas. The instrument needs a special gas mixture to perform 

well. This special gas has long delivery times from the producer. When the gas purchased turned 

out to be the wrong mixture it took two months to get a new batch delivered, resulting in a 

data coverage of only 68% for the year 2012. 

 

 

Figure 40: Daily mean of methane measured with the old GC (2001-2010), new GC-FID in 2011 -> and a 

new Picarro (Cavity Ring-Down Spectrometer) run in parallel in 2012.  

 

CO2 MEASUREMENTS   

At the Zeppelin station carbon dioxide (CO2) is monitored in cooperation withStockholm 

University (Institute of Applied Environmental Research, ITM). SU maintained a continuous 

infrared CO2 instrument, which has been monitoring from 1989 to summer 2013. This instrument 

was run in parallel with NILUs new cavity ring down instrument for one year before it was 

stopped. Measurements are since then monitored by NILUs instrument and calibrated against 

SU-ITM’s set of NOAA reference standards as a cooperation between the two institutes. Both 

methods were included in the GAW audit in September 2012, showing good results for both 

methods and good consistency between instruments. 

The continuous data are enhanced by the weekly flask sampling programme in co-operation 

with NOAA CMDL. Analysis of the flask samples provides CH4, CO, H2, N2O and SF6 data for the 

Zeppelin Observatory. 
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AIR INLET AT ZEPPELIN  

In 2011 the air inlet for the GHG measurements at Zeppelin were improved to reduce possible 

influence from the station and visitors at the station. The inlet was moved away from the 

station and installed in a 15 m tower nearby for the following components: 

 

 N2O 

 CH4  

 CO2 

 CO 

 Halogenated compounds 

 NOAA flaks sampling program 

 Isotope flask sampling of CO2 and CH4 

 

 
 

 

 

DETERMINATION OF BACKGROUND DATA 

Based on the daily mean concentrations an algorithm is selected to find the values assumed as 

clean background air. If at least 75% of the trajectories within +/- 12 hours of the sampling day 

are arriving from a so-called clean sector, defined below, one can assume the air for that 

specific day to be non-polluted. The remaining 25% of the trajectories from European, Russian 

or North-American sector are removed before calculating the background. 

 

CALCULATION OF TRENDS FOR GREENHOUSE GASES 

To calculate the annual trends the observations have been fitted as described in Simmonds et 

al. (2006) by an empirical equation of Legendre polynomials and harmonic functions with linear, 

quadratic, and annual and semi-annual harmonic terms:  
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The observed f can be expressed as functions of time measures from the 2N-months interval of 

interest. The coefficient a defines the average mole fraction, b defines the trend in the mole 

fraction and d defines the acceleration in the trend. The c and s define the annual and inter-

annual cycles in mole fraction. N is the mid-point of the period of investigation. Pi are the 

Legendre polynomials of order i.  

 

 

ON THE SURFACE IN SITU OBSERVATIONS OF AEROSOL MICROPHYSICAL AND OPTICAL PROPERTIES AT 

BIRKENES 

With respect to microphysical aerosol properties, the particle number size distribution (PNSD) 

is observed at surface-level at Birkenes. The relevant and observed particle sizes cover a range 

of 0.01 µm – 10 µm in particle diameter. The diameter range of 1.0 µm – 10 µm is commonly 

referred to as coarse mode, the range Dp < 1.0 µm as fine mode. The fine mode is separated 

further into Aitken-mode (0.01 µm < Dp < 0.1 µm) and accumulation mode (0.1 µm < Dp < 1 µm). 

The distinction of these modes is justified by different predominant physical processes as 

function of particle size. In the Aitken-mode, particles grow by condensation of precursor gases 

from the gas-phase, and coagulate among themselves or with accumulation mode particles. 

Accumulation mode particles grow by taking up Aitken-mode particles or by mass uptake while 

being activated as cloud droplets, and they are removed by precipitation. Coarse mode 

particles in turn are formed by break-up of biological or crustal material, including pollen, 

bacteria, and fungus spores, and removed by gravitational settling and wet removal. The PNSD 

of an aerosol is needed for quantifying any interaction or effect of the aerosol since all of them 

depend strongly on particle size. 

To measure the PNSD at Birkenes, 2 measurement principles are combined. A Differential 

Mobilty Particle Spectrometer (DMPS) measures the particle number size distribution, now in 

the range of 0.01 – 0.8 µm particle diameter after several improvements of the instrument. In 

a DMPS, the particles in the sample air stream are put into a defined state of charge by exposing 

them to an ionised atmosphere in thermal equilibrium. The DMPS uses a cylindrical capacitor 

to select a narrow size fraction of the particle phase. The particle size in the selected size 

fraction is determined by the voltage applied to the capacitor. The particle number 

concentration in the selected size fraction is then counted by a Condensation Particle Counter 

(CPC). A mathematical inversion that considers charge probability, diffusional losses of 

particles in the system, transfer function of the capacitor, and counting efficiency of the CPC 

is then used to calculate the particle number size distribution. The PNSD of particles with 

diameters 0.25 µm < Dp < 30 µm is measured with an Optical Particle Spectrometer (OPS). In 

the OPS, the particles in the sample stream are focussed through a laser beam. The instrument 

registers number and amplitude of the pulses of light scattered by the particles. The particle 

pulses are sorted into a histogram by their amplitude, where the pulse amplitude yields the 

particle diameter and the pulse number the particle concentration, i.e. together the PNSD. 

Both, the DMPS and the OPS, yield method specific measures of the particle diameter, the 

electrical mobility and the optical particle diameter, respectively. When related to the 

spherical equivalent geometric particle diameter commonly referred to, both particle size 

measures depend on particle shape (causing a 5% systematic uncertainty in particle diameter), 

the optical particle diameter in addition on particle refractive index (causing a 20% systematic 

uncertainty in particle diameter). In this report, the PNSDs provided by DMPS and OPS are joined 

into a common PNSD. To quality assure this process, PNSDs are accepted only if DMPS and OPS 

PNSD agree within 25% in particle diameter in their overlap size range. Together, both 
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instruments provide a PNSD that spans over 3 orders of magnitude in particle diameter, and 

over 6 orders of magnitude in particle concentration. 

Another microphysical property measured at Birkenes is the Cloud Condensation Nuclei (CCN) 

Concentration, i.e. the concentration of particles that could act as condensation nuclei for 

liquid-phase cloud droplets, which is a property depending on the water vapour 

supersaturation. The corresponding instrument, a Cloud Condensation Nucleus Counter (CCNC), 

exposes the aerosol sample to an “artificial cloud” of defined supersaturation, and counts the 

cloud activated particles optically. Observations of the CCN concentration are essential for 

quantifying the indirect aerosol climate effect. The CCNC at Birkenes has been in operation 

since 2012, but is currently not included in the monitoring programme. 

Optical aerosol parameters quantify the direct aerosol climate effect. The observation 

programme at Birkenes includes the spectral particle scattering coefficient σsp(λ) and the 

spectral particle absorption coefficient σap(λ). The scattering coefficient quantifies the amount 

of light scattered by the aerosol particle population in a sample per distance a light beam 

travels through the sample. The absorption coefficient is the corresponding property 

quantifying the amount of light absorbed by the particle population in the sample. An 

integrating nephelometer is used for measuring σsp(λ) at 450, 550, and 700 nm wavelength. In 

this instrument, the optical sensors look down a blackened tube that is filled with aerosol 

sample. The tube is illuminated by a light source with a perfect cosine intensity characteristic 

perpendicularly to the viewing direction. It can be shown mathematically that this setup 

integrates the scattered light seen by the optical sensors over all scattering angles. The particle 

absorption coefficient σap(λ) is measured by 2 Particle Soot Absorption Photometers (PSAPs). A 

PSAP infers σap(λ) by measuring the decrease in optical transmissivity of a filter while the filter 

is loaded with the aerosol sample. The transmissivity time series is subsequently translated into 

an absorption coefficient time series by using Lamber-Beer’s law, the same law also used in 

optical spectroscopy. The PSAPs deployed at Birkenes are a home-built 1 wavelength version 

that has received quality assurance by intercomparisons within the EU network and 

infrastructure projects EUSAAR (European Supersites for Atmospheric Aerosol Research) and 

ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network), and a 3-

wavelength version. Both instruments are interpreted in combination to benefit from both, 

quality assurance in a research network and spectral capabilities. For comparison with the 

nephelometer, the PSAP data has been transferred to a wavelength of 550 nm assuming an 

absorption Ångström coefficient åap of -1, adding 2% systematic uncertainty to the data. The 

correction factor found for one Birkenes PSAP during the recent intercomparison workshop has 

been included in the analysis. 

All in situ observations of aerosol properties representing the ground-level are conducted for 

the aerosol at dry-state (RH < 40%) for obtaining inter-comparability across the network. 

DETAILS ABOUT AEROSOL OPTICAL DEPTH MEASUREMENTS 

The amount of particles in the air during sunlit conditions is continuous monitored by means of 

a Precision-Filter-Radiometer (PFR) sun photometer, located at the Sverdrup station in Ny-

Ålesund and a Cimel instrument at Birkenes. The observations in Ny-Ålesund are performed in 

collaboration with PMOD/WRC (C. Wehrli), Davos, Switzerland. The main instrument 

characteristics are given below. 
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    AERONET  - Cimel C-318 

 Sun (9 channels) and sky radiances  

 Wavelength range: 340-1640 nm 

 15 min sampling 

 No temperature stabilization 

 AOD uncertainty: 0.01-0.02 

 

     PFR-GAW- Precision Filter Radiometer 

 Direct sun measurements (4 channels) 

 Wavelength range: 368 - 862 nm 

 1 min averages 

 Temperature stabilized 

 AOD uncertainty: 0.01 

 

Figure 41: Photos and typical features of the standard instrument of the AERONET (left panel) and GAW PFR 

network instruments (right panel)    

 

The sun-photometer measurements in Ny-Ålesund are part of the global network of aerosol optical 

depth (AOD) observations, which started in 1999 on behalf of the WMO GAW program. The 

instrument is located on the roof of the Sverdrup station, Ny-Ålesund, close to the EMEP station on 

the Zeppelin Mountain (78.9°N, 11.9°E, 474 m a.s.l.). The Precision Filter Radiometer (PFR) has 

been in operation since May 2002. In Ny-Ålesund, the sun is below 5° of elevation from 10 October 

to 4 March, limiting the period with sufficient sunlight to the spring-early autumn season. However, 

during the summer months it is then possible to measure day and night if the weather conditions 

are satisfactory. The instrument measures direct solar radiation in four narrow spectral bands 

centered at 862 nm, 501 nm, 411 nm, and 368 nm. Data quality control includes instrumental 

control like detector temperature and solar pointing control as well as objective cloud screening. 

Measurements are made at full minutes are averages of 10 samples for each channel made over a 

total duration of 1.25 seconds. SCIAMACHY TOMSOMI and OMI ozone columns and meteorological 

data from Ny-Ålesund are used for the retrieval of aerosol optical depth (AOD). 

 

Aerosol optical depth measurements started at the new Birkenes observatory in spring 2009, 

utilizing an automatic sun and sky radiometer (CIMEL type CE-318), with spectral interference 

filters centered at selected wavelengths: 340 nm, 380 nm, 440 nm, 500 nm, 675 nm, 870 nm, 

1020 nm, and 1640 nm. The measurement frequency is approximately 15 minutes (this depends 

on the air-mass and time of day). Calibration was performed regularly about once per year in 

Spain (RIMA-AERONET sub-network). GOA manages the calibration for RIMA-AERONET sun 

photometers. In the context of ACTRIS (Aerosols, Clouds, and Trace gases Research Infra 

Structure Network, an EU (FP7) project) Transnational Access instrument calibration has been 

completed 14 May 2013 and October/November 2014 at the GOA-UVA (Spain) installation of the 

AERONET-EUROPE Calibration Service Centre. Raw data are processed and quality assured 

centrally by AERONET. Data reported for 2009 - 2014 are quality assured AERONET level 2.0 
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data, which means they have been pre- and post-field calibrated, automatically cloud cleared 

and have been manually inspected by AERONET.  

 

OUTLOOK ON OBSERVATIONS OF AEROSOL OPTICAL DEPTH IN NY-ÅLESUND BEYOND 2014  

Two observational initiatives and collaborations should be mentioned here: 

1. Collaborative observations between NILU and the Alfred Wegener Institute (AWI, 

Germany)  using a sun-photometer on top of the Zeppelin Mountain, which is a unique 

opportunity to separate the boundary layer contribution from the total column, and 

thereby get new insides into the contribution of local versus long-range transport of 

aerosols. AWI financed the instruments, NILU had ordered the a solar-tracker in 2012, but 

due to long delivery times, only in spring 2013, measurements on a more routine bases 

started. The scientific evaluation of the data is ongoing and will be published potentially 

in 2016.    

 

2. A major obstacle to obtaining a complete year around AOD climatology in the Arctic arises 

from the long polar night. To fill gaps in the aerosol climatology plans are ongoing to 

deploy and test a lunar photometer to Ny-Ålesund in autumn 2014. This is a collaborative 

initiative between PMOD/WRC, ISAC-CNR, NILU and others. Seed money for this activity 

was received from the Svalbard Science Forum for the SSF Strategic grant project Lunar 

Arctic project # 236774. The project aimed at coordinated remote sensing of Polar 

aerosol: LUNAR photometry was to be used to close the gap in the annual cycle of the 

ARCTIC aerosol climatology and to develop Svalbard as satellite validation site. The 

project started 1 March 2014. It was finalized at the end of June 2015, after a successful 

Lunar Photometry workshop 24 - 26 June 2015 at Valladolid University, Valladolid, Spain. 

 

 

Figure 42: Moon PFR on the Kipp & Zonen tracker during the day (left, parking position) and during night-

time measurements (right). 

The PFR instrument modified by PMOD-WRC was installed on a tracker model Kipp & 

Zonen provided usually hosting a sun photometer. Figure 42 shows the instrument on 

the tracker during day-time and night-time. Six lunar cycles were monitored: the first 

during February 2014, while the other 5 during winter 2014-2015. We collected data on 

66 measurement periods, from Moon-rise to Moon-set or from minimum-to-minimum 

elevation as in Polar Regions no set-rise events are possible. Among these, we obtained 

17 distinct good measurement periods, due to the frequent occurrence of clouds. For 

further details see e.g. Mazzola at al., 2015. 
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APPENDIX III: Abbreviations 
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Abbreviation  Full name 

ACSM-ToF Aerosol Chemical Speciation Monitor 

ACTRIS Aerosols, Clouds, and Trace gases Research InfraStructure Network 

ADS-GCMS 
Adsorption-Desorption System – Gas Chromatograph Mass 

Spectrometer 

AeroCom Aerosol Comparisons between Observations and Models 

AERONET Aerosol Robotic Network 

AGAGE Advanced Global Atmospheric Gases Experiment 

AIRS Atmospheric Infrared Sounder  

AMAP Arctic Monitoring and Assessment 

AOD Aerosol optical depth 

AWI Alfred Wegener Institute 

BC Black carbon 

CAMP Comprehensive Atmospheric Monitoring Programme 

CCN Cloud Condensation Nuclei 

CCNC Cloud Condensation Nucleus Counter 

CFC Chlorofluorocarbons 

CICERO Center for International Climate and Environmental Research - Oslo 

CIENS Oslo Centre for Interdisciplinary Environmental and Social Research 

CLTRAP Convention on Long-range Transboundary Air Pollution 

CO Carbon monoxide 

CPC Condensation Particle Counter 

DMPS Differential Mobility Particle 

EMEP European Monitoring and Evaluation Programme 

ENVRIplus 
Environmental Research Infrastructures Providing Shared Solutions for 

Science and Society 

EOS Earth Observing System 

ERF Effective radiative forcing ERF 

ERFaci ERF due to aerosol–cloud interaction 

EU European Union 

EUSAAR European Supersites for Atmospheric Aerosol Research 

FLEXPART FLEXible PARTicle dispersion model 

GAW Global Atmosphere Watch 

http://aeronet.gsfc.nasa.gov/
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Abbreviation  Full name 

GB Ground based 

GHG Greenhouse gas 

GOA-UVA Atmospheric Optics Group of Valladolid University 

GOSAT Greenhouse Gases Observing Satellite 

GOSAT-IBUKI Greenhouse Gases Observing Satellite "IBUKI" 

GWP Global Warming Potential 

HCFC Hydrochlorofluorocarbons 

HFC Hydrofluorocarbons 

ICOS Integrated Carbon Observation System 

InGOS Integrated non-CO2 Greenhouse gas Observing System 

IPCC Intergovernmental Panel on Climate Change 

ISAC-CNR 
Institute of Atmospheric Sciences and Climate (ISAC) of the Italian 

National Research Council  

ITM Stockholm University - Department of Applied Environmental Science 

JAXA Japan Aerospace Exploration Agency 

LLGHG Well-mixed greenhouse gases 

MOCA 
Methane Emissions from the Arctic OCean to the Atmosphere: Present 

and Future Climate Effects 

MOE Ministry of the Environment 

NARE Norwegian Antarctic Research Expeditions 

NASA National Aeronautics and Space Administration 

NEOS-ACCM 
Norwegian Earth Observation Support for Atmospheric Composition 

and Climate Monitoring 

NIES National Institute for Environmental Studies 

NOAA National Oceanic and Atmospheric Administration 

NRS Norsk Romsenter 

OC Organic Carbon 

ODS Ozone-depleting substances 

OH Hydroxyl radical 

OPS Optical Particle Spectrometer 

OSPAR 
Convention for the Protection of the marine Environment of the 

North-East Atlantic 

PFR Precision filter radiometer 

https://www.google.no/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fwww.noaa.gov%2F&ei=HShyVMiaI8nVPeKpgaAD&usg=AFQjCNHhu20zk4L6PnTELeuAaR7d1chRFw&sig2=CDDd34crATTuelfjEPXHPQ&bvm=bv.80185997,d.ZWU
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Abbreviation  Full name 

PMOD/WRC 
Physikalisch-Meteorologisches Observatorium Davos/World Radiation 

Center  

PNSD Particle number size distribution 

ppb Parts per billion 

ppm Parts per million 

ppt Parts per trillion 

PSAP Particle Soot Absorption Photometers 

RF Radiative forcing 

RI Research Infrastructure 

RIMA  Red Ibérica de Medida fotométrica de Aerosoles 

SACC 
Strategic Aerosol Observation and Modelling Capacities for Northern 

and Polar Climate and Pollution 

SCIAMACHY  
SCanning Imaging Absorption spectroMeter for Atmospheric 

CHartographY 

SIS Strategisk instituttsatsing 

SMPS Scanning Mobility Particle 

TES Tropospheric Emission Spectrometer 

TOA Top Of Atmosphere 

TOMS OMI Total Ozone Mapping Spectrometer Ozone Monitoring instrument 

UN United Nations 

UNFCCC United Nations Framework Convention on Climate Change 

VOC Volatile organic compounds 

WDCA World Data Centre for Aerosol 

WDCS World Data Centre of Aerosols 

WMGHG Well-mixed greenhouse gases 

WMO World Meteorological Organization 

 

 

 

 



 

 

The Norwegian Environment Agency’s primary 

tasks are to reduce greenhouse gas emissions, 

manage Norwegian nature, and prevent pollution.  

 

We are under the Ministry of Climate and 

Environment and have over 700 employees at our 

two offices in Trondheim and Oslo and at the 

Norwegian Nature Inspectorate’s more than sixty 

local offices. 

  

Our principal functions include monitoring the 

state of the environment, conveying environment-

related information, exercising authority, 

overseeing and guiding regional and municipal 

authorities, cooperating with relevant industry 

authorities, acting as an expert advisor, and 

assisting in international environmental efforts. 
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