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Preface

This workshop is part of a Nordic Council of Ministers, Ocean and Air Group
(NMR/HLG) funded project which supports the development and communication
of scientific research between Nordic countries on the topic of ‘data assimilation
in regional scale atmospheric chemistry models’. The four institutes involved,
NILU (Norway), met.no (Norway), DMU (Denmark) and SMHI (Sweden), all
have active programmes in data assimilation. The intention of this project and
workshop is to bring together these institutes to share knowledge and experience
within a Nordic context and to further support development in this research area.
In total 21 people attended the workshop, including invited experts in data
assimilation from Europe. The workshop showed itself to be successful, being
both informative and helpful to the participants. This report consolidates the
presentations and discussions that took place during the workshop.
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Data assimilation in regional scale atmospheric
chemical models

NMR Workshop at NILU, Kjeller, Norway, 15 November 2005

1 Introduction — Bruce Denby

Data assimilation is a term referring to the various methods used to combine
monitoring data and model calculations. It describes a wide range of techniques,
from the most simple post-modelling interpolation methods, to highly complex
variational assimilation methods. Variational data assimilation techniques are
often used in weather prediction models, and a number of European groups have
already invested considerable efforts in applying this method to atmospheric
chemical transport modelling. There are, however, also other common data
assimilation methods, such as Kalman filters and ensemble methods, that can also
be utilized.

This workshop was organized as the first activity of the NMR funded project on
‘Data assimilation in regional scale atmospheric chemical models’. The aim of
the workshop was to establish links between the participating institutes (NILU,
DMU, SMHI, met.no) and plan and co-ordinate future activities. Presentations by
all the institutes were given to establish the methodologies currently employed,
the level of expertise and the future research intentions of the participating
institutions. In addition two invited speakers attended the workshop, Henrik
Elbern and Arnold Heemink, who are acknowledged experts in the field of data
assimilation in chemical transport modelling. Their attendance was vital to help
place the work in a European perspective and for their critical appraisal and first
hand knowledge of the techniques currently employed.

The workshop was held at NILU on 15 November 2005. 8 separate presentations
were given with a large amount of time devoted to discussion (see attached
agenda). In total up to 21 people participated in the workshop. 11 from the
participating institutes who are directly involved with the project, 2 invited
speakers and a number of interested parties from both NILU and met.no. A list of
participants is also included. Discussions ranged from the very technical to the
philosophical with a number of recommendations for methodologies and problem
solving being discussed.

The presentations from the project participants have been consolidated for this
report, which will be used as reference for further development and cooperation.
The presentations from the invited speakers have been summarized, with the
presented slides contained in an appendix. At the end of each presentation is a
table containing some of the discussion points brought up during the meeting.

The final part of the meeting was used to plan further activity of the project. It
was decided that in 2006 a Nordic assimilation dataset should be compiled that
will contain the relevant observational data for all the participating institutes
including ground based, satellite and other remote sensed observations. This will
lay the foundations for any further intercomparative assimilation studies and will
allow the participating groups to cooperate closely on a single project. It will also
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facilitate the development of knowledge in regard to the requirements of good
observational data (for assimilation purposes) including the need for an
understanding of information related to uncertainty, spatial and temporal
representativeness and data capacity requirements. Compilation of the dataset will
also aid in identifying gaps in the available data and will allow each institute to
gain from the others expertise in their own particular field.

Agenda

09:30 Introduction and welcome
Bruce Denby, NILU

Satellite data

09:45 The GEMS project
Leonor Tarrason, Met.no

10:00 Availability of Satellite Remote Sensing images of Atmospheric
Species
Martin Hvidberg, DMU

Variational methods

10:30 Development and implementation of a simple data assimilation
algorithm
Jan Frydendall, DMU

11:00 Applying variational data assimilation for an atmospheric chemical
scheme

Zahari Zlatev, DMU
11:30 COFFEE BREAK

11:45 Application of 2-dimensional variational data analysis in MATCH
Michael Kahnert, SMHI

12:15 Implementation and performance experiences with chemical 4Dvar
assimilation

Hendrik Elbern, EURAD, Cologne

12:45 LUNCH
13:30 Discussion

Ensemble methods

14:30 An introduction to Sequential Importance Resampling
Sam Erik Walker, NILU

15:00 Data assimilation in atmospheric chemistry models using ensemble
methods

Arnold Heemink, TU Delft
15:30 Discussion
16:30 NMR project
Conclusions to be drawn from this workshop. Report from the
workshop.
Next year? Intercomparison of methods?Another workshop?

17:00 End workshop
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Satellite data

2 The GEMS project and data assimilation with the Unified
EMEP model — Leonor Tarrason

Maarten van Loon and Leonor Tarrason
Norwegian Meteorological Institute (met.no)
P.O. Box 43 Blindern 0313 Oslo, Norway
Email: maartenvl@met.no

The GEMS project

Large part of the data assimilation activities at met.no will be carried out in the
EU funded Integrated Project GEMS (Global and regional Earth-system
Monitoring using Satellite and in-situ data) within the Sixth Framework
Programme. GEMS will create a new European operational system for operational
global monitoring of atmospheric chemistry and dynamics and an operational
system to produce improved medium-range and short-range air-chemistry
forecasts, through much improved exploitation of satellite data. (see also the
GEMS website: http://www.ecmwf.int/research/EU_projects/GEMS/).

The research teams involved will develop a global operational medium-range
forecast / assimilation capability for dynamics and composition, exploiting all
available satellite data.

The integrated forecast / assimilation capability will provide a powerful
monitoring capability for greenhouse gases, reactive gases and aerosols.
Sophisticated new inversion methods will be developed to infer surface fluxes of
CO2 and other species through use of the surface flask data with the gridded
atmospheric fields on transport and composition. The GEMS project will produce
global retrospective analyses of the atmospheric dynamics and composition for
the troposphere and stratosphere, and will be able to assess the impact of changes
both on global and regional scale, examining extremes as well as means.

The global forecasts will provide key information on long-range transport of air
pollutants to the regional forecast models, through the forecast boundary
conditions used by the regional systems. The improved regional forecasts will be
used by air-quality authorities at city level, in dozens of cities across Europe.

The contribution of met.no in this project is in the regional part, where the Unified
EMEP model will be used as regional model, fed at the boundaries by global
predicted fields. Also in the regional simulation data assimilation will be applied
and hence one of the major tasks within GEMS is the development of data
assimilation modules within the EMEP modelling system.

Data assimilation around the EMEP model

For the purpose of GEMS a Kalman Filter technique will be implemented around
the EMEP model. The choice for this technique is based on existing experience
with this kind of techniques within the EMEP team. Apart from this practical
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argument, building a 4D-Var system would require the construction of the adjoint
code of the EMEP model, which is a far from trivial task. The presentations and
discussions at the workshop only confirmed this conclusion. In support of GEMS
a project proposal has been submitted to the Norwegian Space Centre (NRS). In
this proposal the emphasis is on treatment of satellite products by the remote
sensing group at met.no. It is intended to directly assimilate observed radiances
from space into the EMEP model. Usually, a derived product — aerosol optical
depth (AOD) - is used for assimilation. Directly assimilating radiances will have
the advantage that no assumptions need to be made on the composition and
vertical distribution of the aerosols as is necessary for retrieving AOD values.

Discussion

Speaker

Comment

Zahari Zlatev

Communication between computers in real time must be
difficult. Will you use grid computing in this project?

Leonor Tarrason

No this is not part of the project, just being able to
communicate between the different databases is a priority in
the project.

Hendrik Elbern

It may be interesting to start an initiative on this though! Grid
computing is an interesting issue on a longer time perspective.
It must be ensured however that, for routine applications,
timely delivery is ensured.

Michael Kahnert

What is the main aim of the project? Is it to do an analysis (as
a post-processing of CTM results) or to develop a forecasting
capability (data assimilation)

Leonor Tarrason

The main goal of GEMS is to develop the operational capacity
to forecast air quality in global and regional scale, using data
assimilation techniques
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3 Availability of Satellite Remote Sensing images of
Atmospheric Species — Martin Hvidberg

Martin Hvidberg
National Environmental Research Institute (NERI)
Dept. of Atmospheric Environment (ATMI)
Roskilde, Denmark

Several people have inquired about an overview of “What atmospheric substances
can be seen, measured, distinguished, by satellite remote sensing”. This paper is
an introductory presentation of what is available.

Remote sensing methods can be derived into categories in a number of ways. For
the purpose of this work we are limiting ourselves to remote sensing of the Earth’s
atmosphere, and so excluding observations of the Earth’s surface as well as
observations of astronomical objects. In particular we are going to focus on the
troposphere, since that is where we live. Though tropospheric conditions have
influence an surface concentrations in general, and in modeling of these in
particularly, we will not go into detail on this type of data even when it is
provided by the satellite or sensor system. In addition we are going to limit the
overview to passive remote sensing, specifically excluding active microwave
systems and occultation GPS viewing systems.

The overview is based mainly on knowledge generated by the European network
of excellence “ACCENT” and especially on work of the University of Bremen,
Univ. Heidelberg, Univ. Toronto, Univ. Cambridge and KNMI in the Netherlands.

1. Viewing geometry

One of the main characteristics when selecting an atmospheric remote sensing
product is the viewing geometry. Essentially there exist three systems: Nadir
view, Occultation view and Limb view. Most satellite borne sensor systems uses
one of these viewing geometries, but a few uses several in combination. The
figure below illustrates these geometries and the main instruments using these
geometries.
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Figure 3.1: NERI — Martin Hvidberg

2. Wavelength region

Another important difference between sensor systems is the wavelengths at which
they operate. There are three main areas used in atmospheric remote sensing,
namely UltraViolet-VISible (UV_VIS), InfraRed (IR) and Microwave (pm).

3. Strategies

Various strategies are possible when designing a sensor system. It is less
demanding to construct an instrument with the capability to measure “just” the
total column than to build one with the ability to measure a vertical profile. The
number of species looked for can also be limited by the selected design strategy.
In the following section the most dominant combinations of viewing geometry,
wavelength, etc. are introduced.
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4. Nadir viewers

Nadir  viewers  utilize the  backscattered Nadir
electromagnetic radiation from the sun. Most

frequently these techniques are used in the UV-VIS  |Eeeietd

region. It can either be used in a dual wavelength TOMS &y
Oom

reflectance ratio as technique, or in a multi
wavelength technique.

For total column measurements

To measure a specific chemical species,
measurements of incoming and outgoing radiation
are made, to determine

total amount of that species. Two pairs of
measurements are made. One measurement of
incoming UV light and one measuring backscattered
UV light, at a wavelength that is strongly absorbed
by the chemical compound of interest.

A second pair of measurement of incoming and
reflected radiation is made at a wavelength that is
weakly absorbed

by the same species. The differences between the
pairs of measurements at the two wavelengths are
used to infer the amount present in the atmosphere of
the given chemical compound.

Figure 3.2

For vertical profile measurements
Information on the vertical structure of the atmosphere
can Nadir

be derived using the backscatter profiling technique in Y

GOME uv.is.nir
the SBUV uy

UV wavelength area. The atmosphere less absorbs light ToMa s
a t LMY
longer wavelengths than light at shorter wavelengths.
Such longwave UV light is able to penetrate far into
the atmosphere.

The backscattered radiation at specific UV wavelengths
can only be scattered from above a particular height.
Below this level, all the radiation is absorbed and there
is no ackscattered radiance. This allows us to make a
vertical measurement of a given species. Measurements
at certain UV wavelengths are sensitive to specific
portions

of the vertical profile.

Figure 3.3
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5. Occultation viewers

Occultation view is looking at the sun, the moon or a
star, through the atmosphere. This viewing geometry
is utilizing the differences in atmospheric absorption
spectrum. Looking at specific wavelengths that are
known to be strongly absorbed by a particular
chemical species it is possible to measure the presence
of that given species, somewhere along the line of
sight from the light source to the sensor.

Occultation techniques can be used within UV, VIS or
IR wavelength areas.

Making this type of measurements while the satellite
rises or sets behind the horizon enables the
measurement of vertical profiles of the atmosphere.
The viewing geometry of occultation viewers severely
limits the time and duration during which observations
are possible. Both the satellite and the source of light
have to be in the right place to make this technique
possible.

6. Limb viewers

The limb viewing geometry again uses the scattered or
emitted spectrum, rather than the absorption spectrum.
The difference from the occultation techniques is that
in Limb view the light source is not at the end of its
line of sight. Limb viewers have, like occultation, a
line of sight that is more or less at a tangent to the
Earth.

The limb viewing technique is not limited to any
specific wavelength of sunlight. Scattering techniques
are used with UV, VIS and NIR and techniques based
on emitted light are used with IR and Microwave.

This technique works best with ozone; however other
trace gases like water vapor, nitrogen dioxide, and
sulfur dioxide and aerosols are also measurable.
Compared to occultation, limb is less dependent on the
position of both sun, Earth and satellite and can
therefore collect data through considerably more hours
every day.

13

Occultation, Solar

GOMOS uy.vis.nir (Slellar)
HALOE it
POAM uy.vis.nir

Figure 3.4

Limb
-

SCIAMACHY uy.vis.nir
Space shulile

Figure 3.5
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Techniques utilizing emitted radiation, so called Limb
emission or Limb viewing techniques, operating in the
IR or Microwave areas do not even need the sun to be

present. All objects with a temperature above absolute
zero emit radiation, the wavelengths of this emitted

g‘t: L radiation is characteristic for each atom and each
ir

HIRDLS ir molecule. Instruments based upon the limb emission
TES Ir

technique infer amounts of gases from measurements
radiation from different altitudes of the atmosphere.

In theory, the instrument could observe all the way to
the surface, but below a certain altitude (under 10 km),

clouds interfere with the emitted longwave radiation.
The limb emission sensors are able to create a vertical
profile of trace gas concentrations. The resulting
vertical resolution is quite good, usually on the order of
3 kilometers.

Figure 3.6

7. Selected instruments

There exist close to 50 different sensor systems whose primary purpose is to
monitor the Earth’s atmosphere. Only a limited subset of these is relevant to the
present research. Some are outdated technologically or maybe not even in orbit
any more, and therefore only apply to long timeseries studies, e.g. TOMS. Some
are not yet even released to the broader scientific community, e.g. OMIL In
practice a short list of the sensor systems seems to be the once used by most
research groups within atmospheric monitoring. The following, in no way exhaust
the possibilities but are just a short presentation of a few, frequently used,
instruments.

8. GOME

GOME and GOME-2 are Nadir viewing UV backscatter spectrometers, which
means that they measure Earthshine spectra, that is: the sunlight, which is
reflected back into space by molecules in the atmosphere and by the surface. The
instrument also measures the solar spectrum directly. The ratio between the
Earthshine and solar signal is a measure of the reflectivity of the Earth's
atmosphere and surface.
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Figure 3.7. KNMI

GOME has been flying on ERS2 since 21 April
1995

Currently (Nov.’05) GOME-1 data are available
from 28th June 1995 until 21st June 2003 (full
global coverage). More recent data are currently
being reprocessed and will be online very soon.
The GOME-2 instrument is due to launch in
2006 aboard ESA's and EUMETSAT's first
MetOp platform.

st ar
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Figure 3.8: Mark Weber - Univ. Bremen

9. SCIAMACHY

SCIAMACHY was launched on March 2002, on Envisat. It is a spectrometer
designed to measure sunlight, transmitted, reflected and scattered by the Earth’s
atmosphere or surface in the ultraviolet, visible and near infrared wavelength
region

Data are available on request for 1. Jan 2003 till present from Univ. Heidelberg,
Univ. Bremen, KNMI and through GMES-service.

The SCIAMACHY primary mission objective is to perform global measurements
of trace gases in the troposphere and in the stratosphere.
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Figure 3.9: GOME column NO;,
Tropospheric NO2 over Europe August 2002 . Units: Vertical
Column [molec cm-2]. Andreas Richter - Univ. Bremen

SCIAMACHY measurements yield the amounts and distribution of O3, BrO,
OCIO, CIO, SO,, CH,0, NO,, CO, CO,, CH4, H,0, N,O, pressure, Temperature,
aerosol, radiation, cloud cover and cloud top height. A special feature of
SCIAMACHY is the combined limb-nadir measurement mode, which enables the
tropospheric column amounts of several trace gases to be determined.
SCIAMACHY uses the same wavelengths in the UV-Vis as GOME-1 and -2 and
has a spectral range extended into the infrared.

Clouds |
Aerosols |

SCIAMACHY

ENVISAT-1

Figure 3.10: www-iup.physik.uni-bremen.de/sciamachy/
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11. MOPITT

Measurements Of Pollution In The Troposphere (MOPITT) is a Canadian
instrument launched in 1999 and consists of a IR Nadir looking sensor, aboard
NASA’s Terra satellite. It uses gas correlation spectroscopy to determine the
abundance of carbon monoxide in the troposphere. The MOPITT sensor measures
emitted and reflected radiance from the Earth in three spectral bands.

MOPITT data are available online as quick looks. Column total or concentration
at 6 pre-defined heights.

The actual data on:"Derived CO levels", "gridded daily averages", "gridded
monthly means", from 3. March 2000 till present are available upon request.

Cartson Monoxide Concentration (ppbv)

I
0 120 240

Figure 3.11: NASA - earthobservatory.nasa.gov/

12. A promising new satellite — Aura

On Thursday, July 15, 2004 Aura was launched at 6:01:59 a.m. local time from
Vandenberg Air Force Base, aboard a Delta II rocket, later inserting the Aura
satellite into a 705 kilometer orbit.

This completes the trilogy of satellites Terra, Aqua and Aura, the first series of
NASA EOS satellites. While Terra monitors land, and Aqua monitors the Earth's
water cycle, Aura will help understand the atmospheric system, global air quality,
ozone recovery and climate change.

Each of Aura's four instruments, the Ozone Monitoring Instrument (OMI), the
Tropospheric Emission Spectrometer (TES), the High Resolution Dynamics Limb
Sounder (HIRDLS), the Microwave Limb Sounder (MLS) is designed to survey
different aspects of Earth's atmosphere. Aura will survey the atmosphere
throughout the troposphere and the lower stratosphere.
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13. OMI

The OMI instrument employs hyper spectral imaging in a push-broom mode to
observe solar backscatter radiation in the visible and ultraviolet. The hyper
spectral capabilities will improve the accuracy and precision of the total ozone
amounts. OMI will facilitate continuity in measurements from predecessors
TOMS, SBUV, GOME, SCIAMACHY and GOMOS

Key air quality observations are Oz, NO,, SO,, BrO, OCIO, and aerosol
characteristics. The OMI instrument will distinguish between aerosol types, such
as smoke, dust, and sulfates, and can measure cloud pressure and coverage, which
provides data to derive tropospheric ozone concentrations.

OMI Aerosgl Index
an June 03, 2005

GSFC KNMI

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5>
Aeroszol Index

Figure 3.12: Ellen Brinksma, KNMI
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14. TES

TES is a spectrometer that measures the infrared-light emitted by Earth's surface
and by gases and particles in Earth's atmosphere. Spectrometers measure this
radiation as a means of identifying the substances.

TES operates in a combination of limb and nadir mode. It generates three-
dimensional profiles on a global scale of virtually all infrared-active species from
Earth's surface to the lower stratosphere.

TES Lower Tropospheric Ozone (Surface - 500 hPa)

. @
0 Ozone (DU) 40

Figure 3.13: NASA, Jet Propulsion Lab. - tes.jpl.nasa.gov
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15. HIRDLS

The High Resolution
Dynamics Limb
Sounder (HiRDLS)
is a Scanning
infrared limb
sounder.

The HIRDLS
instrument will
obtain profiles over
most of the globe,
both day and night.
Complete Earth
coverage can be
obtained in twelve
hours.

It observes global
distribution of
temperature and
concentrations of Os,
H,0, CH4, N0,
NO;, HNOs3, N»Os,
CEC11, CFC12,
CIONO2, and
aerosols in the upper
troposphere,
stratosphere, and
mesosphere

16. MLS

H20 Mixing Ratiotpprms)

i

HIRDLS Water Vapor at 30km

Figure 3.14: National Center for Atmospheric Research —
www.eos.ucar.edu/hirdls/

Microwave Limb Sounder (MLS) is a passive microwave limb sounding
radiometer / spectrometer. It measures thermal emission from the atmospheric

limb.

The EOS MLS instrument will provide measurements of many chemical species
involved in the destruction of stratospheric ozone. This instrument is a greatly
enhanced version of the UARS MLS instrument, including use of latest
technology to measure important species such as OH, BrO and many others which
could not be measured by MLS at the time the UARS instrument was developed,
as well as more precise measurements and measurements over a larger altitude
range. The EOS Aura orbit will allow MLS measurements to be made to high
latitudes every day on each orbit, whereas the UARS orbit required MLS high-
latitude coverage to switch, approximately monthly, between the northern and
southern hemispheres with critical periods being missed.
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Figure 3.15: [Read et al., 1993] Dr. William Read. @mls.jpl.nasa.gov

17. Data Availability

Unfortunately after now 500 days in space, data from AURA are still to become
available to the scientific community. Still there are high expectations for the
usefulness and quality of these data when they become accessible to atmospheric
scientists and others.

18. References:

aura.gsfc.nasa.gov/instruments/
envisat.esa.int/instruments/images/scia_heitran.html
www-iup.physik.uni-bremen.de/gome/wfdoas/
www-iup.physik.uni-bremen.de/sciamachy/
www.ccpo.odu.edu/SEES/ozone/oz_class.htm
www.esa.int/esaME/index.html
www.knmi.nl/gome_fd/doc/gomeintro.html
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Discussion

Speaker Comment

Caroline Forster | Can you do the different types of measurements, e.g. Nadir,
limb, with the same satellite?

Martin Hvidberg | Yes this is possible with some of the Satellites

Kjetil Tausend | How do you deal with the fact that the retrieval algorithm
includes calibration with observational data? Is there a conflict
of some form with data assimilation with the same data?
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Michael Kahnert | I don’t think there is a conflict as data assimilation can also be
done in observational space.
General A general discussion followed related to the representation of

assimilated satellite data and land based data that is not
independent from one another (Due to the fact that satellite
data is not totally independent of the ground based data).
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Variational methods

4 Development and implementation of a simple data
assimilation algorithm — Jan Frydendall

Jan Frydendall and Jgrgen Brandt
National Environmental Research Institute, Department of Atmospheric
Environment
Frederiksborgvej 399, P.O. box 358, DK-4000 Roskilde, Denmark

Abstract

A simple algorithm for chemical data assimilation has been developed. The
algorithm has been tested and implemented in the Eulerian chemical transport
model, DEOM, used since 1999 for regional air pollution forecasting at NERIL
DEOM is a part of the THOR integrated air pollution forecasting and management
system (http://thor.dmu.dk). The data assimilation algorithm is shortly described
and preliminary results from comparisons of model results with and without the
data assimilation algoritm for a six months period in 1999 are shown.

The statistical interpolation algorithm

At NERI we wanted to get a deeper understanding of the data assimilation
techniques. We wanted to understand what made these techniques work.
Therefore, we did not start developing a very complicated data assimilation
technique like the 3D/4D variational method or the extended Kalman filter. We
have chosen the statistical interpolation technique for this study. It is fairly simple
and yet it still gives a good insight to data assimilation.

1. The basics
Lets define the statistical interpolation scheme:

Statistical assumptions: The background error and the analysis error is defined

as
& =X, —X, e
£, =X, X, @
and the observation error is defined
g =y-H(x,| 3)
From the background error we are now able to define the background covariance:
s T
B=(& —7)(& —&») “
the observation covariance:
R=(g,~7,)(& ~F) )
and the analysis covariance:
Pa =(€a _§a>(€a_§a)T (6)
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e Linearized observation operator: the variation of the observation operator
in the vicinity of the background state is linear. For any x close to x, , H(x)
-H(x,) =H(x-x,) , when H is a linear operator.

e Non-trivial errors: B and R are positive definite matrices.
e Unbiased errors: The expectation of the background and the observation
errors is zero i.e.

x,-X, =y-H(x,}=0 %)

e uncorrelated errors: observation and background errors are mutually
uncorrelated i.e

(Xb _Xt)[y—H(Xb)]Tzo ©))

e If the background and the observation error p.d.f. are Gaussian, then x , is
also the maximum likehood estimator of x, .

e Linear analysis: we look for an analysis defined correction to the
background which depend linearly on background observations departures.

e Optimum analysis: we look for an analysis state which is as close as
possible to the true state in and root mean square sense. (i.e. it is a
minimum variance estimate)

This leads to the statistical interpolations main equation:
x, =x, +K(y-H(x,)) )

-1
K =BH'(HBH" +R) (10)
where the linear operator K is called the Kalman gain matrix of the analysis.

e In our setup we define the interpolation operator H as a linear interpolation
between the grid locations and observations stations.

e The observation error covariance matrix as R =078 delta is the
Kronecker delta and o7 is the error covariance of the observations.
e The background error covariance matrix is define as B = off (r) where

o is the error covariance of the background and f(r) is the correlation

function.
The correlation function is define as

fr)= [1+mJexp(—mj (1D
' L L

r is the Euclidian distance in the model space and L is the correlation length. The
function is depicted in the figure below
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e —— r

5 10 15 20 25

Figure 4.1: 1 Different correlations lengths are plotted. Red: L=1, Green:
L=1.5, Blue: L=2, Azure: L=2.5, Black: L=3 and Grey: L=5. The
greater the correlations length the slower is the descent of the of the
correlations function

The error covariance determinations

In order to get fully specified error covariances matrices we have to do some
analysis. The first and foremost method is the one described by (Hollingsworth
and Lonnberg, 1986). It states that we have to make correlations between
"observations minus background" separated by observation stations distances. We
than have to fit a correlation model with the founded data. The results are depicted
below:

Correlation length

Correlation

0 500 1000 1500 2000 2500
Distance (kilometers)

Figure 4.2: 2 The correlation function is fitted to the observation-minus-
background correlation.
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In order to get a good error covariance determination we had to use a large time
series of six months to archive good results. This error covariance determination
is very representative for a specific hour in the time series. Therefore we look at
other ways to determine the error covariance for each run of the data assimilation
algorithm. We looked at method derived by (Desroziers and Ivanov, 2001) where
have found a iterative equation which would converge on the error covariance in a
few steps if one could write the error covariance matrices as:

B=¢B

R=¢R (12)

where e, and e, are scalars. Then the following algorithm should hole:

J, (X, (e,,e,)(D)

0 2 T 1-Ke, e, (OH)

(13)

J"(x,(e,,e,)(i))

i+1)=2
&+l Tr(HK(e,,e,)(i))

(14)

We did not have any success with the above algorithm yet, because the memory
requirement is too large to handle for our computers. We currently are looking
into ways of reducing the sizes of the error covariance matrices.

Some preliminary results

We have implemented the statistical interpolation algorithm into the DEOM
model (Brandt et al., 2001). The DEOM model is a three-layer Eulerian
atmospheric chemistry transport model, which is designed to predict ozone values
as well as many other chemical species. The data assimilation algorithm is set to
correct the background field at 10:00 UTC, 11:00 UTC and 1200 UTC every day
in a period from April to September in 1999 and focus is on the daily maximum
ozone values occurring in the late afternoon at the same days. As DEOM is a 3
layer model, where the lowest model layer is defined by the mixing height, the
model can not describe the nocturnal values of ozone in the surface layer. Model
results are compared to measurement data from all available station in the EMEP
network. The correlation length is L = 270 km and covariances are those found by
the Hollingsworth method. In the following figures (except figure 3), the left
figures includes results obtained from the reference model run (without data
assimilation) and the right figures includes results obtained from the analysis
model run (including data assimilation).
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Figure 4.3:Comparison of calculated and measured daily mean, hourly and daily

maximum ozone values taken as a mean over all measurement
stations. One clearly sees the effect of the data assimilation process
by looking at the top (without data assimilation) and bottom (with
data assimilation) time series. The correlation coefficient increase
and the bias and NMSE decrease
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O3 daily max [ppb], Total No. of stations 93
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Figure 4.4 :4 Frequency distributions of the correlation coefficient, the

fractional bias and the Normalised Mean Square Error estimated
from calculated and measured data at EMEP measurement stations.
The distribution of the correlation coefficient is generally shifted to

the right by 0.2.
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Figure 4.5: 5 Comparison of calculated and measured daily maximum values of
ozone for all measurement stations for the period Apr.-Sep. 1999.
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increases from 0.62 to 0.76 when the data assimilation is applied
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Discussion

Speaker Comment

Armold Heemink [ How do you choose your projection operators?

Jan Frydendall This has not been decided yet

Michael Kahnert | We use reduced eigenvalue decomposition and select at least
so many eigenvalues that the smallest eigenvalue is smaller
than 10% of the largest one

Maarten van | Suggest you look at Johannes Flemings work as he has done
Loon very similar studies.
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5 Applying Variational Data Assimilation in connection with an
Atmospheric Chemical Scheme — Zahari Zlatev

Zahari Zlatev and Jgrgen Brandt
National Environmental Research Institute
Frederiksborgvej 399, P. O. Box 358
DK-4000 Roskilde, Denmark

Abstract

The chemical schemes are among the most difficult components in large-scale
environmental models. Therefore, these components should be treated efficiently
in the efforts to make the environmental models able to produce reliable results
when these are used in different important for the modern society comprehensive
studies. The requirement for efficient treatment of the chemical schemes is
increased when data assimilation is to be applied in conjunction with the model
under consideration. Some of the problems, which are to be resolved when data
assimilation is used together with a particular chemical scheme, are discussed in
this note. Several experiments were carried out in an attempt to investigate the
minimal requirements that are to be imposed on the availability of observations in
order to ensure successful implementation of data assimilation. Results from these
experiments are presented and discussed.

Key words: Environmental model, Chemical schemes, Data assimilation,
Numerical methods.

1. The atmospheric chemical scheme

The major properties of the particular atmospheric chemical scheme, which is
used in this note, can shortly be described as follows:

e The chemical scheme contains 56 species.

e Among the 56 chemical species, which are involved in the selected chemical
scheme, are:

e sulphur pollutants,

e nitrogen pollutants,

e ozone,

e ammonia-ammonium,
e scveral radicals,

e isoprene and

e many hydrocarbons.

e The chemical scheme can be described mathematically by a systems of
ordinary differential equations (ODEs): dc¢/dt=f(t,c) , where t is the
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time-variable and ¢ is a vector the components of which are the 56 chemical
species involved in the chemical scheme.

e [tis very difficult to handle efficiently this system of ODEs because it is:

stiff,
badly scaled,
there are temporal variations in a wide range,

many species (these participating in the photochemical reactions) contain
sharp gradients in the periods around sun-rises and sun-sets.

These properties of the chemical systems of ODEs are illustrated in Fig. 1, where
the temporal variation of one of the chemical species, isoprene, is given for the
period starting at 6:00 in the morning and finishing at 24:00 in the next day. The
sharp gradients at sun-rises and sun-sets are clearly seen in Fig. 1.

ISOPREN

10000 T T T T T T T T
9000 - -1
8000 |- .
7000 - "
6000 - -1
5000 ~
4000 - -1
3000 - -
2000 - -
1000 - ~

o i ; . i , .

£ 10 15 20 25 30 35 40 45
Figure 1

Temporal variation of the isoprene concentrations (measured in number of
molecules per cubic centimetre) in the period from 6:00 to 24:00 on the next days
(from 6 to 48 on the horizontal axis.

2. The data assimilation algorithm

The data assimilation algorithm is shortly described in this section (this algorithm
is fully described in Zlatev and Brandt, 2005). Any data assimilation algorithm
tries to minimize a functional of the form:

@

J{Eo}zi ZP:< W(tp)<_c_p _E:bs )’ S _E;bs> ’

p=0
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where J {EO} depends on the initial value €, of the vector of the concentrations,
W(tp) is a matrix containing some weights and < , > is an inner product in an

appropriately defined Hilbert space (it will be assumed that the usual vector space
is used, i.e. that ce R°*where s is the number of chemical species involved in the

model; in this particular study this number is 56, but in the treatment of a full
environmental model this number can be very large, because a discretized large-
scale environmental model contains very often many millions of components). It
is seen that J{c,} depends on both the weights and the differences between

—obs

calculated by the model concentrations €, and observations ¢, at the time-levels

{0, 1..., P} at which observations are available. W(tp) will be assumed to be
the identity matrix I in this study, but in general weights are to be defined in
some way.

The task in this note is to find an improved initial field ¢€,, which minimizes
J{EO}, but it should be emphasized that data assimilation can also be used for
other purposes (as, for example to improve the emissions). Some optimization
algorithm must be used to minimize J{¢,}. Most of the optimization algorithms
are based on the application of the gradient of J{¢,}. The adjoint equation has to

be defined and used in the calculation of the gradient of J {Eo}.

An algorithm for performing data assimilation for any model is given in Fig. 2
(again, more details about this algorithm can be found in Zlatev and Brandt,
2005). Several remarks are needed in connection with this algorithm:

e The Jacobian matrix of the right-hand-side vector f(t,c) has to be calculated
and used to form the adjoint equation.

e The algorithm consists of forward calculations (which are carried out in the
first inner loop in the red box in Fig. 2) and backward calculations (these are
performed in the second inner loop in the red box in Fig. 2).

e It is assumed, in the algorithm presented in Fig. 2, that every time when a
time-point in which observations are available is reached one proceeds with
backward calculations. This will be inefficient when the number of
observations P (P_STEP in the algorithm from Fig. 2) is large. It is possible
to carry out the backward calculations only once (after performing the forward

computations over the whole time-interval; see again Zlatev and Brandt,
2005).
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INITIALIZE SCALAR VARIABLES, VECTORS AND ARRAYS; SET GRADIENT TO ZERO

DO ITERATIONS = 1, MAX_ITERATIONS

DO LARGE_STEPS = 1,P_STEP
DO FORWARD_STEPS = (LARGE_STEPS - 1)*P_LENGTH + 1, LARGE_STEPS*P_LENGTH
Perform a forward step with the model
END DO FORWARD_STEPS
DO BACKWARD_STEPS =LARGE_STEPS*P_LENGTH, 1, -1
Perform a backward step with the adjoint equation
END DO BACKWARD_STEPS
UPDATE THE GRADIENT AND CALCULATE THE VALUE OF THE FUNCTIONAL
END DO LARGE_STEPS

COMPUTE AN APPROXIMATION OF PARAMETER RHO

UPDATE THE INITIAL VALUE FIELD (NEW FIELD = OLD FIELD - RHO*GRADIENT)

CHECK THE STOPPING CRITERIA; IF SATISFIED EXIT FROM LOOP DO ITERATIONS
END DO ITERATIONS

PERFORM OUTPUT OPERATIONS AND STOP THE COMPUTATIONS

Figure 2
An algorithm for performing variational data assimilation.
The values of vector ¢ found during the forward calculations are
unfortunately also needed during the backward calculations. Thus, these
values have either to be stored (during the forward calculations) or
recomputed (during the backward calculations). This is causing great
problems when the model treated is large.

Five different numerical methods have been used in the experiments. Only
results obtained by using the well-known Backward Euler Method will be
used in the following part of this note.

3. Organization of the experiments

The experiments were carried out under the following assumptions:

An assimilation window of length 6 hours, starting at 6:00 in the mormning
and finishing at noon (12:00), is always used.
It is assumed that observations are available at the starting point and at the
end of each hour (i.e. at seven time-points).
Perturbations of the initial solution of all species by 50% errors are always
applied.
The length of the forecast window is 42 hours.
The following actions were always successively performed:
e  The initial values of the concentrations are perturbed in the
beginning of computations.
e  Data assimilation is then applied to improve the initial values
(values of a reference solution, calculated by a very small time-
stepsize, , being applied as “observations™).
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e  Finally, a forecast is calculated over the full length of the time-
interval (42 hours) by using the improved by the data assimilation
algorithm initial values.

e A component-wise relative error estimation is used to calculate both the
global error and the error made in calculation of the chemical species number
. This means that the following formulae (where  is the number of time-
steps, while is the number of chemical species) were used:

cl'l‘llfldl‘.' —le:
(2) ERROR = max n,i - n,i
n=1,2,.,N;i=1,2,..,q C“’i
m?dul ”_CNF
(3) ERROR[ = maX n,t — n,i
n=1,2,..,N ni

e The following notation is used in Table 1 —Table 5:

e Error0_P - Error in the perturbed initial solution.

e ErrorF_P — Error which is obtained when the calculations are performed
by using the perturbed initial solution (i.e. without using data assimilation
to improve the initial solution).

e Error0_I - Error in the improved (by performing data assimilation)
initial solution.

e ErrorF_I — Error which is obtained when the calculations are performed
by using the improved initial solution.

4. Experiments

Four important cases were studied:

e Observations of all 56 chemical species are available. Results are presented
in Table 1 (errors obtained when all species are taken into account) and Table
2 (errors obtained when only the ozone concentrations are taken into account).
The errors caused by the numerical method are dominating in this case.
Therefore, decreasing the time-stepsize (which leads to an increase of the
number of steps) results in decreasing of the errors.

e Only ozone observations are available. Results are presented in Table 3. The
accuracy is not improved, because ozone is a secondary pollutant, which
participate in reactions with many other species (the accuracy of which cannot
be improved when only ozone “observations” are available). The errors caused
by reactions of ozone with perturbed and not improved (because of the lack of
“observations”) chemical species is dominating. Therefore increasing the
accuracy of the numerical method by decreasing the time-stepsize has
practically no effect on the accuracy of the ozone concentrations.

e Observations of a primary pollutant (sulphur di-oxide) are available.
Results are presented in Table 4. The data assimilation algorithm leads to an
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improvement of the quality of the sulphur di-oxide concentrations, because
this compound does not participate in many chemical reactions and, thus, the
influence of the perturbed and not improved when only sulphur di-oxide
“observations” are available chemical species is limited. Increasing the
number of steps (i.e. decreasing the time-stepsize) results in improvements,
but the errors do not decrease in such a regular way as in the case where
“observations of all chemical species are available; compare the results in
Table 4 with the results in Table 1 and Table 2.

Steps | Error0_P | ErrorF P | Error0_I | ErrorF_I
1008 0.47 0.48 2.0E-3 3.2E-1
2016 0.49 0.50 1.0E-3 1.5E-1
4032 0.47 0.47 5.0E-5 7.4E-2
8064 0.48 0.49 2.5E-4 3.6E-2

16128 0.46 0.48 1.3E4 1.8E-2

32256 0.49 0.50 6.3E-5 9.0E-3
Table 1

Global errors, i.e. errors calculated by formula (2), which are obtained when
“observations” of all chemical species are available. The behaviour of the errors
in the improved solutions (the last two columns) is nearly perfect (doubling the
number of steps, which means halving the stepsize At, leads to halving the error;

this should be expected because the Backward Euler Method is of order one).

Observations of a group of pollutants are available (ozone + nitrogen di-
oxide). The results shown in Table 3 indicate that it is necessary to have
observations of some of the species, which react with ozone, in order to improve
the accuracy of the ozone concentrations by applying data assimilation. One of the
important species, nitrogen di-oxide, has been chosen. Results obtained by using
“observations” of ozone and nitrogen di-oxide are shown in Table 5. The errors
caused by the perturbed and not improved (because of lack of observations)
species is dominant also when observation of nitrogen di-oxide are available
together with ozone observations. This is demonstrated by the fact that improving
the accuracy of the numerical method by increasing the number of steps
(decreasing the time-stepsize) has no effect on the accuracy. However, adding
“observations” of nitrogen di-oxide has a positive effect on the accuracy of the
ozone concentrations achieved when data assimilation is used (the accuracy is
improved; mainly by a factor of approximately ten).
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Error0_P | ErrorF_P | Error0_I | ErrorF_I

Steps

1008 0.47 0.48 2.0E-3 2.4E-3

2016 0.49 0.50 1.0E-3 1.2E-3

4032 0.47 0.47 5.0E-5 6.0E-4

8064 0.48 0.49 2.5E-4 3.0E4
16128 0.46 0.48 1.3E4 1.5E-4
32256 0.49 0.50 6.3E-5 7.5E-5

Table 2

37

Errors in the calculation of the ozone compound, i.e. errors calculated by formula
(3) applied for ozone, which are obtained when “observations” of all chemical
species are available. The behaviour of the errors in the improved solutions (the
last two columns) is nearly perfect (doubling the number of steps, which means
halving the stepsize At, leads to halving the error; this should be expected

because the Backward Euler Method is of order one).

Steps | Error0_P | ErrorF_ P | Error0_I | ErrorF I
1008 0.48 0.50 0.25 0.25
2016 0.47 0.50 0.36 0.36
4032 0.48 0.50 0.32 0.33
8064 0.46 0.50 0.49 0.49

16128 0.46 0.50 0.34 0.35

32256 0.47 0.50 0.54 0.54

Table 3

Errors in the calculation of the ozone concentrations, i.e. errors calculated by
formula (3) applied for ozone, which are obtained when only ozone
“observations” are available. The application of data assimilation has negligible
effect in the efforts to improve the solution. Increasing the accuracy of the
numerical method by increasing the number of steps does not lead to
improvements of the accuracy.

Steps | Error0)_P | ErrorF_P | Error0 I | ErrorF_I
1008 0.46 0.57 2.6E-2 2.6E-2
2016 0.48 0.50 2.6E-2 2.6E-2
4032 0.49 0.50 6.8E-3 6.8E-3
8064 0.49 0.50 5.5E-2 5.5E-2
16128 0.47 0.50 2.3E-4 2.3E-4

32256 0.50 0.50 5.3E-4 5.3E-5

Table 4
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Errors in the calculation of the sulphur di-oxide concentrations, i.e. errors
calculated by formula (3) applied for sulphur di-oxide, which are obtained when
only sulphur di-oxode “observations” are available. The application of data
assimilation leads to improved accuracy. Increasing the accuracy of the numerical
method by increasing the number of steps results in improvements of the accuracy
but not in such a regular way as in Table 1 and Table 2.

Steps | Error0)_P | ErrorF_P | Error0_I | ErrorF _I
1008 0.48 0.50 0.046 0.046
2016 0.47 0.50 0.046 0.046
4032 0.48 0.50 0.046 0.046
8064 0.46 0.50 0.019 0.019

16128 0.46 0.50 0.045 0.045

32256 0.47 0.50 0.018 0.018
Table §

Errors in the calculation of the ozone concentrations, i.e. errors calculated by
formula (3) applied for sulphur di-oxide, which are obtained when both ozone
and nitrogen di-oxide “observations” are available. The application of data
assimilation leads to improved accuracy (by a factor of approximately 10).
Increasing the accuracy of the numerical method by increasing the number of
steps does not lead to improvements of the accuracy.

5. Conclusions

The experiments, part of which were discussed in the previous section indicate
that the following conclusions can be drawn:

e There are no problems when observations from all chemical species involved
in the atmospheric chemical scheme are available. However, it is not realistic
to expect that this will be the case in real situations.

e If observations from only one primary (and not very active chemically)
pollutant (such as sulphur di-oxide) are available, then one could also achieve
good results.

e If observations from only one secondary and very active chemically pollutant
(such as ozone) are available, then the data assimilation algorithm is not
giving considerable improvements of the accuracy of the pollutant under
consideration.

o If one takes some group of pollutants, which react with each other, then
improvements of the results could be achieved. This has been demonstrated by
adding nitrogen di-oxide observations to the ozone observations (see the
results in Table 5).
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Discussion

Speaker Comment

Michael Kahnert | Is the perturbation you introduce realistic? In regard to the
chemical balance?

Leonor Tarrason | It makes sense that SO2 has less error because it is not
reactive.

Sam Erik | How are the observational error defined?
Walker
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6 Application of 2-dimensional variational data analysis in
MATCH - Michael Kahnert

Michael Kahnert
Swedish Meteorological and Hydrological Institute (SMHI)
Folkborgsv. 1, 601 76 NORRKOPING, Sweden

A two-dimensional variational data analysis (2dvar) algorithm has been
implemented into the Multiple-Scale Atmospheric Transport and Chemistry
Modelling System (MATCH). The algorithm is designed to analyse ground-based
chemical observations of gas and particle species. It is currently run in single-
variate mode. Numerical problems associated with the inversion of the
background error covariance matrix are alleviated by performing reduced
eigenvalue decomposition. Variational quality control is implemented to allow for
an automatised discarding of suspicious data.

The 2dvar algorithm has been validated against an older optimum interpolation
(OI) algorithm. It is applied to interpolate measurements from Swedish and
Norwegian background stations in order to determine the total (Swedish + long-
range transport) air concentrations of ozone, and concentrations of SOx, NOx, and
NHx in air and precipitation. Interpolated ozone concentrations are used as input
to the MATCH-Sweden model, which is operationally applied in the Swedish
National Environmental Monitoring Programme to map the Swedish contributions
to dry and wet deposition of SOx, NOx, and NHx. Air and precipitation
measurements of oxidised sulphur and of oxidised and reduced nitrogen are
further interpolated with the data analysis algorithm to determine the long-range
transport contribution to the total deposition rates. First tests have been performed
to analyse ozone measurements in conjunction with a background ozone field
computed with the MATCH-photochemistry model. It is planned for the future to
use MATCH-photochemistry computations as a background field also for
analysing SOx, NOx, and NHx.

In view of the possible use of remote sensing data in conjunction with a chemical
data analysis algorithm, the errors related to computing optical properties based
on MATCH results were assessed. To this end, the MATCH-photochemistry
model was used to compute secondary inorganic aerosol mass (SIA) and primary
particulate matter (PPM). Further, the MATCH-sea salt model was used to
compute sea salt mass. The validation period was 2002. From the computational
results the aerosol optical depth (AOD) and the backscattering coefficient (Bsca)
where computed. AOD results were compared with sun photometer measurements
from the AERONET station on Gotland, and B, results where compared to lidar
measurements from the EARLINET station in Hamburg. The AOD computations
underestimated the observations at all wavelengths, which can be attributed to the
missing organic and black carbon mass in the computations. The Bg results
showed a generally good agreement with the measurements, except in the
boundary layer, where the measurements often showed higher values, probably
due to local pollution sources, which were not resolved by the model. The results
of this study indicate that remote sensing observations could provide valuable
additional data for chemical data analysis. However, to use these data in a
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meaningful way in the MATCH-2dvar algorithm, it would be necessary to modify
the system such that it could be run in multi-variate mode, and one would have to
perform a comprehensive study of the model error statistics to produce a more
accurate estimate of the background error covariance matrix.

Discussion

Speaker

Comment

Michael Kahnert

What is the advantage of 2D var over optimal interpolation if
they are basically the same?

How to discriminate between local effects and regional
features in the observations?

How to model background error covariances? Answer: e.g.
ensemble-method

We analyse the long-range transport part instead of the total
concentrations of air pollutants, since LRT concentrations are
more regionally representative. Should one run the model with
local emissions and subtract the result from the total
concentrations, or is it better to run the model without local
concentrations and interpret the result as the LRT part?

Michael Kahnert

How large are the errors in modelling optical properties of
aerosols based on CTM results in view of assimilating remote
sensing data?

General

A conclusion was that the main error source in the current
model version is that organic carbon and soot are not
accounted for in the model. The uncertainties related to
modelling aerosol optical depth and backscattering coefficient
are - at least in comparison - small.

Jgrgen Brandt

It is better to run the model with all emissions and again
without the local emissions to separate the total, LRT, and
local contributions.

Michael Kahnert

It will be difficult to run our Europe-model with an equally
high grid resolution as our Sweden-model

Jprgen Brandt

One should add the capability of running with nested
resolution to the model
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7 Implementation and performance experiences with chemical
4Dvar assimilation — Hendrik Elbern

H. Elbern and A. Strunk
Rhenish Institute for Environmental Research at the University of Cologne (RIU)
and
Helmbholtz virt. Inst. for Inverse Modelling of Atmospheric Chemical
Composition IMACCO)

The slides presented by Henrik Elbern are included in the appendix to this report.
The contents of the talk included the following topics and conclusions.

1. General problem appraisal
2. BLUE:s as a partial answer
a. Chemical 4Dvar
b. Operation parameter choice
c. 4D-variational implementation issues
d. Enhanced spatial resolution
3. Summary
a. Chemical weather forecasts are a multiple scale problem
b. Chemical data assimilation rests on sparse and heterogeneous
observations, with variable error characteristics (incl. error of
representativity)
c. Initial value optimisation is insufficient, as at least emission rates
are less known and more important
d. The ability for inversion is therefore required to optimize emission
rates
e. Much is to be done for optimising multivariate covariance matrices
4. Conclusion
a. Fine grid resolution is required for air quality modelling, however
b. The finer the grid the more critical is meteorological modelling
c. Covariance matrices and performance statistics are essential;
operational application are essential
d. Tangent linear approximations and Gaussian error assumptions
often violated
e. Sequential assimilation algorithms appear to be less suited for
treatment of temporal error correlations
f. Ensemble ideas appear useful in one or another way
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Speaker

Comment

Zahari Zlatev

How do you deal with the increasing resolution? With
gradients, meteorology and emissions? How do you deal with
the linear tangent approximations when they are not valid.

Hendrik Elbern

Increasing resolution is firstly a computational problem. As
regards the degrees of freedom additionally incurred , the
radius of influence is the proper device to expand the
information gained by the measurement over the affected
model domain. On the time scale considered in air quality,
meteorology must be firstly optimized by meteorological data
assimilation, with little benefits to be expected from chemistry
observations. Emissions are taken as first guess, and then
subject to inversion based optimisation. The tangent linear
approximation is only valid if the first guess model run is in
the proper chemical scenario. For example, the model run
should be in a VOC a NOx restricted domain from the outset.

Arnold Heemink

What is your experience with using the discretized adjoint of
the continuous forward model in stead of using the adjoint of
the discrete forward model?

Hendrik Elbern

I think I can leave it to the mathematicians to work out the
technique to be adopted because I consider it to give less of an
error than other sources in real case applications. Our
experience is based on a box model basis with this issue and
the differences found were not significant.

Amold Heemink

How many model computations for a gradient computation?

Hendrik Elbern

Requires 3 computations.

Leonor Tarrason

Can you break the emissions down to sectors for assimilation?

Hendrik Elbern

The emissions are broken down in terms of each grid point,
(also aloft to account for effective stack heights), and the 19
emitted species. The shape of the diurnal profile of the
temporal evolution is taken from the emission model.

Yvan Orsolini

Stratospheric assimilation. Do you have to worry about
chemical balance.

Hendrik Elbern | No. This is exactly what 4D var does!

Michael Kahnert | How would you include deposition in this. Will assimilation
improve deposition velocities?

Hendrik Elbern | This is a possibility and is planned but it is not implemented as

yet

NILU OR 43/2006




44

Ensemble methods

8 An introduction to Sequential Importance Resampling — Sam
Erik Walker

Sam Erik Walker
Norwegian Institute for Air Research (NILU)
PO BOX 100, Kjeller, Norway

1 Background

Assessing air quality can potentially be improved by combining models and
observations using different approaches. For regional scale air quality
assessments, this means primarily to combine a given regional scale air pollution
model with available air quality observations using different methods of data
assimilation.

The SIR (Sequential Importance Re-sampling) method (Van Leeuwen, 2003) is a
relatively new data assimilation method, based on a completely general Bayesian
statistical framework (Box and Tiao, 1992; Berger, 1985). The method makes no
assumptions of linearity in the model equations, nor that the model or observation
errors should be Gaussian. This is in contrast with most other well-known
methods of data assimilation, such as the optimal interpolation (OI) method
(Gandin, 1963), the 3D-Var or 4D-Var methods (Lorenc, 1986); Lewis and
Derber, 1985), or different variants of the Kalman filter (Kalman, 1960), which
assumes that the model evolution is linear and that the involved errors are
Gaussian. The SIR-method could therefore be interesting to apply in connection
with regional scale air pollution models since such models will generally be non-
linear with non-Gaussian errors when one includes photochemistry and/or
aerosol-chemistry operators.

The method is also known as a Sequential Monte Carlo (SMC) method, Markov
Chain Monte Carlo (MCMC) method, or Particle Filter (PF). The recent book by
(Doucet et al., 2001) provides a good overview and insight into this particular
class of statistically based data assimilation methods. Another good source of
information is provided by the web site: http://www-
sigproc.eng.cam.ac.uk/smc/index.html.

The SIR-method, as well as other methods in this class, has already been applied
with good results in different scientific fields such as control theory, tracking,
perception etc, where non-linearity in the model plays a role. More recently the
SIR-method has been applied in oceanography (Van Leeuwen, 2003), and in
ecosystem population modelling (Losa et al., 2005). No applications, however,
seem yet to exist for regional scale air pollution modelling.
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2 Bayesian statistics

As mentioned the SIR-method is based on Bayesian statistics, which in turn is
based on Bayes’ theorem. For a model where the model state is defined as a
vector X containing generally n components, and observations are defined as a
vector y containing generally m components, Bayes’ theorem can (in our context)
be written:

P(x'[x",y°) = k-m(x'|x") - L(x'[y°) 2.1)

where x' denotes the forecasted model state (before observations have been used),
and x' denotes the true model state, which we want to determine as accurately as
possible, based on the model forecasted state x' and the set of observations y°. For
a regional scale model the model state could e.g., be defined as the one-
dimensional vector of all 3D grid cell concentrations, while the observation vector
can be defined as the one-dimensional vector of all (m) (simultaneous) regional
air quality measurements.

According to Eq. (2.1) the posterior density P of the true state X' given both the
forecasted state x' and observations y° can be calculated as the product of the prior
density 7 and the likelihood function L. The prior density @ summarises (in a
probabilistic sense) our Prior beliefs about the true model state x' given the
forecasted model state x', but before any observations y° are used, while the
posterior density P summarises our beliefs about the true model state x' after
observations are used. The link between them is the likelihood function L. This
function is defined by L(x|y) = p(y[x) where p is the probability density of the
observations y given that the true model state is x. A likelihood function L could
for example be defined by assuming that the observation errors are multi-
dimensional Gaussian:

Lx'ly*) = 7 eXP(-%(Y"- HE)'R ¢ Hx)) @2

1
(2n)™ R}

In Eq. (2.2) R represents the observations error covariance matrix (usually
diagonal with observation error variances along the diagonal, while H represents
an observation operator linking model states with expected observations, i.e.,
mapping any model state vector x in the n-dimensional model space into a vector
of expected observations H(x) in the m-dimensional observation space. The
values of the m-vector H(x) can be viewed as a set of expected observations,
given that x represents the true model state. In the likelihood function L, y is kept
constant equal to the actual set of observations y° while x is allowed to vary. For
example by using the Gaussian function for L in Eq. (2.2) the most likely true
model states are those model states x for which H(x) is close to y°. This is then
weighted against the prior density & in order to form the posterior density P. The
value k in Eq. (2.2) is simply a constant so that P becomes a proper density, i.e.,
that P integrates to 1 over the model space.

In the SIR-method the user has complete freedom in specifying the prior density &

and the likelihood function L. This is in contrast to other data assimilation method
like Optimal Interpolation (OI), 3D-Var or 4D-Var, or Kalman filters, which can
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also be viewed as Bayesian statistical based methods, but where these functions
are always assumed to be Gaussian. The freedom to be able to specify them
arbitrarily is generally an important advantage of the SIR-method over the other
methods.

3 The SIR-method ,

The SIR-method operates with an ensemble of model states {x(‘), i=1,...,N},
where N denotes the number of ensemble members (the ensemble size). The
number of ensemble members is specified by the user and kept constant in the
method for all time steps. This is similar to other ensemble based data assimilation
methods like the ensemble Kalman filter method (EnKF) (Evensen, 1994; 2003;
2004), and the reduced rank Kalman filter methods (Verlaan and Heemink, 1997;
Heemink et al., 2001; Segers, 2002).

In the SIR-method all ensemble members are considered to be equally likely, 1.e.,
they will all have the same (discrete) probability 1/N. It is the positions x of the
ensemble members, i.e., their spatial densities, in the model state space which
forms the basis for the approximation of the involved Bayesian prior and posterior
probability density functions (PDFs). Based on available observations, a re-
sampling step is included in the method, where each ensemble member will either
be kept and possibly multiplied (made into several identical or almost identical
copies) or removed from the ensemble, based on the calculated likelihood-
function values. The method is illustrated in the Figs. 1-3 below.

Figure 1: A Gaussian prior PDF (blue curve) represented by a discrete
approximation in the form of an ensemble of N = 9 red points with equal
probability 1/9.
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Figure 2: A non-Gaussian posterior PDF (blue curve) obtained by multiplying the
prior PDF shown in Fig. 1 with a likelihood function. The same ensemble is used,
but now the ensemble members have different probabilities (represented by the
new sizes of the red points)

In the figures the red points represents a set of ensemble members, which forms a
discrete approximation of the probability densities plotted. Fig. 1 shows a
(Gaussian) prior PDF, which is updated by a likelihood function to form the
posterior PDF as shown in Fig. 2. The size of the red points represents the
probabilities of the different ensemble members before and after multiplying with
the likelihood function. A re-sampling step is then performed in order to form a
new ensemble where each ensemble member again has equal weighting or
(discrete) probability 1/N. This is illustrated in Fig. 3 (below) where the larger
points are replaced with 2 or more new points, while the smallest points have been
removed from the ensemble. This ensures that the posterior density is again well
represented with a new ensemble based on equal weighting.

Figure 3: After re-sampling the non-Gaussian posterior PDF (blue curve) is
represented by a new ensemble of red points again with equal probabilities (1/9).

We will now turn to a more formal description of the method.
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Algorithmic steps of the SIR-method
Assume that we have en ensemble of N finally analysed or assimilated model
states from a previous time step k-1:

a,(1) a,(2) a, (N)
<, ., x ™) 3.1)

where the ensemble members have the same posterior (discrete) probability P; =
1/N for i = 1,...,N. For each ensemble member, a new forecasted model state for
the next time step k can be produced, by running the model to the next time step
k:

x® =M, (x*,0,0®) for i=1,..N (32)
In Eq. (3.2) O, represents a set of additional model parameters, and ny represents a
vector of stochastic variables describing model errors or noise. The parameter
vector 0 represents parameters of the model not included in the state vector X.
The model noise vector ny is important in the SIR-method, as it will be used to
generate a natural spread of the model calculated (forecasted) ensemble members
at time step k. The noise vector can be viewed as representing natural dynamical
model errors, which will be added as random forcing in the model equations.

Based on the new forecasted ensemble at time step k, an approximate minimum
variance estimate of the true model state x; at time step k before using available
observations is then:

N

=f _ f, @)

Xy = ZWiXk (3.3)
i=1

where w; = 1/N for i = 1,...,N denotes the ensemble weights. Note that Eq. (3.3)
with the weighting chosen is an approximation of the expectance value associated
with the new prior PDF at time step k, since each ensemble member has the same
prior probability wj = 1/N for i = 1,...,N inherited from the same equal (1/N)
probabilities for the ensemble members at the previous time step k — 1.

An estimate of the uncertainty of the estimated true model state can further be
calculated using the following expression for the second-order moments
(variance-covariance matrix) of the prior PDF based on the same ensemble:

r
Pe,k -

RN £ <f £6) =f\%
N-15 (2 %) (% 0- %) (3.4)

Using available observations y, at time step k, updated weights W, (probabilities)
will be calculated using a likelihood function L as follows:

i 1 a, (i 1 " o 0
wp® = e wi® = E-L(Xi(ﬂ yo) for i=1,..N (3.5)
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where the superscript * denotes assimilated values (after observations have been
used), and where L denotes the likelihood function of x given the observations y.
As mentioned earlier, in Bayesian statistics the likelihood function is generally
defined by the conditional probability density function p(yjx) of observations y
given that the true model state is x, and then reversing the arguments, making L a
function of x given y, i.e., L(x|y) = p(y|x).

A likelihood function L could for example be defined by assuming that the
observations are multidimensional Gaussian given the model state x:

i) |4, 0 1 1 o i b o i
L0y = ——r—rexp(-o (v~ H&:*)' Ry~ HK®))
(2n)" [R[" 7 2

(3.6)

As described earlier, R here represents the observations error variance-covariance
matrix, while H represents an observation operator mapping conceived true model
states x into expected observations H(x) in the observation space.

The next step of the SIR-method is then to perform a re-sampling of the ensemble
using the new assimilated probabilities or weights w®® . This is illustrated in Fig.
4 (below).

The re-sampling is done by sampling a new set of N ensemble members, with
replacement, using the old ensemble with the probability distribution given by the
assimilated probabilitiesw®® defined by Eq. (3.5). Old ensemble members that
correspond well with the observations (high weights) will thus be kept and
possibly multiplied (several copies might be made), while those corresponding

poorly with the observations (low weights) might be removed. After the re-
sampling step, all ensemble members will again have equal weights or

probabilities w¥® = 1/N.

FORECAST STEP ANALYSIS STEP

Figure 4: Re-sampling of ensemble members in the SIR-method.
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Based on the new assimilated ensemble at time step k, an approximate minimum
variance estimate of the true model state x; at time step k after using available
observations can again be written:

N
X => wxt® G.7)
i=1

where w; = 1/N for i = 1,....N. An estimate of the uncertainty of this estimate is
again provided by the following formula:

P = BRI (x‘*’“’—xa)(xa’ﬁ)—XEl )T (3.8)
ek N B 1 = k k k k :

In the observation space, an approximate minimum variance estimate of the true
observations can be calculated using the following expression:

N
C = iZH(Xi’ ) (3.9)
NS

with associated uncertainty (variance-covariance matrix) calculated by:

1 & . . o
ok = N1 (H&:®) - € ) (Hx®) - C}) (3.10)

i=1

Egs. (3.2) - (3.10) represents the algorithmic steps of the SIR-method from one
time step to the next, and can be repeated for all involved time periods k =1,...,K.

A challenge in the method is to create a good initial ensemble {x}®, ..., xy ™} at

time step k = 0. This is usually done by starting with a simple initial (e.g., global
background) model state, and then spinning up the model using some iterations
with Eq. (3.2) applying “sensible” perturbations of the involved model state xy
and parameters 0, using the random noise vector 1.

This completes the description of the algorithmic steps of the SIR-method.

Discussion

Note from the above description that the SIR-method handles each ensemble
member separately except for the re-sampling step (which is of low complexity).
The method is therefore highly suited for parallel processing. It is also
conceptually very easy to implement since it avoids the use of any minimization
procedure or matrix inversion. For large (regional scale) models the
computational time should be roughly proportional to N runs of the model on a
single processor machine, but if several processors are available the model
forecasts could be run in parallel.

Due to the simple update equations the method can in principle handle any kind of
non-linearities in the model M itself or in the observation operator H. A regional
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scale model will typically be non-linear due to the inclusion of photochemistry
and/or aerosol chemistry in the model equations. The observation operator H
could be non-linear if e.g., line- or point source sub-grid models are included in
this operator in order to compare with observations.

A nice feature of the method is that it can also easily provide estimates of
uncertainties in the model state variables, e.g., in the calculated regional scale
model concentrations. It is also possible to calculate probabilities of exceedence
of limit values.

The ensemble size N needed in practical applications with the method generally
depends on the regional scale model itself, the number of model state variables,
and the number and placement of observations. It is difficult to specify in advance
exactly how large N must be. A trial and error procedure must usually be
exercised in order to find the optimal number of ensemble members. Probably it
must be at least in the interval 25-100. If N is chosen too small, the method may
suffer from convergence problems in high dimensions since it depends on a
Monte Carlo random draw approach. It is probably most easy to use in situations
where the posterior PDF has a single maximum.

A smoother version of the method also exists — called Guided SIR — that uses a
range of observations over a specific time window to calculate the likelihood
function (Van Leeuwen, 2003). This may enhance the applicability of the method
for regional scale models since the ensemble size can then probably be made
smaller.

4 Application on a simple 1D atmospheric transport model with
photochemistry

The SIR-method has recently been tested on a one-dimensional atmospheric
advection-diffusion model with photochemistry (Walker et al., 2005). Simulated
experiments, defining a set of true input parameters, and resulting model
concentration, were performed to see if the method could handle systematic (bias)
and unsystematic (random) errors in the input data, and still be able to produce
assimilated values close to the true state. The effects on the performance of using
different observations likelihood functions, such as Gaussian or Lorentz
(Student’s t) distributions were also tested.

The 1D model tested was:

de &1( o
ot ox  ox\ rox

=-u k, —) +R+q (4.1

where ¢ is a space (x) and time (t) varying concentration vector (ug/m) containing
the species NO,, NO and O3, u is the wind speed and ki a turbulent eddy
diffusivity coefficient. R denotes the non-linear fast reaction NO,-NO-O3
photochemistry operator, and q represents emissions of the same three species.
Boundary and initial conditions were given by ¢(x,t) = ¢g for x = 0 and x = nAx,
and for t = 0, where cg denotes a set of background concentrations of the three
species. The physical domain [0, nAx] was divided into n grid cells each with
length Ax. For the tests performed here n = 50 and Ax = 1000 m. Eq. (4.1) was
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then discretized and solved on an hourly basis using hourly input data of u, ks, q
and cg, and separate operators for advection, diffusion and photochemistry (Bott,
1989; Slgrdal et al, 2003).

Experimental set-up

The model was run for 2 weeks (336 hours). Realistic hourly values of wind speed
(u) and temperature difference (ATjom2m) Were taken from a meteorological
station close to Oslo, Norway. The station is placed in a relatively flat and
homogenous area (zp = 0.1 m). A meteorological pre-processor was used to
calculate horizontal turbulence intensities vs, and diffusion coefficients k, as
0.1-Ax oy (Slgrdal et al., 2003). Expected values of emissions (q) and background
concentrations (cg) were set equal to 10° ] 9-10° and 0 pg/m, and 10, 0 and 50
pg/m respectively for each of the three species, constant for all hours.

The model state vector x was defined as the concentration grid vector ¢. In order
to create the initial ensemble and to update the ensemble from one time step to the
next, actual input parameters u, kg, q and cg to the model was drawn randomly
using lognormal distributions. The hourly observed values were used as mean
values in these distributions, and the standard deviations were assumed to be 40%
of these values. The values were set equal for all grid cells.

True values ()" of the above parameters were defined using the expectance values
and an assumed bias factor f,= 1.2 (20% bias) as follows:

u' =E()-f,, k! =E(k,)-f, and q'=E(q)/f, .

True background values were always assumed to be unbiased i.e. ¢g' = E(ep).
Pseudo-observations of NO; were assumed to be Gaussian or Lorentz-distributed
around the true model concentrations using a standard deviation equal to 5% of
the true value for each hour. We assumed no observations of NO or Os.

Results

The results are shown in Figs. 5 and 6 (below) for ensemble sizes N =25 and N =
100 respectively. In both figures hourly concentrations of NO, from grid cell
number 27 (of the 50 cells) are plotted. Only the tests performed with the Lorentz
(Student’s t) distribution are shown here. It was found that this gave somewhat
more stable and consistent improvements than using Gaussian distributions.
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Ensemble size N = 25 and observations in grid cell 10
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Conc. of NO2 in grid cell 27 (ug/m)
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Figure 5: Results of the SIR-method using an ensemble size N = 25 and
observations in grid cell 10 only. Concentration values of NO, from grid cell 27
(of 50) are plotted. Unit: ug/m.

Ensemble size N = 100 and obs. in grid cells 10 and 25
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Figure 6: Results of the SIR-method using an ensemble size N = 100 and
observations in grid cell 10 and 25. Concentration values of NO: from grid cell 27
(of 50) are plotted. Unit: ug/m.

From the figures we see that the assimilated concentrations (red curve) lie
consistently closer to the true concentrations (green curve) than the unassimilated
concentrations (blue curve), although the improvement varies with time. This
shows that the SIR-method works reasonably well on our test problem. The
yellow and orange curves in the figure represents respectively the 2.5 and 97.5
percentiles of the assimilated (posterior) concentration distributions based on the
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ensemble members. Increasing the ensemble size N from 25 to 100 and the
number of observations from 1 (grid cell 10) to 2 (grid cells 10 and 25) improves
the results. Increasing N further does not lead to any great improvements, since
the model error statistics seems to be well represented with 100 ensemble
members. Increasing the number of observations leads to some improvements in
the results, but moderately after two observations have been introduced. This is
probably due to the 1D structure of the model, and the fact that the emissions are
distributed homogeneously in all grid cells. Most of the information about the true
state seems to be contained in a few observations of NO».

In Fig. 7, the probability of exceeding 100 pg/m (as an example), and in Fig. 8,
the number of unique ensemble members is shown as a function of time (hours)
for the run with N = 25 and observations of NO; in grid cell 10. As can be seen
from the figure we avoided ensemble collapse (i.e., very few unique members in
the ensemble) during the run with N = 25. This was also true for the run with N =
100.

Ensemble size N = 25 and observations in grid cell 10

200 1 1 1 L T T T L T T T T L 828
PO SN O O AN 1

Conc. of NO2 in grid cell
Probability of conc. > 100

1 25 49 73 97 121 145 169 193 217 241 265 289 313
Hours

Figure 7: Same plot as in Fig. 1, but in addition the blue curve plotted at the
bottom shows the calculated probability that the true concentration exceeds 100

ug/m.
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Ensemble size N = 25 and observations in grid cell 10
25 T T T H T T T
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g I I 1 I I | I I
=2 I [} | | I |
0 . : ! : : : : : : : ' ; :
1 25 49 73 97 121 145 169 193 217 241 265 289 313
Hours

Figure 8: Number of unique ensemble members.

Thus, to summarize, the SIR-method seems to work well on the 1D advection-
diffusion photochemistry model tested here, reducing both model bias and
uncertainties if observations of NO, are available. Likelihood functions based on
Lorentz (Student’s t) distribution seems to generally give the best results.

5 Concluding remarks
To summarize our presentation of the SIR-method, the method has the following
properties on the plus side:

e [t is easy to implement, no minimization procedure or matrix inversion
needed
It is flexible to model parameter or physics stochastic errors
It does not intrude on or change the model physics. Only changes the
probabilities of different model states
It is especially suited for non-linear models with non-Gaussian PDFs
The discrete PDFs will converge towards true PDFs if the ensemble size
goes to infinity
It is easy parallelizable if more processors are available
It is easy to calculate assimilated model uncertainties even when there are
no observations

On the minus side:

e It may need a large ensemble size N since it is a Monte-Carlo method in
high dimensions

e It may be difficult to create a good initial ensemble representing the prior
PDF

e It may be difficult to track the true model state if the PDFs involved have
many local maxima (multi-modal distribution)
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It remains to be seen though, if the issues of non-linearity and non-Gaussian prior
and posterior PDFs, are sufficient to warrant the use of this method for regional
scale air pollution models, over other more traditional methods of data
assimilation, like optimal interpolation, the variational methods or Kalman filter
methods.
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Discussion

Speaker Comment

Sam Erik Is this methodology to complex to apply in reality?

Walker

Hendrik Elbern | This approach could identify and solve some of the difficult
problems
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9 Data assimilation in atmospheric chemistry models using
ensemble methods — Arnold Heemink

Arnold Heemink
Delft University of Technology

The slides presented by Arnold Heemink are included in the appendix to this
report. The contents of the talk included the following major topics and

conclusions.

1. Introduction and motivation for the use of data assimilation and ensemble
methods including real life applications of data assimilation

2. A description of ensemble Kalman filter algorithms for large scale systems
including

a.

oA o

(=

Linear dynamics F(k) and constant parameters: State estimation
using Kalman filtering

Ensemble Kalman filters (EnKF)

Reduced Rank square root filtering (RRSQRT)

Reduced-rank Kalman filters (RRKF)

Complementary Orthogonal sub space Filter For Efficient
Ensembles (COFFEE)

A presentation of methods for model reduced variational data assimilation

4, Conclusions

a.

b.

Discussion

Kalman filtering of many large scale non linear numerical models
is now feasible using Ensemble Kalman filtering

For the estimation of constant parameters the variational methods
are superior

The adjoint implementation may be avoided using model reduction

Speaker

Comment

Zahari Zlatev

THe production of adjoint codes is not so large a problem now
days as converters are available

Amold Heemink | This is true if you are programming now, you can write the

code so that it is suitable for the creation of adjoint models.
However when you have a code that 20 PhD students have
contributed to then this is not so easy

Amold Heemink | Ensemble Kalman filter probability distributions are always

positive definite. It is notable that the ensemble filter type is
more robust than the reduced rank filters.

Arnold Heemink | Adjoint methods are better than ensemble methods when

assimilating non-stochastic parameters

Arnold Heemink | Ensemble kalman filter is difficult to beat
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10 NMR project discussion

The final part of the meeting was used to plan further activity of the project. It
was decided that in 2006 a Nordic assimilation dataset should be compiled that
will contain the relevant observational data for all the participating institutes
including ground based, satellite and other remote sensed observations. This will
lay the foundations for any further intercomparative assimilation studies and will
allow the participating groups to cooperate closely on a single project. It will also
facilitate the development of knowledge in regard to the requirements of good
observational data (for assimilation purposes) including the need for an
understanding of information related to uncertainty, spatial and temporal
representativeness and data capacity requirements. Compilation of the dataset will
also aid in identifying gaps in the available data and will allow each institute to
gain from the others expertise in their own particular field.
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Appendix A

Slides from the presentations by Hendrik Elbern
and Aarnold Heemink
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Data asshnllation in repioar] scale almosphics be et mdeal mnde by
= 15 November 2008

e

Implementation and Performance Experiences
with 4D-var Chemical Data Assimilation

H. Elbern, A Strunk
Rhenish Institute for Environmental Research
at the University of Cologne (RIU)
and

Helmholtz vivt: Inyt. for Inverse Moidulling of Atmospheric
Chemical Compasition (INACCO)
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Data assimllatian In regional scale atmospher ic chemical models
= 15. November 2008

Example: chemical complexity:
The EURAD Secondary ORGanic Aerosol Model
(SORGAM)
as part of the MADE Aerosol Chemistry
(i

&)

ic chemleal wadels

in regional scale
L Smvembar I063

ata
P

&

Digression to stratospheric chem. DA (l)
Results: Cost-functions for Oct. 21 — Oct. 26

cost function for dayz 294-299
[T e e e
b

1 —

Doy 294 (143384 obamwafions)

=

Doy 295 {146236 cbsersations)
Doy 286 (79503 cbservotions}
Day 297 {1 30447 obaervoRans)

Day 298 {$9B57 obsarvations)

w

cant/nb of ohservetions
5

Day 299 {1229ES chamwutions)

e T i e

2 4 & B 10 12 14 16
nb of Heration \

“y2- optimum

1ata assimllation in veglonal scale atninsphenic chemical adels
15. November 2005

Y msccol _

Digression to stratospheric chem. DA (II)
Results for HNO, at 28 hPa (~24 km), Nov. 4, 2003
12:00 UTC

Control Run {no I

b AL Seale ShsY

15, Nuvamber 1005

atrmbe a0 maibets E

Model error characteristics
(non-random walk model errors)

+ model formulation: deficiencies in
- completeness w.r.t. VOC, aerosols
— boundary and surface layer resolution
— horizontal resolution
= surface boundary conditions: uncertainties in
— emissions: anthrop., bio {incl, wildfires); strength, injection heights
— deposition (dry, wet), sedimentation

* meteo: synoptics: errors in

13, Nnvember 2008

Issues in terms of air quality
data assimilation design not addressed by BLUEs

 chemical scenario mismatches:
— tangent linear approximations poor

— 2nd order statistics insufficient (covariances, Gaussian
error characteristics)

» phase/feature mismaiches
+ on/off processes

* temporal error characteristics: bias+temporal
correlation + white noise

MIPAS Observations | [ Analysis | — phasc/amplitude
2
— PBL,
— ran
Lxata avaimibabion in regional scale atmosphier ic chemical nadels Dala assimilation in regional scale i chemical models

15, November 2005

2. BLUEsS as a partial answer
* chemical 4Dvar

+ addressing:
— operation parameter choice
—~ 4D-variational implementation issues
— enhanced spatial resolution
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15, November 2003

Hypothesis:
initial state and emission rates are least known

63
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The 4D variational method:
Key development: construction of the adjoint code

forward model ——— backward model

(forward differential equation) (backsvard differential equation)

—— =5

algorithm : adjoint algorithm
(solver) (adjoint solver)
i ]

| code adjoint code

Adjoin g
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| How to make the |
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I (il dcals i
13 Ny emnber 2008

thiinbeal iadehy

Computulional complexity cslimatc of Lhe variational algorithm

Nx*Ny*Nz spatial dimensions O(10%-10%)
N. # constituents O(100)
N # time steps of assimilation window O(10-100)
N, # operators O(10)
const intermediate results O(10%)
SOMSHAY | vowiterion— ot
tolal storage const*N,*N, *N_*N
1 NN, 3
0(102-101)
operatorwise NANJN N NG
1 level 2 N, 4
O(108-10%)
dynamic NAN*N,*N Ny
stepwise 3 O(10%-10%) 5
2 levels

Lkata assiolatlon in reglonal scale stmaspheric chemieal models
12 November 05

2 level forward and backward inlegralion scheme
time direction

Ty veghmad seale y
15 Nmiemher 2008

e

storage sequence: level 2, operator split
{each time step)

Data nssimllatlon i 1eglonul seale atmaspherlc chemical madels
15. Navemher 2008

Incremental Formulation
* Analysis State: ¥ = + 6z"
u = u’ + ju"

« New ,,State* Variables: v = B-Vise

w=K"%u
« Cost Function:
1 1 N
J(v,w) = EuTv + EwTu) + % [Héx; — d,|" R~ [Hox; — dj]
* Gradient:

Vod =Vydiv + Vydo =v+BT2v;,/0
Vawd = Vwder + Vapdo = w + K205,

Dabs assimnilstion in regioual scale atmosphesic chemical mlels
13, Noxemher 2008

Background Error Covariance Matrix B

* must be provided as an operator (size is of order 10'%)

*+ we would like to have an operator which can easily be factorised by
BI/lBT/l

* g choice under testing:

— generalized diffusion equation serves for a valid operator generating
a positive definite covariance operator

— diffusion equation is self adjoint
—B"2and B™ by applying the diffusion operator half the diffusion
time
B =ICX
Cc =cY2cr2
/2
CY2 = ALYL,/
2 T/27 T/
CT/2 — LIPLT/2A

DBl assimilition in regivaal scale atmospheric chemical madely
15, Novemher 2005

)

Calculation Speed — Parallel Implementation

= three complete forward runs + one single adjoint run

= an adjoint piece of code needs about twice the time

— 20 iterations need (3 + 2) 20 = 100 times of a forward run
— parallel implementation needed

« grid partitioning: ,,domain decomposition method*

" .
. s
(] i 2
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Data exchange for parallel adjoint transport
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processor P

processor P,

@ Grid poinis contributing to the calculation of Lhe adjoint of grid point at x,

>

@® Grid poinls contribuling Lo the calculation of the caslerly flux into x, (4h order pol.}

W

reatment of the inverse problem to infer emission rates
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Optimisation of emission rates
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Uats assimilatian in eegional scale atmospheric chemical madeis
14, Svyembipy 2004
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Some BERLIOZ examples of NOx assimilation
(20.>21.07.1998)
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Emission source estimates by inverse modelling
Optimised emission factors for Nest 3
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Uath assi In reglonal seale pheric ehemical models
19, November 2063

-

GOME ozone profile assimilation BERLIOZ (20.7.1998)

Data: Neuronal Network retrieval {Miller et al., 2003)
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Summary

» chemical weather forecasts are a multiple scale
problem
chemical data assimilation rests on sparse and
heterogeneous observations, with variable error
characteristics (incl. error of representativity)
initial value optimisation is insufficient, as at least
emission rates are less known and more important
the ability for inversion is therefore required to
optimize emission rates
 much is to be done for optimising multivariate
covariance matrices

Dt apslanibatiom in reiionl vk atunpharic chenion wodily
15, s conbes 2004

Preliminary conclusions

« fine grid resolution is required for air quality modelling,
however

» the finer the grid the more critical is meteorological
modelling

* covariance matrices and performance statistics are essential
-> operational application are essential

* tangent linear approximations and Gaussian error
assumptions often violated

* sequential assimilation algorithms appear to be less suited
for treatment of temporal error correlations

» ensemble ideas appear useful in one or another way
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DATA ASSIMILATION IN
ATMOSPHERIC CHEMISTRY MODELS
USING ENSEMBLE METHODS

Arnold Heemink
Delft University of Technology

Joint work with Martin Verlaan, Remus Hanea,
Alina Barbu and Peter Vermeulen

Some real life applications of data assimilation

Grid of Ozone prediction model
Dbisarvaions in Europs
t

Some real life applications of data assimilation

Model result with data assimilation

Data assimilation using Kalman filtering
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Overview

Inlraduction and molivahon: Some real lile
apphcations ol dala assirmialion

Ensemble Kalman filler algonthims tor large scale

syslems

Model reduceo vanational gala assimilation

Some real life applications of data assimilation

Modet result without data assimilation

Some real life applications of data assimilation
Ozone concentration in validation station
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Some real life applications of data assimilation Some real life applications of data assimilation

{a) Motsa facior lor emissions of NOx (b) Noise factor for emissions of VOC
8 PORRE—

MHoiza laciar
Newser tncans

Formulation of the weak constraint data
State space model assimilation problem

The (non linear) physics: ILis desired to combine the dala with the stochaslic
model in order lo obtain an oplimal eslimate of the

109144
slale and parameters of the syslem

where X is lhe slate, p is vector of uncertain parameters, f
represents lhe (numerical) model, G is a noise inpul We define lhe crilerion (MAP estimale):
matrix and W is zero mean syslem noise wilh covanance Q

The measuremenlts:

|4, =
"

where M 1s the measurement malrix and V 1s zero mean
! measuremenl noise wilh covanance R

Linear dynamics F(k) and constant !
ﬁaramete_rs: State estimation using Ensemble Kalman filter (EnKF)
alman filtering

A recursive algorithm for k=1,2, . 1o determine To represent the probability density of the slate
esltimate N ensemble members are chosen

randomly:

Oplimal eslimale of the slate at time k using
measurements up lo and including k-1

Covariance matrix of lhe eslimalion error

Optimal eslimale of the state al lime k using
measuremenls up to and including k

Covariance matrix of the estimation error

NILU OR 43/2006
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A model reduction approach to data
assimilation

nsider the g dimensional sub space

b model onlo Mis sub space

L Ve now have a g nmensionai, &xphoil (appraxnmale)
ol eI descaplion meluding ils adionti
| The sub space can be delermuned by compuing lhe
| EOF (Empinical Orthoganal Funchions) of an ensemble

||n| modei sunalalons

|

Test model: Ground water flow
(Diffusion equation)

EOF - patterns

L

121142005 |
—

Data assimilation using Kalman filtering
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A model reduction approach to data
assimilation

Generale an ensembie of N maael sSimaianonsg
Delermuine (he g dominani EOF's: sub spac

Project ongal model anto B (IS requires
adaitional madel sunidanons) The adjomlis now
avalable 100

Perform he aplimizalion n educea $pace

Repeat the pgrocess rom Ihe slarl il necessary

Model Results — snapshots water level

Minimizing an objective function
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Minimizing an objective function

Results - 42 parameters

=l

121412005

Conclusions

Kalman filenng of many iarge scale oon inear
rumencal models (8 Now leasinle using
Ensembie Kaiman fillenng

For the estimalion oF conslant paramelers he
vananonal methods are supenor

The adiomt implementanon may He avoides

using madaei reducion

NILU OR 43/2006
Data assimilation using Kalman filtering
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