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Preface

This workshop is part of a Nordic Council of Ministers, Ocean and Air Group
(NMR/HLG) funded project which supports the development and communication
of scientific research between Nordic countries on the topic of 'data assimilation
in regional scale atmospheric chemistry models'. The four institutes involved,
NILU (Norway), met.no (Norway), DMU @enmarþ and SMHI (Sweden), all
have active programmes in data assimilation. The intention of this project and
workshop is to bring together these institutes to share knowledge and experience
within a Nordic context and to further support development in this research area.

In total 21 people attended the workshop, including invited experts in data
assimilation from Europe. The workshop showed itself to be successful, being
both informative and helpful to the participants. This report consolidates the
presentations and discussions that took place during the workshop.
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Data assimilation in regional scale atmospheric
chemical models

NMR Workshop at NILU, Kjeller, Norway, L5 l{ovember 2005

1 Introduction - Bruce Denby

Data assimilation is a term referring to the various methods used to combine
monitoring data and model calculations. It describes a wide range of techniques,
from the most simple post-modelling interpolation methods, to highly complex
variational assimilation methods. Variational data assimilation techniques are

often used in weather prediction models, and a number of European groups have
already invested considerable efforts in applying this method to atmospheric
chemical transport modelling. There are, however, also other common data
assimilation methods, such as Kalman filters and ensemble methods, that can also
be utilized.

This workshop was organized as the first activity of the NMR funded project on
'Data assimilation in regional scale atmospheric chemical models'. The aim of
the workshop was to establish links between the participating institutes (NILU,
DMU, SMHI, met.no) and plan and co-ordinate future activities. Presentations by
all the institutes were given to establish the methodologies currently employed,
the level of expertise and the future research intentions of the participating
institutions. In addition two invited speakers attended the workshop, Henrik
Elbern and Arnold Heemink, who are acknowledged experts in the field of data
assimilation in chemical transport modelling. Their attendance was vital to help
place the work in a European perspective and for their critical appraisal and first
hand knowledge of the techniques currently employed.

The workshop was held at NILU on 15 November 2005.8 separate presentations
were given with a large amount of time devoted to discussion (see attached
agenda). In total up to 21 people participated in the workshop. 11 from the
participating institutes who are directly involved with the project, 2 invited
speakers and a number of interested parties from both NILU and met.no. A list of
participants is also included. Discussions ranged from the very technical to the
philosophical with a number of recommendations for methodologies and problem
solving being discussed.

The presentations from the project participants have been consolidated for this
report, which will be used as reference for further development and cooperation.
The presentations from the invited speakers have been summarized, with the
presented slides contained in an appendix. At the end of each presentation is a

table containing some of the discussion points brought up during the meeting.

The final part of the meeting was used to plan further activity of the project. It
was decided that in 2006 a Nordic assimilation dataset should be compiled that
will contain the relevant observational data for all the participating institutes
including ground based, satellite and other remote sensed observations. This will
lay the foundations for any further intercomparative assimilation studies and will
allow the participating groups to cooperate closely on a single project. It will also
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facilitate the development of knowledge in regard to the requirements of good
observational data (for assimilation purposes) including the need for an

understanding of information related to uncertainty, spatial and temporal
representativeness and data capacity requirements. Compilation of the dataset will
also aid in identifying gaps in the available data and will allow each institute to
gain from the others expertise in their own particular field.

Agenda

09:30 Introduction and welcome
Bruce Denby, NILU

Satellite data
09:45 The GEMS project

Leonor Tarrason, Met.no
10:00 Availability of Satellite Remote Sensing images of Atmospheric

Species
Martin Hvidberg, DMU

Variational methods
10:30 Development and implementation of a simple data assimilation

algorithm
Jan Frydendall, DMU

11:00 Applying variational data assimilation for an atmospheric chemical
scheme
Zahari Zlatev, DMU

11:30 COFFEE BREAK
II:45 Application of 2-dimensional variational data analysis in MATCH

Michael Kahnert, SMHI
L2:I5 Implementation and performance experiences with chemical 4Dvar

assimilation
Hendrik Elbern, EURAD, Cologne

12:45
13:30

LI.INCH
Discussion

Ensemble methods
14:30 An introduction to Sequential Importance Resampling

Sam ErikWalker, NILU
15:00 Data assimilation in atmospheric chemistry models using ensemble

methods
Arnold Heemink, TU Delft

15:30 Discussion
16:30 NMR project

Conclusions to be drawn from this workshop. Report from the
workshop.
Next year? Intercomparison of methods?Another workshop?

17:00 End workshop
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Satellite data
2 The GEMS project and data assimilation with the Unifïed

EMEP model - Leonor Tarrason

Maarten van Loon and Leonor Tarrason
Norwegian Meteorological Institute (met.no)

P.O. Box 43 Blindern 0313 Oslo, Norway
Email: maartenvl@met.no

The GEMS project
Large part of the data assimilation activities at met.no will be carried out in the
EU funded Integrated Project GEMS (Global and regional Earth-system
Monitoring using Satellite and in-situ data) within the Sixth Framework
Programme. GEMS will create a new European operational system for operational
global monitoring of atmospheric chemistry and dynamics and an operational
system to produce improved medium-range and short-range air-chemistry
forecasts, through much improved exploitation of satellite data. (see also the
GEMS website: http://www.ecmwf.inlresearchÆU projects/GEMS/).

The research teams involved will develop a global operational medium-range
forecast / assimilation capability for dynamics and composition, exploiting all
available satellite data.

The integrated forecast / assimilation capability will provide a powerful
monitoring capability for greenhouse gases, reactive gases and aerosols.
Sophisticated new inversion methods will be developed to infer surface fluxes of
CO2 and other species through use of the surface flask data with the gridded
atmospheric fields on transport and composition. The GEMS project will produce
global retrospective analyses of the atmospheric dynamics and composition for
the troposphere and stratosphere, and will be able to assess the impact of changes
both on global and regional scale, examining extremes as well as means.

The global forecasts will provide key information on long-range transport of air
pollutants to the regional forecast models, through the forecast boundary
conditions used by the regional systems. The improved regional forecasts will be
used by air-quality authorities at city level, in dozens of cities across Europe.

The contribution of met.no in this project is in the regional part, where the Unified
EMEP model will be used as regional model, fed at the boundaries by global
predicted fields. Also in the regional simulation data assimilation will be applied
and hence one of the major tasks within GEMS is the development of data
assimilation modules within the EMEP modelling system.

Data assimilation around the EMEP model
For the purpose of GEMS a Kalman Filter technique will be implemented around
the EMEP model. The choice for this technique is based on existing experience
with this kind of techniques within the EMEP team. Apart from this practical
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9

argument, building a 4D-Var system would require the construction of the adjoint
code of the EMEP model, which is a far from trivial task. The presentations and
discussions at the workshop only confirmed this conclusion. In support of GEMS
a project proposal has been submitted to the Norwegian Space Centre (NRS). In
this proposal the emphasis is on treatment of satellite products by the remote
sensing group at met.no. It is intended to directly assimilate observed radiances
from space into the EMEP model. Usually, a derived product - aerosol optical
depth (AOD) - is used for assimilation. Directly assimilating radiances will have
the advantage that no assumptions need to be made on the composition and
vertical distribution of the aerosols as is necessary for retrieving AOD values.

Discussion

Speaker Comment
ZahanZlatev Communication between computers in real time must be

difficult. Will you use grid computing in this proiect?

Leonor Tarrason No this is not part of the project, just being able to
communicate between the different databases is a priority in
the proiect.

Hendrik Elbern It may be interesting to start an initiative on this though! Grid
computing is an interesting issue on a longer time perspective.

It must be ensured however that, for routine applications,
timely delivery is ensured.

Michael Kahnert What is the main aim of the project? Is it to do an analysis (as

a post-processing of CTM results) or to develop a forecasting
capability (data assimilation)

Leonor Tarrason The main goal of GEMS is to develop the operational capacity
to forecast air quality in global and regional scale, using data
assimilation techniques

NILII OR 43/2006
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3 Availability of Satellite Remote Sensing images of
Atmospheric Species - Martin Hvidberg

Martin Hvidberg
National Environmental Research Institute (NERI)

Dept. of Atmospheric Environment (ATMD
Roskilde, Denmark

Several people have inquired about an overview of "What atmospheric substances

can be seen, measured, distinguished, by satellite remote sensing". This paper is
an introductory presentation of what is available.
Remote sensing methods can be derived into categories in a number of ways. For
the purpose of this work we are limiting ourselves to remote sensing of the Earth's
atmosphere, and so excluding observations of the Earth's surface as well as

observations of astronomical objects. In particular we are going to focus on the

troposphere, since that is where we live. Though tropospheric conditions have

influence an surface concentrations in general, and in modeling of these in
particularly, we will not go into detail on this type of data even when it is
provided by the satellite or sensor system. In addition we are going to limit the

overview to passive remote sensing, specifically excluding active microwave
systems and occultation GPS viewing systems.
The overview is based mainly on knowledge generated by the European network
of excellence "ACCENT" and especially on work of the University of Bremen,
Univ. Heidelberg, Univ. Toronto, Univ. Cambridge and KNMI in the Netherlands.

L. Viewing geometry

One of the main characteristics when selecting an atmospheric remote sensing
product is the viewing geometry. Essentially there exist three systems: Nadir
view, Occultation view and Limb view. Most satellite borne sensor systems uses

one of these viewing geometries, but a few uses several in combination. The
figure below illustrates these geometries and the main instruments using these

geometries.

NrLU OR 4312006
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Figure 3.1: NERI - Martin Hvidberg

2. Wavelength region

Another important difference between sensor systems is the wavelengths at which
they operate. There are three main areas used in atmospheric remote sensing,
namely UltraViolet-VlSible (UV-VIS), InfraRed (IR) and Microwave (¡¡m).

3. Strategies

Various strategies are possible when designing a sensor system. It is less

demanding to construct an instrument with the capability to measure 'Just" the
total column than to build one with the ability to measure a vertical profile. The
number of species looked for can also be limited by the selected design strategy.
In the following section the most dominant combinations of viewing geometry,
wavelength, etc. are introduced.
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4. NadÍr viewers

Nadir viewers utilize the backscattered
electromagnetic radiation from the sun. Most
frequently these techniques are used in the UV-VIS
region. It can either be used in a dual wavelength
reflectance ratio as technique, or in a multi
wavelength technique.

For total column measurements
To measure a specific chemical species,

measurements of incoming and outgoing radiation
are made, to determine
total amount of that species. Two pairs of
measurements are made. One measurement of
incoming UV light and one measuring backscattered
UV light, at a wavelength that is strongly absorbed
by the chemical compound of interest.
A second pair of measurement of incoming and
reflected radiation is made at a wavelength that is
weakly absorbed
by the same species. The differences between the
pairs of measurements at the two wavelengths are

used to infer the amount present in the atmosphere of
the given chemical compound.

For vertical profile measurements
Information on the vertical structure of the atmosphere
can
be derived using the backscatter profiling technique in
the
IfV wavelength area. The atmosphere less absorbs light
at
longer wavelengths than light at shorter wavelengths.
Such longwave IJV light is able to penetrate far into
the atmosphere.

The backscattered radiation at specific UV wavelengths
can only be scattered from above a particular height.
Below this level, all the radiation is absorbed and there
is no ackscattered radiance. This allows us to make a
vertical measurement of a given species. Measurements
at certain UV wavelengths are sensitive to specific
portions
of the vertical profile.

Figure3.2

NILIT OR 43/2006
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5. Occultation viewers

Occultation view is looking at the sun, the moon or a
star, through the atmosphere. This viewing geometry
is utilizing the differences in atmospheric absorption
spectrum. Looking at specific wavelengths that are

known to be strongly absorbed by a particular
chemical species it is possible to measure the presence
of that given species, somewhere along the line of
sight from the light source to the sensor.

Occultation techniques can be used within UV, VIS or
IR wavelength areas.
Making this type of measurements while the satellite
rises or sets behind the horizon enables the
measurement of vertical profiles of the atmosphere.
The viewing geometry of occultation viewers severely
limits the time and duration during which observations
are possible. Both the satellite and the source of light
have to be in the right place to make this technique
possible.

6. Limb viewers

The limb viewing geometry again uses the scattered or
emitted spectrum, rather than the absorption spectrum.
The difference from the occultation techniques is that
in Limb view the light source is not at the end of its
line of sight. Limb viewers have, like occultation, a

line of sight that is more or less at a tangent to the
Earth.
The limb viewing technique is not limited to any
specific wavelength of sunlight. Scattering techniques
are used with UV, VIS and NIR and techniques based
on emitted light are used with IR and Microwave.
This technique works best with ozone; however other
trace gases like water vapor, nitrogen dioxide, and
sulfur dioxide and aerosols are also measurable.
Compared to occultation, limb is less dependent on the
position of both sun, Earth and satellite and can
therefore collect data through considerably more hours
every day.

13

Figure 3.4

Figure 3.5
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Techniques utilizing emitted radiation, so called Limb
emission or Limb viewing techniques, operating in the
IR or Microwave areas do not evsn need the sun to be
present. All objects with a temperature above absolute
zero emit radiation, the wavelengths of this emitted
radiation is characteristic for each atom and each

molecule. Instruments based upon the limb emission
technique infer amounts of gases from measurements
radiation from different altitudes of the atmosphere.
In theory, the instrument could observe all the way to
the surface, but below aceftain altitude (under 10 km),
clouds interfere with the emitted longwave radiation.
The limb emission sensors are able to create a vertical
profile of tràce gas concentrations. The resulting
vertical resolution is quite good, usually on the order of
3 kilometers.

Figure 3.6

7. Selected instruments

There exist close to 50 different sensor systems whose primary purpose is to
monitor the Earth's atmosphere. Only a limited subset of these is relevant to the
present research. Some are outdated technologically or maybe not even in orbit
any more, and therefore only apply to long timeseries studies, e.g. TOMS. Some
are not yet even released to the broader scientific community, e.g. OMI. In
practice a short list of the sensor systems seems to be the once used by most
research groups within atmospheric monitoring. The following, in no way exhaust
the possibilities but are just a short presentation of a few, frequently used,
instruments.

8. GOME

GOME and GOME-2 are Nadir viewing UV backscatter spectrometers, which
means that they measure Earthshine spectra, that is: the sunlight, which is
reflected back into space by molecules in the atmosphere and by the surface. The
instrument also measures the solar spectrum directly. The ratio between the
Earthshine and solar signal is a measure of the reflectivity of the Earth's
atmosphere and surface.

NILIJ OR 4312006
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Figure 3.7. KNMI
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t995
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The GOME-2 instrument is due to launch in
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MetOp platform.
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Figure 3.8: MarkWeber - Univ. Bremen

9. SCIAMACHY

SCIAMACHY was launched on March 2002, on Envisat. It is a spectrometer
designed to measure sunlight, transmitted, reflected and scattered by the Earth's
atmosphere or surface in the ultraviolet, visible and near infrared wavelength
region
Data are available on request for 1. Jan 2003 till present from Univ. Heidelberg,
Univ. Bremen, KNMI and through GMES-service.
The SCIAMACHY primary mission objective is to perform global measurements
of trace gases in the troposphere and in the stratosphere.
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Figure 3.9: GOME column NOz.
Tropospheric NO2 over Europe August 2002 . Units: Vertical
Column [molec cm-2]. Andreas Richter - Univ. Bremen

SCIAMACHY measurements yield the amounts and distribution of 03, BrO,
OCIO, ClO, SO2, CH2O, NOz, CO, CO¡ CH+ HzO, NzO, pressure, Temperature,
aerosol, radiation, cloud cover and cloud top height. A special feature of
SCIAMACHY is the combined limb-nadir measurement mode, which enables the
tropospheric column amounts of several trace gases to be determined.
SCIAMACHY uses the same wavelengths in the UV-Vis as GOME-I and -2 and
has a spectral range extended into the infrared.
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11.. MOPITT

Measurements Of Pollution In The Troposphere (MOPITT) is a Canadian
instrument launched in 1999 and consists of a IR Nadir looking sensor, aboard
NASA's Terra satellite. It uses gas correlation spectroscopy to determine the
abundance of carbon monoxide in the troposphere. The MOPITT sensor measures
emitted and reflected radiance from the Earth in three spectral bands.
MOPITT data are available online as quick looks. Column total or concentration
at 6 pre-defined heights.
The actual data on:"Derived CO levels", "gridded daily averages", "gridded
monthly means", from 3. March 2000 till present are available upon request.

Corbon Monoxldê Concânh(flon {ppb\,)E0 r20 240

Figure 3.I I: NASA - earthobservatory.nasa.gov/

12. 
^ 

promising new satellite - Aura

On Thursday, July 15,2004 Aura was launched at 6:01:59 a.m. local time from
Vandenberg Air Force Base, aboard a Delta II rocket, later inserting the Aura
satellite into a 705 kilometer orbit.
This completes the trilogy of satellites Terra, Aqua and Aura, the first series of
NASA EOS satellites. While Terra monitors land, and Aqua monitors the Earth's
water cycle, Aura will help understand the atmospheric system, global air quality,
ozone recovery and climate change.
Each of Aura's four instruments, the Ozone Monitoring Instrument (OMI), the
Tropospheric Emission Spectrometer (TES), the High Resolution Dynamics Limb
Sounder (HIRDLS), the Microwave Limb Sounder (Vtr-S) is designed to survey
different aspects of Earth's atmosphere. Aura will survey the atmosphere
throughout the troposphere and the lower stratosphere.

NILU OR 43t2006
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13. OMr

The OMI instrument employs hyper spectral imaging in a push-broom mode to
observe solar backscatter radiation in the visible and ultraviolet. The hyper
spectral capabilities will improve the accuracy and precision of the total ozone
amounts. OMI will facilitate continuity in measurements from predecessors
TOMS, SBUV, GOME, SCIAMACHY and GOMOS
Key air quality observations are 03, NO2, SOz, BrO, OCIO, and aerosol
characteristics. The OMI instrument will distinguish between aerosol types, such
as smoke, dust, and sulfates, and can measure cloud pressure and coverage, which
provides data to derive tropospheric ozone concentrations.

OMI Aerosol index
cn Junç 05, 2005

,å{*tra'J
KNMI

@ f.0 1.5

Ð,,
2.O 2.5 J.O J.5

A¿rôsôl lndex

4.5>4-0

Figure 3.12: EIIen Brinksma, KNMI
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14. TES

TES is a spectrometer that measures the infrared-light emitted by Earth's surface
and by gases and particles in Earth's atmosphere. Spectrometers measure this
radiation as a means of identifying the substances.
TES operates in a combination of limb and nadir mode. It generates three-
dimensional profiles on a global scale of virtually all infrared-active species from
Earth's surface to the lower stratosphere.

IES LowerÏropospheric Ozone fsurface - 500 hPaJ

I
40

Figure 3.13: NASA, Jet Propulsion Lab. - tesjpl.nasa.gov
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15. HIRDLS

The High Resolution
Dynamics Limb
Sounder (HiRDLS)
is a Scanning
infrared limb
sounder.
The HIRDLS
instrument will
obtain profiles over
most of the globe,
both day and night.
Complete Earth
coverage can be
obtained in twelve
hours.
It observes global
distribution of
temperature and
concentrations of 03,
HzO, CII¿, NzO,
NOz, HNO:, NzOs,
CFC1 1, CFC12,
CIONO2, and
aerosols in the upper
troposphere,
stratosphere, and
mesosphere

Ê
E
,9I
F
3

ß

HIRDLS Water Vapor et 30km

Figure 3.14: National Centerfor Atmospheric Research -
w ww. e o s. uc ar. e du/hir dl s/

16. MLS

Microwave Limb Sounder (lvII-S) is a passive microwave limb sounding
radiometer / spectrometer. It measures thermal emission from the atmospheric
limb.
The EOS MLS instrument will provide measurements of many chemical species

involved in the destruction of stratospheric ozone. This instrument is a greatly
enhanced version of the UARS MLS instrument, including use of latest
technology to measure important species such as OH, BrO and many others which
could not be measured by MLS at the time the UARS instrument was developed,
as well as more precise measurements and measurements over a larger altitude
range. The EOS Aura orbit will allow MLS measurements to be made to high
latitudes every day on each orbit, whereas the UARS orbit required MLS high-
latitude coverage to switch, approximately monthly, between the northern and
southem hemispheres with critical periods being missed.

t
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Figure 3.15: [Read et aI., 1993] Dr. William Read. @mlsjpl.nasa.gov

lT.Data Availability

Unfortunately after now 500 days in space, data from ALIRA are still to become
available to the scientific community. Still there are high expectations for the
usefulness and quality of these data when they become accessible to atmospheric
scientists and others.

L8. References:

aura. gsfc.nas a. gov/instruments/
envi sat. esa. int/instruments/i mages/sci a_heitran. html
www-iup.physik.uni-bremen. delgome/wfdoas/
www-iup.physik.uni-bremen. dels ciamachy /
www.ccpo.odu.edu/SEES I ozonel oz_class.htm
www.esa.int/esaME/index.html
www. knmi.nl/gome_fdldoc/gomeintro. html
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Discussion

Speaker Comment
Caroline Forster Can you do the different types of measurements, e.g. Nadir,

limb, with the same satellite?
Martin Hvidberg Yes this is possible with some of the Satellites
Kjetil Tausend How do you deal with the fact that the retrieval algorithm

includes calibration with observational data? Is there a conflict
of some form with data assimilation with the same data?
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Michael Kahnert I don't think there is a conflict as data assimilation can also be
done in observational space.

General A general discussion followed related to the representation of
assimilated satellite data and land based data that is not
independent from one another (Due to the fact that satellite
data is not totally independent of the sround based data).
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Variational methods
4 Development and implementation of a simple data

assimilation algorithm - Jan Frydendall

Jan Frydendall and Jørgen Brandt
National Environmental Research Institute, Department of Atmospheric

Environment
Frederiksborgvej 399, P.O. box 358, DK-4000 Roskilde, Denmark

Abstract

A simple algorithm for chemical data assimilation has been developed. The
algorithm has been tested and implemented in the Eulerian chemical transport
model, DEOM, used since 1999 for regional air pollution forecasting at NERI.
DEOM is a part of the THOR integrated air pollution forecasting and management
system (http://thor.dmu.dk). The data assimilation algorithm is shortly described
and preliminary results from comparisons of model results with and without the
data assimilation algoritm for a six months period in 1999 are shown.

The statistical interpolation algorithm

At NERI we wanted to get a deeper understanding of the data assimilation
techniques. We wanted to understand what made these techniques work.
Therefore, we did not start developing a very complicated data assimilation
technique like the 3Dl4D variational method or the extended Kalman filter. We
have chosen the statistical interpolation technique for this study. It is fairly simple
and yet it still gives a good insight to data assimilation.

1. The basics

Lets define the statistical interpolation scheme:

Statistical assumptions: The background error and the analysis effor is defined
AS

tb = xb -xr (1)

tâ = xâ -xt Q)

and the observation error is defined

to =y -H(*,) r:l
From the background error we are now able to define the background covariance:

B = (so -ão)(eo - ão)' (4)

the observation covanance:

R=(u"-e")(u"-F")'

(6)

(s)

and the analysis covariance:

P" =(u" -u^)(u^-u")t
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o Linearized observation operator: the variation of the observation operator
in the vicinity of the background state is linear. For any x close to x, , ,ÉI(x)

- H(xt) = H(x - xr) , when H is a linear operator.

o Non-trivial errors: B and R are positive definite matrices.
o Unbiased errors: The expectation of the background and the observation

effors is zero i.e.

Xn-X, =y-H(*o)=O (7)

a uncorrelated errors
uncorrelated i.e

observation and background effors are mutually

(to -*,)(v -H(",))'= o (8)

If the background and the observation error p.d.f. are Gaussian, then x n is

also the maximum likehood estimator of x, .

Linear analysis: we look for an analysis defined correction to the
background which depend linearly on background observations departures.

Optimum analysis: we look for an analysis state which is as close as

possible to the true state in and root mean square sense. (i.e. it is a

minimum variance estimate)

This leads to the statistical interpolations main equation:

x" =Xr, +K(V-tt("r)) (e)

lf =gU'(Hgn'+R)-' (10)

where the linear operator K is called the Kalman gain matrix of the analysis.
o In our setup we define the interpolation operator H as a linear interpolation

between the grid locations and observations stations.
o The observation effor covariance matrix as R = oÍáJ delta is the

Kronecker delta and o,2 is the error covariance of the observations.

o The background error covariance matrix is define as B = oo'f 1r¡ where

oj rs the error covariance of the background and f(r) is the correlation

function.
The correlation function is define as

r(r):=1,*41.^ol-l4l,.- 
[r 

- 
L )""P1-'L ) 

(r r)

r is the Euclidian distance in the model space and L is the correlation length. The
function is depicted in the figure below

a

O

O
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Figure 4.1: I Dffirent correlations lengths are plotted. Red: L=I, Green:

L=1.5, Blue: L=2, Azure: L=2.5, Black: L=3 and Grey: L=5. The
greater the correlations length the slower is the descent of the of the
correlations function

The error covariance determinations

In order to get fully specified error covariances matrices we have to do some
analysis. The first and foremost method is the one described by (Hollingsworth
and Lonnberg, 1986). It states that we have to make correlations between
"observations minus background" separated by observation stations distances. We
than have to fit a correlation model with the founded data. The results are depicted
below:

Correlation length
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Figure 4.2: 2 The correlationfunction is fitted to the observation-minus-
b øckground conelation.
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In order to get a good error covariance determination we had to use a large time
series of six months to archive good results. This error covariance determination
is very representative for a specific hour in the time series. Therefore we look at
other ways to determine the error covariance for each run of the data assimilation
algorithm. We looked at method derived by (Desroziers and Ivanov, 2001) where
have found a iterative equation which would converge on the error covariance in a
few steps if one could write the error covariance matrices as:

B=e¡B
R =eoR (r2)

where eo and eo are scalars. Then the following algorithm should hole:

(e",eoXl))J
e"(i+I) = )

rr(l-K(e",eo)(l)H)
(13)

(14)

We did not have any success with the above algorithm yet, because the memory
requirement is too large to handle for our computers. We currently are looking
into ways of reducing the sizes of the error covariance matrices.

Some preliminary results

We have implemented the statistical interpolation algorithm into the DEOM
model (Brandt et al., 2001). The DEOM model is a three-layer Eulerian
atmospheric chemistry transport model, which is designed to predict ozone values
as well as many other chemical species. The data assimilation algorithm is set to
correct the background field at 10:00 UTC, 11:00 UTC and 1200 UTC every day
in a period from April to September in 1999 and focus is on the daily maximum
ozone values occurring in the late afternoon at the same days. As DEOM is a 3
layer model, where the lowest model layer is defined by the mixing height, the
model can not describe the nocturnal values of ozone in the surface layer. Model
results are compared to measurement data from all available station in the EMEP
network. The correlation length is L = 270 k;rî and covariances are those found by
the Hollingsworth method. In the following figures (except figure 3), the left
figures includes results obtained from the reference model run (without data
assimilation) and the right figures includes results obtained from the analysis
model run (including data assimilation).

e, (i +l\ -, Jb (x^(e"'e)(i))
-b\- -/ - rr(HK(e",eoXi))

NIL{I OR 43/2006



27

Station: Mean of all stations,

Latitude: 0.00", Longitude: 0.00",

, ,210
Altitude: 0 m

Measured
Celc0lâteal

!oo
à'õ
õ
o

AUGUST

, ,210
Altitude: 0 m

lvlean values:

lveas.= 36.91

Calc.= 43.15

FB.= 0.16

Cor.= 0.78

Nl\'lSE= 0.03

Mean values:

Meas.= 36.58

Calc.= 43.06

FB.= 0.16

Corr.= 0.76

NMSE= 0.04

Mean values:

Meas.= 49.39

calc.= 49.65

FB.= 0.01

Corr.= 0.86

NMSE= 0.00

Mean values:

Meas.= 36.91

Q¿lç.= 41.79

FB.= 0.'12

Corr.= 0.93

NMSE= 0.02

Mean values:

Meæ.= 36.58

calc.= 41.68

FB,= 0.13

Cotr.= 0.79

NIVSE= 0.03

Mean values:

lvleas.= 49.39

calc.= 48.98

FB.= -0.01

Corr.= 0.96

NMSE= 0.00

ooo
E
=s
oo

o
o
x
(ü

E
-à'õ
(i)

o

15

APRIL

29 13 27 '10 24

JUNE

822
JULY

21630
SEPTEMBER

5 {o

1 999

Station: Mean of all stat¡ons,

Latitude: 0.00', Longitude: 0.00',
EN¡ffidl
l- calcutateo I

!oq
à^'õ
E
ÍJ
o

!êê

fos
o
o

ãoo
xõ
E
-à'õ
!

o

0

50

10'15 '13 27

MAY

822
JULY

19 2 't6 30

AUGUST SEPTEMBER

24

APRIL JUNE

Figure 4.3:Comparison of calculated and measured daily mean, hourþ and daily
maximum ozone values taken as a mean over all measurement
stations. One clearly sees the effict of the data assimilation process
by looking at the top (without data assimilation) and bottom (with
data assimilation) time seríes. The corcelation cofficient increase
and the bias and NMSE decrease
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Figure 4.4 :4 Frequency distributions of the correlation cofficient, the

fractional bias and the Normalised Mean Square Error estimated

from calculated and measured data at EMEP measurement stations
The distribution of the correlation cofficíent is generally shifted to
the righr by 0.2.
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Figure 4.6: 6 Comparison of calculated and measured mean values of the daily
maximum values of ozone al each measurement station for the
period Apr.-Sep. 1999. The correlation coefficient increases from
0.67 to 0.78 when the data assimilation is applied.
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Discussion

Speaker Comment
Arnold Heemink How do you choose your proiection operators?
Jan Frydendall This has not been decided yet
Michael Kahnert We use reduced eigenvalue decomposition and select at least

so many eigenvalues that the smallest eigenvalue is smaller
than I07o of the largest one

Maarten
Loon

van Suggest you look at Johannes Flemings work as he has done
very similar studies.
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5 Apptying Variational Data Assimilation in connection with an
Atmospheric Chemical Scheme - ZahanZlatev

ZahariZlatev and Jørgen Brandt
National Environmental Research Institute

Frederiksborgvej 399,P. O. Box 358
DK-4000 Roskilde, Denmark

Abstract

The chemical schemes are among the most difficult components in large-scale
environmental models. Therefore, these components should be treated efficiently
in the efforts to make the environmental models able to produce reliable results
when these are used in different important for the modern society comprehensive
studies. The requirement for efficient treatment of the chemical schemes is
increased when data assimilation is to be applied in conjunction with the model
under consideration. Some of the problems, which are to be resolved when data
assimilation is used together with a particular chemical scheme, are discussed in
this note. Several experiments were carried out in an attempt to investigate the
minimal requirements that are to be imposed on the availability of observations in
order to ensure successful implementation of data assimilation. Results from these
experiments are presented and discussed.

Key words: Environmental model, Chemical schemes, Data assimilation,
Numerical methods.

1. The atmospheric chemical scheme

The major properties of the particular atmospheric chemical scheme, which is
used in this note, can shortly be described as follows:

o The chemical scheme contains 56 species.

o Among the 56 chemical species, which are involved in the selected chemical
scheme, are:

o sulphur pollutants,

o nitrogen pollutants,

o ozong,

. ammonia-ammonium,

o several radicals,

. isoprene and

. many hydrocarbons.

o The chemical scheme can be described mathematically by a systems of
ordinary differential equations (ODEs): de/dt=f(t,C) , where t is the
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time-variable and õ is a vector the components of which are the 56 chemical
species involved in the chemical scheme.

o It is very difficult to handle efficiently this system of ODEs because it is:

o stiff,

. badly scaled,

o there are temporal variations in a wide range,

. mâry species (these participating in the photochemical reactions) contain
sharp gradients in the periods around sun-rises and sun-sets.

These properties of the chemical systems of ODEs are illustrated in Fig. 1, where
the temporal variation of one of the chemical species, isoprene, is given for the
period starting at 6:00 in the morning and finishing at 24:00 in the next day. The
sharp gradients at sun-rises and sun-sets are clearly seen in Fig. 1.

ISOPREN
1 0000
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aooo
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o
10 15 45 50

Figure 1

25 30 35 40

Temporal variation of the isoprene concentrations (measured in number of
molecules per cubic centimetre) in the period from 6:00 to 24:00 on the next days
(from 6 to 48 on the horizontal axis.

2.Tbe data assimilation algorithm

The data assimilation algorithm is shortly described in this section (this algorithm
is fully described in Zlatev and Brandt, 2005). Any data assimilation algorithm
tries to minimize a functional of the form:

(1) ¡{.-.,}=å 
å( 

w(,,)(e, --";* ), % -q*) ,
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where Jfco) Oepends on the initial value Q of the vector of the concentrations,

W(t, ) is a matrix containing some weights and ( , ) it an inner product in an

appropriately defined Hilbert space (it will be assumed that the usual vector space

is used, i.e. that Ce 9l'where s is the number of chemical species involved in the

model; in this particular study this number is 56, but in the treatment of a full
environmental model this number can be very large, because a discretized large-
scale environmental model contains very often many millions of components). It
is seen ttrat Jfco] depends on both the weights and the differences between

calculated by the model concentrations Ç and observations õib" at the time-levels

{0,t,...,P} at which observations are available. W(to)will be assumed to be

the identity matrix I in this study, but in general weights are to be defined in
some way.

The task in this note is to find an improved initial field Q, which minimizes

Jl"rÌ,but it should be emphasizedthat data assimilation can also be used for

other purposes (as, for example to improve the emissions). Some optimization
algorithm must be used to minimize ¡fi.rÌ Most of the optimization algorithms

are based on the application of the gradient of Jficr). The adjoint equation has to

be defined and used in the calculation of the gradient of J{-c.}.

An algorithm for performing data assimilation for any model is given in Fig. 2
(again, more details about this algorithm can be found in Zlatev and Brandt,
2005). Several remarks are needed in connection with this algorithm:

o The Jacobian matrix of the right-hand-side vector f(t,õ) has to be calculated

and used to form the adjoint equation.

o The algorithm consists of forward calculations (which are carried out in the
first inner loop in the red box in Fig.2) and backward calculations (these are

performed in the second inner loop in the red box in Fig. 2).

o It is assumed, in the algorithm presented in Fig. 2, tbat every time when a
time-point in which observations are available is reached one proceeds with
backward calculations. This will be inefficient when the number of
observations P ( P _STEP in the algorithm from Fig. 2) is large. It is possible

to carry out the backward calculations only once (after performing the forward
computations over the whole time-interval; see agun Zlatev and Brandt,
2005).
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INITIALIZE SCALAR VARIABLE9 VECTORS AND ARRAYS;SETGRADIENTTOZERO

PERFORM OUTPUTOPERATIONS AND STOP THE COMPUTATIONS

DO LARGE-STEPS = I,P_STEP
DO FORWARD_STEPS: (LARGE_STEPS - 1)*P_LENGTH + 1, LARGE_STEPS*P_LENGTH

Perform a forward step with the model
END DO FORWARD-STEPS
DO BACKWARD-STEPS:LARGE-STEPS*P-LENGTH, 1, -1

Perform a backward step with the adjoint equation
END DO BACKWARD-STEPS
UPDATE THE GRADIENT AND CALCULATE THE VALUE OF THE FLINCTIONAL

END DO LARGE-STEPS

COMPUTE AN APPROXIMATION OF PARAMETER RHO
UPDATE THE INITIAL VALUE FIELD(NEWFIELD=OLDFIELD - RHO*GRADIENT)
CHECK THE STOPPING CRITERIA; IF SATISFIED EXIT FROM LOOP DO ITERATIONS

END DO ITERATIONS

DO ITERATIONS = 1, MAX_ITERATIONS

34

a

Fisure 2
An aI g o rithm fo r p e rþ rmin g v ari aîi onal dat ø a s s imil ati on.

The values of vector c found during the forward calculations are

unfortunately also needed during the backward calculations. Thus, these
values have either to be stored (during the forward calculations) or
recomputed (during the backward calculations). This is causing great
problems when the model treated is large.

Five different numerical methods have been used in the experiments. Only
results obtained by using the well-known Backward Euler Method will be
used in the following part of this note.

3. Organization of the experiments

The experiments were carried out under the following assumptions:
o An assimilation window of length 6 hours, starting at 6:00 in the morning

and finishing at noon (12:00), is always used.
o It is assumed that observations are available at the starting point and at the

end of each hour (i.e. at seven time-points).
o Perturbations of the initial solution of all species by 507o effors are always

applied.
o The length of the forecast window is 42 hours.
o The following actions were always successively performed:

o The initial values of the concentrations are perturbed in the
beginning of computations.

o Data assimilation is then applied to improve the initial values
(values of a reference solution, calculated by a very small time-
stepsize, , being applied as "observations").
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o Finall!, a forecast is calculated over the full length of the time-
interval (42 hours) by using the improved by the data assimilation
algorithm initial values.

A component-wise relative error estimation is used to calculate both the
global error and the error made in calculation of the chemical species number
. This means that the following formulae (where is the number of time-
steps, while is the number of chemical species) were used:

a

(2)

o

(3) ERRORT = max l.ïf"'-.ïil
c;:in=1,2,-,N

Thè following notation is used in Table 1 -Table 5:
o Error0_P - Error in the perturbed initial solution.
o ErrorF_P - Error which is obtained when the calculations are performed

by using the perturbed initial solution (i.e. without using data assimilation
to improve the initial solution).

o Error0_I - Error in the improved (by performing data assimilation)
initial solution.

o ErrorF_I - Error which is obtained when the calculations are performed
by using the improved initial solution.

4. Experiments

Four important cases were studied:

. Observations of all 56 chemical species are available. Results are presented
in Table 1 (errors obtained when all species are taken into account) and Table
2 (errors obtained when only the ozone concentrations are taken into account).
The errors caused by the numerical method are dominating in this case.

Therefore, decreasing the time-stepsize (which leads to an increase of the
number of steps) results in decreasing of the errors.

o Only ozone observations are available. Results are presented in Table 3. The
accuracy is not improved, because ozone is a secondary pollutant, which
participate in reactions with many other species (the accuracy of which cannot
be improved when only ozone "observations" are available). The errors caused
by reactions of ozone with perturbed and not improved (because of the lack of
"observations") chemical species is dominating. Therefore increasing the
accuracy of the numerical method by decreasing the time-stepsize has
practically no effect on the accuracy of the ozone concentrations.

o Observations of a primary pollutant (sulphur di-oxide) are available.
Results are presented in Table 4. The data assimilation algorithm leads to an
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improvement of the quality of the sulphur di-oxide concentrations, because
this compound does not participate in many chemical reactions and, thus, the
influence of the perturbed and not improved when only sulphur di-oxide
"observations" are available chemical species is limited. Increasing the
number of steps (i.e. decreasing the time-stepsize) results in improvements,
but the elrors do not decrease in such a regular way as in the case where
"observations of all chemical species are available; compare the results in
Table 4 with the results in Table 1 and Table 2.

Steps Error0 P EmorF P Error0 I ErrorF I
1008 0.47 0.48 2.08-3 3.zF-r

20r6 o.49 0.50 1.0E-3 1.58-1

4032 0.47 0.41 5.08-5 7.48-2

8064 0.48 0.49 2.58-4 3.68-2

r6t28 0.46 0.48 r.3E-4 r.8E-2

32256 0.49 0.50 6.3E-5 9.0E-3

Table 1

Global errors, i.e. errors calculated by formula (2), which are obtained when
"observations" of all chemical species are available. The behaviour of the effors
in the improved solutions (the last two columns) is nearly perfect (doubling the
number of steps, which means halving the stepsize At, leads to halving the error;

this should be expected because the Backward Euler Method is of order one).

Observations of a group of pollutants are available (ozone + nitrogen di-
oxide). The results shown in Table 3 indicate that it is necessary to have
observations of some of the species, which react with ozoîer in order to improve
the accuracy of the ozone concentrations by applying data assimilation. One of the
important species, nitrogen di-oxide, has been chosen. Results obtained by using
"observations" of ozone and nitrogen di-oxide are shown in Table 5. The effors
caused by the perturbed and not improved (because of lack of observations)
species is dominant also when observation of nitrogen di-oxide are available
together with ozone observations. This is demonstrated by the fact that improving
the accuracy of the numerical method by increasing the number of steps
(decreasing the time-stepsize) has no effect on the accuracy. However, adding
"observations" of nitrogen di-oxide has a positive effect on the aacvracy of the
ozone concentrations achieved when data assimilation is used (the accuracy is
improved; mainly by a factor of approximately ten).
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Steps

Error0_P ErrorF_P Error0 I ErrorF_I

1008 0.47 0.48 2.08-3 2.48-3

2016 0.49 0.50 1.0E-3 r.2E-3

4032 0.47 0.47 5.0E-5 6.OE.4

8064 0.48 0.49 2.58-4 3.0E-4

t6t28 0.46 0.48 r.3E-4 r.5E-4

32256 0.49 0.50 6.3E-5 7.58-5

Table 2

Errors in the calculation of the ozone compound, i.e. errors calculated by formula
(3) applied for ozone, which are obtained when "observations" of g!! chemical
species are available. The behaviour of the errors in the improved solutions (the
last two columns) is nearly perfect (doubling the number of steps, which means

halving the stepsize Àt, leads to halving the error; this should be expected

because the Backward Euler Method is of order one).

Steps Error0 P ErrorF P Error0 I ErrorF I
1008 0.48 0.50 0.25 0.25

20r6 0.47 0.50 0.36 0.36

4032 0.48 0.50 0.32 0.33

8064 0.46 0.50 0.49 0.49

16128 0.46 0.50 0.34 0.35

32256 0.47 0.50 0.54 0.54

Table 3

Errors in the calculation of the ozone concentrations, i.e. errors calculated by
formula (3) applied for ozone, which afe obtained when only ozone
"observations" are available. The application of data assimilation has negligible
effect in the efforts to improve the solution. Increasing the accuracy of the
numerical method by increasing the number of steps does not lead to
improvements of the accuracy.

Steps Error0 P ErrorF P Error0 I ErrorF I
1008 0.46 0.57 2.68-2 2.68-2

20r6 0.48 0.50 2.68-2 2.6E-2

4032 0.49 0.50 6.8E-3 6.8E-3

8064 0.49 0.50 5.58-2 5.5F-2

T6T28 0.47 0.50 2.38-4 2.38-4

32256 0.50 0.50 5.38-4 5.3E-5

Table 4
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Errors in the calculation of the sulphur di-oxide concentrations, i.e. errors
calculated by formula (3) applied for sulphur di-oxide, which are obtained when
onlv sulphur di-oxode "observations" are available. The application of data
assimilation leads to improved accuracy. Increasing the accuracy of the numerical
method by increasing the number of steps results in improvements of the accuracy
but not in such a regular way as in Table 1 and TabLe 2.

Steps Error0 P ErrorF P Error0 I ErrorF I
1008 0.48 0.50 0.046 0.046

2016 0.47 0.50 0.046 0.046

4032 0.48 0.50 0.046 0.046

8064 0.46 0.50 0.019 0.019

16T28 0.46 0.50 0.045 0.045

32256 0.47 0.50 0.018 0.018

Table 5

Errors in the calculation of the ozone concentrations, i.e. effors calculated by
formula (3) applied for sulphur di-oxide, which are obtained when both ozone
and nitrogen di-oxide "observations" are available. The application of data
assimilation leads to improved accuracy (by a factor of approximately 10).

Increasing the accuracy of the numerical method by increasing the number of
steps does not lead to improvements of the accuracy.

5. Conclusions

The experiments, part of which were discussed in the previous section indicate
that the following conclusions can be drawn:

o There are no problems when observations from all chemical species involved
in the atmospheric chemical scheme are available. However, it is not realistic
to expect that this will be the case in real situations.

o If observations from only one primary (and not very active chemically)
pollutant (such as sulphur di-oxide) are available, then one could also achieve
good results.

o If observations from only one secondary and very active chemically pollutant
(such as ozone) are available, then the data assimilation algorithm is not
giving considerable improvements of the accuracy of the pollutant under
consideration.

o If one takes some group of pollutants, which react with each other, then
improvements of the results could be achieved. This has been demonstrated by
adding nitrogen di-oxide observations to the ozone observations (see the
results in Table 5).
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Discussion

Speaker Comment
Michael Kahnert Is the perturbation you introduce realistic? In regard to the

chemical balance?
Leonor Tarrason It makes sense that SO2 has less error because it is not

reactive.
Sam
Walker

Erik How are the observational error defined?
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6 Application of 2-dimensional variational data analysis in
MATCH - Michael Kahnert

Michael Kahnert
Swedish Meteorological and Hydrological Institute (SMHD

Folkborgsv. 1, 601 76 NORRKÖP[.{G, Sweden

A two-dimensional variational data analysis (2dvat) algorithm has been
implemented into the Multiple-Scale Atmospheric Transport and Chemistry
Modelling System (MATCH). The algorithm is designed to analyse ground-based
chemical observations of gas and particle species. It is currently run in single-
vanate mode. Numerical problems associated with the inversion of the
background effor covariance matrix are alleviated by performing reduced
eigenvalue decomposition. Variational quality control is implemented to allow for
an automatised discarding of suspicious data.

The 2dvar algorithm has been validated against an older optimum interpolation
(OI) algorithm. It is applied to interpolate measurements from Swedish and
Norwegian background stations in order to determine the total (Swedish + long-
range transport) air concentrations of ozone, and concentrations of SOx, NOx, and
NHx in air and precipitation. Interpolated ozone concentrations are used as input
to the MATCH-Sweden model, which is operationally applied in the Swedish
National Environmental Monitoring Programme to map the Swedish contributions
to dry and wet deposition of SOx, NOx, and NHx. Air and precipitation
measurements of oxidised sulphur and of oxidised and reduced nitrogen are

further interpolated with the data analysis algorithm to determine the long-range
transport contribution to the total deposition rates. First tests have been performed
to analyse ozoîe measurements in conjunction with a background ozone field
computed with the MATCH-photochemistry model. It is planned for the future to
use MATCH-photochemistry computations as a background field also for
analysing SOx, NOx, and NHx.

In view of the possible use of remote sensing data in conjunction with a chemical
data analysis algorithm, the errors related to computing optical properties based
on MATCH results were assessed. To this end, the MATCH-photochemistry
model was used to compute secondary inorganic aerosol mass (SIA) and primary
particulate matter (PPM). Further, the MATCH-sea salt model was used to
compute sea salt mass. The validation period was 2002. From the computational
results the aerosol optical depth (AOD) and the backscattering coefficient (8..u)

where computed. AOD results were compared with sun photometer measurements

from the AERONET station on Gotland, and Brru results where compared to lidar
measurements from the EARLINET station in Hamburg. The AOD computations
underestimated the observations at all wavelengths, which can be attributed to the
missing organic and black carbon mass in the computations. The pr"u results
showed a generally good agreement with the measurements, except in the
boundary layer, where the measurements often showed higher values, probably
due to local pollution sources, which were not resolved by the model. The results
of this study indicate that remote sensing observations could provide valuable
additional data for chemical data analysis. However, to use these data in a
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meaningful way in the MATCH-2dvar algorithm, it would be necessary to modify
the system such that it could be run in multi-variate mode, and one would have to
perform a comprehensive study of the model error statistics to produce a more
accurate estimate of the background error covariance matrix.

Discussion

Speaker Comment
Michael Kahnert What is the advantage of 2D var over optimal interpolation if

they are basically the same?

How to discriminate between local effects and regional
features in the observations?

How to model background error covariances? Answer: e.g.

ensemble-method

We analyse the long-range transport part instead of the total
concentrations of air pollutants, since LRT concentrations are

more regionally representative. Should one run the model with
local emissions and subtract the result from the total
concentrations, or is it better to run the model without local
concentrations and interpret the result as the LRT part?

Michael Kahnert How large are the effors in modelling optical properties of
aerosols based on CTM results in view of assimilating remote
sensing data?

General A conclusion was that the main error source in the current
model version is that organic carbon and soot are not
accounted for in the model. The uncertainties related to
modelling aerosol optical depth and backscattering coefficient
are - at least in comparison - small.

Jørgen Brandt It is better to run the model with all emissions and again
without the local emissions to separate the total, LRT, and
local contributions.

Michael Kahnert It will be difficult to run our Europe-model with an equally
hieh erid resolution as our Sweden-model

Jqrgen Brandt One should add the capability of running with nested
resolution to the model
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7 Implementation and performance experiences with chemical
4Dvar assimilation - Hendrik Elbern

H. Elbern and A. Strunk
Rhenish Institute for Environmental Research at the University of Cologne ßru)

and
Helmholtz virt. Inst. for Inverse Modelling of Atmospheric Chemical

Composition (IMACCO)

The slides presented by Henrik Elbern are included in the appendix to this report.
The contents of the talk included the following topics and conclusions.

1. General problem appraisal
2. BLIIEs as a partial answer

a. Chemical 4Dvar
b. Operation parameter choice
c. 4D-variational implementation issues
d. Enhanced spatial resolution

3. Summary
a. Chemical weather forecasts are a multiple scale problem
b. Chemical data assimilation rests on sparse and heterogeneous

observations, with variable error characteristics (incl. error of
representativity)

c. Initial value optimisation is insufficisnt, as at least emission rates
are less known and more important

d. The ability for inversion is therefore required to optimize emission
rates

e. Much is to be done for optimising multivariate covariance matrices
4. Conclusion

a. Fine grid resolution is required for air quality modelling, however
b. The finer the grid the more critical is meteorological modelling
c. Covariance matrices and performance statistics are essential;

operational application are essential
d. Tangent linear approximations and Gaussian error assumptions

often violated
e. Sequential assimilation algorithms appear to be less suited for

treatment of temporal effor coffelations
f. Ensemble ideas appear useful in one or another way
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Speaker Comment
ZahanZlatev How do you deal with the increasing resolution? With

gradients, meteorology and emissions? How do you deal with
the linear tangent approximations when they are not valid.

Hendrik Elbern Increasing resolution is firstly a computational problem. As
regards the degrees of freedom additionally incurred , the
radius of influence is the proper device to expand the
information gained by the measurement over the affected
model domain. On the time scale considered in air quality,
meteorology must be firstly optimized by meteorological data
assimilation, with little benefits to be expected from chemistry
observations. Emissions are taken as first guess, and then
subject to inversion based optimisation. The tangent linear
approximation is only valid if the first guess model run is in
the proper chemical scenario. For example, the model run
should be in a VOC a NOx restricted domain from the outset.

Arnold Heemink What is your experience with using the discretized adjoint of
the continuous forward model in stead of using the adjoint of
the discrete forward model?

Hendrik Elbern I think I can leave it to the mathematicians to work out the
technique to be adopted because I consider it to give less of an

elror than other sources in real case applications. Our
experience is based on a box model basis with this issue and
the differences found were not significant.

Arnold Heemink How many model computations for a gradient computation?
Hendrik Elbern Requires 3 computations
Leonor Tarrason Can you break the emissions down to sectors for assimilation?
Hendrik Elbern The emissions are broken down in terms of each grid point,

(also aloft to account for effective stack heights), and the 19

emitted species. The shape of the diurnal profile of the
temporal evolution is taken from the emission model.

Yvan Orsolini Stratospheric assimilation. Do you have to wolry about
chemical balance.

Hendrik Elbern No. This is exactly what 4D var does!
Michael Kahnert How would you include deposition in this. Will assimilation

improve deposition velocities?
Hendrik Elbern This is a possibility and is planned but it is not implemented as

yet
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Ensemble methods
8 An introduction to Sequential Importance Resampling - Sam

Erik Walker

Sam Erik Walker
Norwegian Institute for Air Research (NILU)

PO BOX 100, Kjeller, Norway

L Background
Assessing air quality can potentially be improved by combining models and
observations using different approaches. For regional scale air quality
assessments, this means primarily to combine a given regional scale air pollution
model with available air quality observations using different methods of data

assimilation.

The SIR (Sequential Importance Re-sampling) method (Van Leeuwen, 2003) is a
relatively new data assimilation method, based on a completely general Bayesian
statistical framework (Box andTiao, 1992; Berger, 1985). The method makes no
assumptions of linearity in the model equations, nor that the model or observation
errors should be Gaussian. This is in contrast with most other well-known
methods of data assimilation, such as the optimal interpolation (OI) method
(Gandin, 1963), the 3D-Var or 4D-Var methods (Lorenc, 1986); Lewis and
Derber, 1985), or different variants of the Kalman fllter (Kalman, 1960), which
assumes that the model evolution is linear and that the involved errors are

Gaussian. The SlR-method could therefore be interesting to apply in connection
with regional scale air pollution models since such models will generally be non-
linear with non-Gaussian errors when one includes photochemistry and/or
aerosol-chemi stry operators.

The method is also known as a Sequential Monte Carlo (SMC) method, Markov
Chain Monte Carlo (MCMC) method, or Particle Filter (PF). The recent book by
(Doucet et al., 2001) provides a good overview and insight into this particular
class of statistically based data assimilation methods. Another good source of
information is provided by the web site: http://www-
si gproc.en g.cam. ac.uk/smc/index.html.

The SlR-method, as well as other methods in this class, has already been applied
with good results in different scientific fields such as control theory, tracking,
perception etc, where non-linearity in the model plays a role. More recently the
SlR-method has been applied in oceanography (Van Leeuwen, 2003), and in
ecosystem population modelling (Losa et aI., 2005). No applications, however,
seem yet to exist for regional scale air pollution modelling.
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2 Bayesian statistics
As mentioned the SlR-method is based on Bayesian statistics, which in turn is
based on Bayes' theorem. For a model where the model state is defined as a
vector x containing generally n components, and observations are defined as a
vector y containing generally m components, Bayes' theorem can (in our context)
be written:

P(x'lxr,yo) = k'r(x'lxr)'L(x'ly") (2.r)

where xr denotes the forecasted model state (before observations have been used),

and xt denotes the true model state, which we want to determine as accurately as

possible, based on the model forecasted state xr and the set of observations yo. For
a regional scale model the model state could e.g., be defined as the one-
dimensional vector of all 3D grid cell concentrations, while the observation vector
can be defined as the one-dimensional vector of all (m) (simultaneous) regional
air quality measurements.

According to Eq. (2.1) the posterior density P of the true state xt given both the
forecasted state xr and observations yo can be calculated as the product of the prior
density n and the likelihood function L. The prior density æ summarises (in a

probabilistic sense) our prior beliefs about the true model state xt given the
forecasted model state xt, but before any observations yo are used, while the
posterior density P summarises our beliefs about the true model state xt after
observations are used. The link between them is the likelihood function L. This
function is defined by L(xly) = p(ylx) where p is the probability density of the
observations y given that the true model state is x. A likelihood function L could
for example be defined by assuming that the observation errors are multi-
dimensional Gaussian:

L(xtly") =
1

In Eq. (2.2) R represents the observations error covariance matrix (usually
diagonal with observation error variances along the diagonal, while H represents
an observation operator linking model states with expected observations, i.e.,
mapping any model state vector x in the n-dimensional model space into a vector
of expected observations H(x) in the m-dimensional observation space. The
values of the m-vector H(x) can be viewed as a set of expected observations,
given that x represents the true model state. In the likelihood function L, y is kept
constant equal to the actual set of observations yo while x is allowed to vary. For
example by using the Gaussian function for L in Eq. (2.2) the most likely true
model states are those model states x for which H(x) is close to yo. This is then
weighted against the prior density rc in order to form the posterior density P. The
value k in Eq. (2.2) 1s simply a constant so that P becomes a proper density, i.e.,
that P integrates to 1 over the model space.

In the SlR-method the user has complete freedom in specifying the prior density ru

and the likelihood function L. This is in contrast to other data assimilation method
like Optimal Interpolation (OI), 3D-Var or 4D-Var, or Kalman filters, which can

(zn)*'lrul''' "*pG; 
(y"- H (x' ))rR-l(y"- H (x' ))) rz.z)
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also be viewed as Bayesian statistical based methods, but where these functions
are always assumed to be Gaussian. The freedom to be able to specify them
arbitrarily is generally an important advantage of the SlR-method over the other
methods.

3 The SlR-method
The SlR-method operates with an ensemble of model states {"(t), i = 1,...,N},
where N denotes the number of ensemble members (the ensemble size). The
number of ensemble members is specified by the user and kept constant in the
method for all time steps. This is similar to other ensemble based data assimilation
methods iike the ensemble Kalman filter method (EnKF) (Evensen, 1994; 2003;
2004), and the reduced rank Kalman filter methods (Verlaan and Heemink, 1997;
Heemink et al., 200 I ; Segers, 2002).

In the SIR-method all ensemble members are considered to be equally likely, i.e.,
they will all have the same (discrete) probability 1A{. It is the positions x(i) of the
ensemble members, i.e., their spatial densities, in the model state space which
forms the basis for the approximation of the involved Bayesian prior and posterior
probability density functions (PDFs). Based on available observations, a re-
sampling step is included in the method, where each ensemble member will either
be kept and possibly multiplied (made into several identical or almost identical
copies) or removed from the ensemble, based on the calculated likelihood-
function values. The method is illustrated in the Figs. 1-3 below.

L,¡l

Figure 1: A Gaussían prior PDF (blue curve) represented by a discrete
approximation in the form of an ensemble of N = 9 red points with equal
probability 1/9.
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Figure 2: A non-Gaussian posterior PDF (blue curve) obtained by multiplying the
prior PDF shown in Fig. I with a likelihoodfunction. The same ensemble is used,

but now the ensemble members have dffirent probabilities (represented by the
new sizes of the red points)

In the figures the red points represents a set of ensemble members, which forms a

discrete approximation of the probability densities plotted. Fig. 1 shows a
(Gaussian) prior PDF, which is updated by a likelihood function to form the
posterior PDF as shown in Fig. 2. The size of the red points represents the
probabilities of the different ensemble members before and after multiplying with
the likelihood function. A re-sampling step is then performed in order to form a

new ensemble where each ensemble member again has equal weighting or
(discrete) probability 1/f{. This is illustrated in Fig. 3 (below) where the larger
points are replaced with 2 or more new points, while the smallest points have been
removed from the ensemble. This ensures that the posterior density is again well
represented with a new ensemble based on equal weighting.

Figure 3: After re-sampling the non-Gaussian posterior PDF (blue curve) is
represented by a new ensemble of red points again with equal probabilities (U9)

We will now turn to a more formal description of the method.
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Algorithmic steps of the SlR-method
Assume that we have en ensemble of N finally analysed or assimilated model
states from a previous time step k-1:

{*i:Í", *i:Í", ..., 
"î:Í.' }

(3.1)

where the ensemble members have the same posterior (discrete) probability P¡ =
1A{ for i = 1,...,N. For each ensemble member, a new forecasted model state for
the next time step k can be produced, by running the model to the next time step

k:

xl trr 
= vtu-r (xi:ft) ,0u ,tlf) ) for i = 1 ,. ' .,N (3.2)

In Eq. (3.2) 0k represents a set of additional model parameters, and r1¡ represents a

vector of stochastic variables describing model emors or noise. The parameter
vector 0¡ represents parameters of the model not included in the state vector x¡.
The model noise vector r¡¡ is important in the SlR-method, as it will be used to
generate a natural spread of the model calculated (forecasted) ensemble members

at time step k. The noise vector can be viewed as representing natural dynamical
model errors, which will be added as random forcing in the model equations.

Based on the new forecasted ensemble at time step k, an approximate minimum

variance estimate of the true model state xl at time step k before using available

observations is then:

xl = I*,*lt') (3.3)

where wi = 1Æ.{ for i = 1,...,N denotes the ensemble weights. Note that Eq. (3.3)
with the weighting chosen is an approximation of the expectance value associated
with the new prior PDF at time step k, since each ensemble member has the same

prior probability æi = 1/1.{ for i = 1,...,N inherited from the same equal (lnN)
probabilities for the ensemble members at the previous time step k - 1.

An estimate of the uncertainty of the estimated true model state can further be
calculated using the following expression for the second-order moments
(variance-covariance matrix) of the prior PDF based on the same ensemble:

(3.4)

Using available observations yi at time step k, updated weights'ôu, (probabilities)

will be calculated using a likelihood function L as follows:

f. ri)wk" 1 1

Piu = Ñ:å("1,- xi )(,1,0- -','
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where the superscript u denotes assimilated values (after observations have been

used), and where L denotes the likelihood function of x given the observations y.

As mentioned earlier, in Bayesian statistics the likelihood function is generally
defined by the conditional probability density function p(ylx) of observations y
given that the true model state is x, and then reversing the arguments, making L a
function of x given y, i.e., L(xly) = p(ylx).

A likelihood function L could for example be defined by assuming that the

observations are multidimensional Gaussian given the model state x:

L(*l"'lv") = 
#Wexp(-;(v"- 

H1xl(i);¡'n-l(v"- u(*l"')))

(3.6)

As described earlier, R here represents the observations effor variance-covariance
matrix, while H represents an observation operator mapping conceived true model
states x into expected observations H(x) in the observation space.

The next step of the SlR-method is then to perform a re-sampling of the ensemble

using the new assimilated probabilities or weights wf (i) 
. This is illustrated in Fig.

4 (below).

The re-sampling is done by sampling a new set of N ensemble members, with
replacement, using the old ensemble with the probability distribution given by the

assimilated probabilitieswf {i) defined by Eq. (3.5). Old ensemble members that

correspond well with the observations (high weights) will thus be kept and
possibly multiplied (several copies might be made), while those corresponding
poorly with the observations (low weights) might be removed. After the re-
sampling step, all ensemble members will again have equal weights or

probabilitieswf {i) 
= 1/l{.

FORECAST STEP ANALYSIS STEP

Figure 4: Re-sampling of ensemble members in the SlR-method.
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Based on the new assimilated ensemble at time step k, an approximate minimum

variance estimate of the true model state xl at time step k after using available

observations can again be written:

xi (Ð (3.7)

where wi = 1Æ.{ for i = 1,...,N. 4n estimate of the uncertainty of this estimate is
again provided by the following formula:

NI
i=l

"i 
= *åH(*T"')

xiw

(3.8)

In the observation space, an approximate minimum variance estimate of the true
observations can be calculated using the following expression:

(3.e)

with associated uncertainty (variance-covariance matrix) calculated by:

pi* = *|å(.I,',- *i)(*io,- { )'

e1* = #å("(*T,')) - cX )(Hrx1,,o; - ci )' (3.10)

Eqs. (3.2) - (3.10) represents the algorithmic steps of the SlR-method from one
time step to the next, and can be repeated for all involved time periods k = 1 ,. . . ,K.

A challenge in the method is to create a good initial ensemble {*f,'tt',..., x}N} at

time step k = 0. This is usually done by starting with a simple initial (e.g., global
background) model state, and then spinning up the model using some iterations
with Eq. (3.2) applying "sensible" perturbations of the involved model state x¡
and parameters 0¡ using the random noise vector r¡¡.

This completes the description of the algorithmic steps of the SlR-method.

Discussion
Note from the above description that the SlR-method handles each ensemble
member separately except for the re-sampling step (which is of low complexity).
The method is therefore highly suited for parallel processing. It is also
conceptually very easy to implement since it avoids the use of any minimization
procedure or matrix inversion. For large (regional scale) models the
computational time should be roughly proportional to N runs of the model on a
single processor machine, but if several processors are avallable the model
forecasts could be run in parallel.

Due to the simple update equations the method can in principle handle any kind of
non-linearities in the model M itself or in the observation operator H. A regional

NILU OR 4312006



51

scale model will typically be non-linear due to the inclusion of photochemistry
and/or aerosol chemistry in the model equations. The observation operator H
could be non-linear if e.g.,line- or point source sub-grid models are included in
this operator in order to compare with observations.

A nice feature of the method is that it can also easily provide estimates of
uncertainties in the model state variables, e.g., in the calculated regional scale

model concentrations. It is also possible to calculate probabilities of exceedence

of limit values.

The ensemble size N needed in practical applications with the method generally
depends on the regional scale model itself, the number of model state variables,
and the number and placement of observations. It is difficult to specify in advance

exactly how large N must be. A trial and effor procedure must usually be
exercised in order to find the optimal number of ensemble members. Probably it
must be at least in the interval 25-100. If N is chosen too small, the method may
suffer from convergence problems in high dimensions since it depends on a

Monte Carlo random draw approach. It is probably most easy to use in situations
where the posterior PDF has a single maximum.

A smoother version of the method also exists - called Guided SIR - that uses a
range of observations over a specific time window to calculate the likelihood
function (Van Leeuwen, 2003). This may enhance the applicability of the method
for regional scale models since the ensemble size can then probably be made
smaller.

4 Application on a simple LD atmospheric transport model with
photochemistry
The SlR-method has recently been tested on a one-dimensional atmospheric
advection-diffusion model with photochemistry (Walker et aI., 2005). Simulated
experiments, defining a set of true input parameters, and resulting model
concentration, were performed to see if the method could handle systematic (bias)

and unsystematic (random) effors in the input data, and still be able to produce

assimilated values close to the true state. The effects on the performance of using
different observations likelihood functions, such as Gaussian or Lorentz
(Student's t) distributions were also tested.

The lD model tested was:

âc ôc

ðt ôx
.*(0.#) .R+q (4.1)

where c is a space (x) and time (t) varying concentration vector (pglm) containing
the species NOz, NO and 03, u is the wind speed and k" a turbulent eddy
diffusivity coefficient. R denotes the nonlinear fast reaction NOz-NO-O¡
photochemistry operator, and q represents emissions of the same three species.

Boundary and initial conditions were given by c(x,t) = ce for x = 0 and x = nAX,
and for t = 0, where cs denotes a set of background concentrations of the three
species. The physical domain [0, nÀx] was divided into n grid cells each with
length Ax. For the tests performed here n = 50 and Ax = 1000 m. Eq. (4.1) was
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then discretized and solved on an hourly basis using hourly input data of u, þ, q
and cs, and separate operators for advection, diffusion and photochemistry (Bott,
1989; SlØrdal et a\,2003).

Experimental set-up
The model was run for 2 weeks (336 hours). Realistic hourly values of wind speed
(u) and temperature difference (ATro--z-) were taken from a meteorological
station close to Oslo, Norway. The station is placed in a relatively flat and
homogenous area (zo = 0.1 m). A meteorological pre-processor was used to
calculate horizontal turbulence intensities v.. and diffusion coefficients k* as

0.1.Ax.ou $lØrdal et al., 2003). Expected values of emissions (q) and background
concentrations (cs) were set equal to 10-3 , 9'10-3 and 0 pglm, and 10, 0 and 50
prglm respectively for each of the three species, constant for all hours.

The model state vector x was defined as the concentration grid vector c. In order
to create the initial ensemble and to update the ensemble from one time step to the
next, actual input parameters u, h., q and cs to the model was drawn randomly
using lognormal distributions. The hourly observed values were used as mean

values in these distributions, and the standard deviations were assumed tobe 407ô

of these values. The values were set equal for all grid cells.

True values 0t of the above parameters were defined using the expectance values
and an assumed bias factor il= 1.2 (207o bias) as follows:

u' = E(u)'f, , kl = E(k" ) .fo and q'= E(q/fo

True background values were always assumed to be unbiased i.e. cst = E(ce).
Pseudo-observations of NOz were assumed to be Gaussian or Lorentz-distributed
around the true model concentrations using a standard deviation equal to 57o of
the true value for each hour. We assumed no observations of NO or 03.

Results
The results are shown in Figs. 5 and 6 (below) for ensemble sizes N = 25 and N =
100 respectively. In both figures hourly concentrations of NOz from grid cell
number 27 (of the 50 cells) are plotted. Only the tests performed with the Lorentz
(Student's t) distribution are shown here. It was found that this gave somewhat
more stable and consistent improvements than using Gaussian distributions.
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Ensemble size N = 25 and observations in grid cell 10
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Figure 5: Results of the SlR-method using an ensemble size N = 25 and
observations in grid cell l0 only. Concentration values of NO2 from grid cell 27
(of 50) are plotted. Unit: pg/m.

Ensemble size N = 100 and obs. in grid cells 10 and 25
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Figure 6: Results of the SlR-method using an ensemble size N = 100 and
observations in grid cell l0 and 25. Concentration values of NO2from grid cell 27
(of 50) are plotted. Unit: pg/m.

From the figures we see that the assimilated concentrations (red curve) lie
consistently closer to the true concentrations (green curve) than the unassimilated
concentrations (blue curve), although the improvement varies with time. This
shows that the SlR-method works reasonably well on our test problem. The
yellow and orange curves in the figure represents respectively the 2.5 and 97.5
percentiles of the assimilated (posterior) concentration distributions based on the
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ensemble members. Increasing the ensemble size N from 25 to 100 and the
number of observations from 1 (grid cell 10) to 2 (gnd cells 10 and 25) improves
the results. Increasing N further does not lead to any great improvements, since
the model error statistics seems to be well represented with 100 ensemble
members. Increasing the number of observations leads to some improvements in
the results, but moderately after two observations have been introduced. This is
probably due to the lD structure of the model, and the fact that the emissions are

distributed homogeneously in all grid cells. Most of the information about the true
state seems to be contained in a few observations of NOz.

In Fig. 7, the probability of exceeding 100 ¡rglm (as an example), and in Fig. 8,

the number of unique ensemble members is shown as a function of time (hours)
for the run with N = 25 and observations of NOz in grid cell 10. As can be seen

from the figure we avoided ensemble collapse (i.e., very few unique members in
the ensemble) during the run with N = 25. This was also true for the run with N =
100.

Ensemble size N = 25 and observations in grid cell 10
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Ensemble size N = 25 and obærvations in grid cell 10
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Thus, to summarize, the SlR-method seems to work well on the lD advection-
diffusion photochemistry model tested here, reducing both model bias and
uncertainties if observations of NOz are available. Likelihood functions based on
Lorentz (Student's t) distribution seems to generally give the best results.

5 Concluding remarks
To summarize ovr presentation of the SlR-method, the method has the following
properties on the plus side:

o It is easy to implement, no minimization procedure or matrix inversion
needed

o It is flexible to model parameter or physics stochastic effors
o It does not intrude on or change the model physics. Only changes the

probabilities of different model states
o It is especially suited for non-linear models with non-Gaussian PDFs
o The discrete PDFs will converge towards true PDFs if the ensemble size

goes to infinity
o It is easy parallelizable if more processors are available
o It is easy to calculate assimilated model uncertainties even when there are

no observations

On the minus side:

It may need a large ensemble size N since it is a Monte-Carlo method in
high dimensions
It may be difficult to create a good initial ensemble representing the prior
PDF
It may be difficult to track the true model state if the PDFs involved have
many local maxima (multi-modal distribution)

a

a

a
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It remains to be seen though, if the issues of non-linearity and non-Gaussian pnor
and posterior PDFs, are sufficient to warrant the use of this method for regional
scale air pollution models, over other more traditional methods of data
assimilation, like optimal interpolation, the variational methods or Kalman filter
methods.

References
Berger, J.O., Statistical Decision Theory and Bayesian Analysis, Springer Verlag, 1985
Bott, A. (1989) a positive definite advection scheme obtained by non-linear renormalization of the

advective fluxes. Mon. Weather Rev. I17, 1006-1015 and 2633-2636.
Box, G.E.P and G.C. Tiao (L992) Bayesian Inference in Statistical Analysis, Wiley Classics

Library Ed., New York.
Doucet 4., de Freitas N., Gordon N., editors, Sequential Monte Carlo methods in practice,

Springer Verlag, New York, 2001.
Evensen, G. (2004) Sampling strategies and square root analysis schemes for the EnKF, Ocean

Dynamics,54,539-560.
Evensen, G. (2003) The ensemble Kalman filter: Theoretical formulation and practical

implementati on, Oc ean Dynamic s, 53, 343-367 .

Evensen, G. (1994) Sequential data assimilation with a non-linear quasi-geostrophic model using
Monte-Carlo methods to forecast error statistics. J. Geophys. Res.,99 (C5), 10143-10162.

Gandin, L.S. (1963) Objective analysis of meteorological fields, Gidronteteorologicheskoe
Izvdatel'stvo, Leningrad, USSR. English translation by Israeli Program for Scientific
Translations, Jerusalem, 1965.

Heemink, A.W., M. Verlaan, and A.J. Segers (2001) Variance reduced ensemble Kalman filtering.
J. Mon. Wea. Rev.l29,I7I8-I728.

Kalman, R. (1960) A new approach to linear filtering and prediction problems. Trans. ASME, Ser.

D, J. Basic Eng.82,35-45.
Lewis, J. and J. Derber (1985) The use of adjoint equations to solve a variational adjustment

problem with advective constraint. Tellus 371^,309-322.
Lorenc, A. (1986) Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc.

ll2, Lrj7 -rr94.
Losa, S. et al., Sequential Importance Re-sampling Filtering in Ecosystem Modelling, European

Geosciences Union General Assembþ, Vienna, 24-29 April 2005
Segers, A. (2002) Data assimilation in atmospheric chemistry models using Kalman filtering,

Ph.D. thesis, Delft University.
Slørdal, L.H., lValker, S.E., Solberg, S. (2003) The urban air dispersion model EPISODE applied

in AirQUIS26e3. Technical description. Kjeller, Norwegian Institute for Air Research (NILU
TR t2/2003).

Van Leeuwen, P. J. (2003) A variance minimizing filter for large scale applications. J. Mon. Wea.

Rev. l3L,2O7 I-2084.
Verlaan, M. and A.W. Heemink (1,991) Tidal flow forecasting using reduced rank square root

fiIfr;rs. Stochastic Hydrology and Hydraulics I1,346-368.
Walker, S.-8. (2005) Application of sequential importance re-sampling for lD atmospheric

chemical data assimilation. Poster presented atthe IAMAS 2005 conference inBerjing, China,
2-11 August2005.

Discussion

Speaker Comment
Sam Erik
Walker

Is this methodology to complex to apply in reality?

Hendrik Elbern This approach could identify and solve some of the difficult
problems
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9 Data assimilation in atmospheric chemistry models using
ensemble methods - Arnold Heemink

Arnold Heemink
Delft University of Technology

The slides presented by Arnold Heemink are included in the appendix to this
report. The contents of the talk included the following major topics and
conclusions.

1. Introduction and motivation for the use of data assimilation and ensemble
methods including real life applications of data assimilation

2. A description of ensemble Kalman filter algorithms for large scale systems
including

a. Linear dynamics F(k) and constant parameters: State estimation
using Kalman filtering

b. Ensemble Kalman filters (EnKF)
c. Reduced Rank square root filtering (RRSQRT)
d. Reduced-rank Kalman filters (RRKF)
e. Complementary Orthogonal sub space Filter For Efficient

Ensembles (COFFEE)
3. A presentation of methods for model reduced variational data assimilation
4. Conclusions

a. Kalman filtering of many large scale non linear numerical models
is now feasible using Ensemble Kalman filtering

b. For the estimation of constant parameters the variational methods
are superior

c. The adjoint implementation may be avoided using model reduction

Discussion

Speaker Comment
ZahanZlatev THe production of adjoint codes is not so large a problem now

days as converters are available
Arnold Heemink This is true if you are programming now, you can write the

code so that it is suitable for the creation of adjoint models.
However when you have a code that 20 PhD students have
contributed to then this is not so easy

Arnold Heemink Ensemble Kalman filter probability distributions are always
positive definite. It is notable that the ensemble filter type is
more robust than the reduced rank filters.

Arnold Heemink Adjoint methods are better than ensemble methods when
assimilating non-stochastic parameters

Arnold Heemink Ensemble kalman filter is difficult to beat
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10 NMR project discussion

The final part of the meeting was used to plan further activity of the project. It
was decided that in 2006 a Nordic assimilation dataset should be compiled that
will contain the relevant observational data for all the participating institutes
including ground based, satellite and other remote sensed observations. This will
lay the foundations for any further intercomparative assimilation studies and will
allow the participating groups to cooperate closely on a single project. It will also
facilitate the development of knowledge in regard to the requirements of good
observational data (for assimilation purposes) including the need for an

understanding of information related to uncertainty, spatial and temporal
representativeness and data capacity requirements. Compilation of the dataset will
also aid in identifying gaps in the available data and will allow each institute to
gain from the others expertise in their own particular field.
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Appendix A

Slides from the presentations by Hendrik Elbern
and Aarnold Heemink
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l. General problem appraisal

. Is data assimilation useful?

. )Finally the "users" decide.

. )Users are Environmental agencies, who have to
care for the'þerson in the street".

. ) Use kerb site stations, really?

. ) Consequences for the implementation and
computational demands?
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Computational complexity cstimatc olthc vâriâtionâl âlgor¡thm

Nx*Ny*Nz spatialdimensionsO(l0a-105)
N. # co¡stituents 0(100)
Nr # time steps ofassimilation winclow 0(10-100)
N" # operators O(10)
const intermediate results O(l0a)
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l

operatofiis
I level 2
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Incremental Formulation
. Analysis State: æ" : æb + òa,,

u" :ut'+òu"

. New,,State" Variables:
tt = ll'-Lt 'ò4

to = K-l/2Ã¡t

. Cost Function:
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Background Error Covariance Matrix B
. must be provided as an operator (size is of order I 0lr)
. we would like to haye ân operator which can easily be factorised by

Bl'lBl/r
. a choice under fest¡ng:

generalized diffusion equation seryes for a valid operâtor generating
â positive definite covarìânce operator

- diffusion equation is selfadjoint
Br'r and Br/rby applying the diffusion operator halfthe diffusion
time

B :tct
C = CL/2CT/2

cr/2 : LLt/2Lr/2
qT/z - 1,T,,/2ar/z ¡
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m

Calculation Speed + Parallel Implementation
. three complete foryard runs * one single adjoint run
. an adjoint piece ofcode needs about twice thc timc

-+ 20 iterations need (3 + 2) o 20 = 100 times of a foryard run

--r parallel implementation needed

. grid partitioning: ,domain decomposition method"
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Nomâlised d¡umãl cycle olanthropogcnic strrfâce emiss¡ons/r,)
¿ dt¡ssion (t)=l(t to caion,spec i¿ sduÐ * r( lo ca t ¡on,species)

lø' ih {t\.ú¡ag dar. tuûhkr. siltu!¿r} r optint¡:ation pamn¿t¿r
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'" 1. .1

#Gã 
Þrh¡b¡m¡r¡rbd¡.aeid!.ù¡r¡úsprMbúeNilodd! 

E

Background emission rate covariance matrix

I '10.¿
I rl!6
l.l*
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ffiã r:
t3.

I reatment oI the lnverse problem to lnler emlssron rates

Eriadbn tiúer Êf.*P

lMlm¡i$iênÊ thdrgdâ')

#Gt 
Dda trdnilhron h NsroNrlcoìc ¡hn'phdc snntd nhd.h 

n

Optimisation of emission rates
. amplitude optimisation for each emitted species and
grid cell

T
I
I

ts

Þlâ isimi¡i!to8 ùt rcB¡o¡âl rih â1¡16¡ùc.ir
la. lorrmùèr 100s

l
@ Cridpoinßcontributingtothecalculaliono[lhceastcrlyfluxintoxi(4rhordcrpol.)

a Crid poi¡ß confibuting to thc calculation of the âdjoint of $id point at xi.l

Data exchange for parallel adjoint transport

processor Pn

processor Pn*,

11

xit: X,'r x,,¡ X',r x-r

ilÏ111

!¡ls *!¡dhliùû ù¡e:oûil sc¡¡r úDospte.t.[edcd ùûdeh
lS. Iolcßhcr ¡û03

Reduction of the partial cost functions
relative to obssrvation type (coarse grid, 54 km)

CO ground in situ
S( sârcllilc coh¡nns
SP satellirc proñics
TO tolal cosls
I \l ii.r r,¡,:,r,,ì rr,i
BC stat¿ bacl,grrur¡
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F#ffi t¿tñ r!;ibi¡iti¡c l!.!4lorâì rcrltrrnrôrpb¡.i. inQ¡i.-lrrodi!; 7

Semi-rural measurement site Eggegebirge

8. 1997

¿á

ffi

+ obserl'ations
no optimhâtion

¡n¡liîl \ rlu{r 0pl.

(nr¡s. râlr opt.

jo¡nt enris t

in¡ 1'âl opL

ffiæ:t r1913 i!54ìiil¡!&.¡ tiÌ r¡çirrr.ì !.r¡.rrnD!ìfr.ric rnc¡i{¿r ìod.!r n
effor slafistics

bias (top), root mcân square (botlom)

4Å

ffi

#ffi; 
!d: asaaikrbn i¡ .+bùri¡a!: ai¡úlfn¡t úc,Nrr s¡ùi! 

A

box: Rhine-Main area (Frankfurt-Mainz)
9.-10. Aueust 1997

3
!
I

¡¡
I

+ obseNâfions
no opt¡misâtion

¡nit¡il \¡lue opl.

0mis. rîtc opt.

E

¡
! sel d,Å"

!
¡
!

joint emìs +
¡n¡ \'al oDt

lÌ¡!: a$i.ri¡i1iaù !ì..Fianit {aì¡ sti¡i¡!tn¡rie.:bqnii:l r}rn¡li
t..- \o..mbc. lad'È

BERLIOZ grid designs and observational sites
(20.à2-1. 07.lee8)

- 

t-

':'-' , r-
I,/'i

4_,U

r:l ^x:2.kfr 
.

ææ! Drl¡ iqnr¡l¡l¡où ir rqi@d !ùlÈ 
'!ùùpt!rnr 

ùhrr!¡(rt Ìoil(lJ
li. ìor!EhLr:i05

F

Some BERLIOZ examples of NOx assimilation
(20.>21,.07. 1998)

sr9
á'4
*'"-2

ËE

il",

*- -:alla:=1=-- 
l';l

'i¡llr l¡ ¡'[ 1\ I

,lìe.,årL\-,i

T
I
I

¡
I
I rffi

Time sê¡ies lor selected NOx stations (upper panel NO, lower panel NOr) on nest 2.
+ obseryations,
.. - no assimilâtion,_ N1 assimilâtion (18 km), _N2 assimilation.{6 km),
-gaeyshâding: assimilated observalions, olhersforecâsled

E#IEã 
Diln ù"!ililiuû ir ¡eeiroúrJ(d.¡t¡ú'Ìbqit ùqdcd údd5 ç,

Emission source estimates by inverse modelling
Optimised emission factors for Nest 3 E

r
I

I

g
.!p

'Ë

[H1
hr¡

ili n$ ffixi
NOr, (xylene (bottom), CO (top), and SO, (from left to right).
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rcß¡o¡d st{k ¡tqìNÞhc.il' incnil.ål ùlodrß

with assimilation

Nest 2: (surface ozone)
(20è21.07.1998)

without
assimilation

ffiã t5_ ç
CONTRACE

Nov. 14,2001 north (= home) bound
NO

ol

T
T

f
T
I
I

HrO, ¡
Ii
Il

co
T
I
I

T

I
f

- . - I. grrcss 
- 

assìmilaLion rcsull ..-.-. obseryâtions 

-flight 
hcight [km]

#Gã 
hhùriù¡rdh¡ ¡d ies¡oddstilè¡:nè!P¡ûk cùoüdroßeb Ê

IUP Bremen GOMEàGOME forecast validation
modevretrieval ratio for BERLIOZ 20. (assimilated) + 2 l.(forecasred) 7. 1998

no assimilation

7.98

67

ËrGãÌil¡srrüþilúhr{roüdicâìc¡hosrhsrsmlhil.sdds â

CONTRACE
Convective Transport

ofTrace Gases into the

Troposphere over
Europe: Budget and
Impact of Chemistry

Coord.: lL Huntrieser
DLR

flight path Nov. 14,

2001

Example: BERLIOZ episode 20.7. I 998

o

o

o

E

9

'É 
"i;;

ori

tqio.JscJc ¡húlpl.rjr

¡,
ii1:

KNMI GOME)GOME forecast valid¡tion
modevretrieval râtio for BERLÍOZ 20. (âssimilâled) + 21.(forecasted) 7.1998

no assimilation with assimilation

7.98

forecast
2t.'7.98
(not
assimilated)
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#Iã 
hhùsndhftnhrcsloml\'cilrårryh.hù.ükilùdde 

Ç

GOME ozone profile assimilation BERLIOZ (20.7.1998)
Data: Neuronal Network retrieyal et

+ NNoRsY

#f,Ç 
hþs!ùilhrha ¡rr rclhml sdo¡hlsph{ùclonkalnddi â

An examplefor âerosol dala assimilation
PM2.s [¡g/mr]

Nol€: colour codc scâling ditrerent!

r rø uF hil'¡¡l

I

#Gt 
,ilt*rÐiÂüdrùKeromrlcdÌ¡hcrhrcù(dmt¡úùk 

Ç

layer:

Ozone observation increment 20.07. I 998

200-100 hPa
ofinfluence: 200 km

l
I

t:

height dependent influence radii

æGt 
DeûÂslnrrårbtrlnrqroNr*deårqhil{ùemkdmñdi 

F

Summary

. chemical weather forecasts are a multiple scale
problem

. chemical data assimilation rests on sparse and
heterogeneous observations, with variable error
characteristics (incl. error of representativity)

. initial value optimisation is insufficient, as at loast
emission rates are less known and more important

. the ability for inversion is therefore required to
optimize emission rates

. much is to be done for optimising multivariate
covariance matrices

#E t5. ç
Preliminary conclusions

. fìne grid resolution is required for air quality modelling,
however

. the finer the grid the more critical is meteorological
modelling

. covariance matrices and performance statistics are essential
) operational application are essential

. tangent linear approximations and Gaussian error
assumptions often violated

. sequential assimilation algorithms appear to be less suited
for treatment oftemporal error correlations

. ensemble ideas appear useful in one or another way
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DATA ASSIMILATION IN
ATMOSPHERIC CHEMISTRY MODELS

USING ENSEMBLE METHODS

Delft University of Technology

Joint work with l\4artin Verlaan. Remus Hanea.
Alina Barbu and Peter Vermeulen

Arnold Heemink

69

nlrodrrcl()n ¿ilo Dt)lrvalû¡ S{)ûre real lllÊ

dpl)lr(ìatr()rìs ol ñala assÍrìrlal()|

[:nsernble Kai¡nan iiller aiq()illhr¡s for iarqH saalê

\/1(xlel feaiotìeo vaûalrorìal oalê assilrìrlaIrnl

Overview

1Ut4t2.ü6

Some real life applications of data assimilation

Grid of Ozone prediction model

Some real life applications of data assimilation

Model result without data assimilation

12¡142W4

Some real life applications of data assimilation

Model result w¡th data assimilation

t2jluNt

Some real life applications of data assimilation

Ozone concentration ¡n val¡dation station

12tl4200A

Data assimilation using Kalman filtering
NILU OR 4312006
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GEF-DNK

GBR RL

Some real life applications of data assimilation

.'.,' GEF-DNK

, -._ GBR]FL

(b) Noise factor for emissions of VOC

45

u.

a

5-

"=

3:

:

Some real life applications of data assim¡lation

X u*, = f (X ¡, p, k) + G(k\l\

Zo-M(k)Xr+vr

where X is the slale, p is vector ol uncerlaln parameters. f
represenls lhe (numerical) model, G is a noise input
matr¡x and W is zero mean syslem noise with covaÍiance O

where M rs the measurement malrix and V is zero meân
measuremenl noise wilh covariance R

State space model

The (non linear) physics:

The measurements:
, x r¡ =!112, - u 1t ¡x ry',,

Lllx., - f (x u, p, Ðll:"*,,, * 
"llp 

- p"lli,+

Formulation of the weak constrainl data
assimilation problem

It is desired to combine the dãla with the stochast¡c

model in order lo obtain an optimal estimate of the
ståte and parameters of the system.

We defìne lhe criter¡on (MAP est¡male):

10

x[
4
4
ry

Linear dvnamics Flkl and constant
parametórs: State estimation using
Kalman filtering

A recursive algorithm for k=.1,2,... lo determine

Opt¡mal estimate of the state at time k us¡ng
measurements up to and includ¡ng k-'l

Covar¡ance matr¡x of lhe estimal¡on error

Opt¡mal esl¡male of the state at time k us¡ng
measurements up to and including k

Covariance matr¡x of the esl¡mat¡on error

i=+
s = r... -9+...1'J.v-t
P=.ÇSr

Ensemble Kalman filter (EnKF)

To represent the probab¡lity density of the slate

estimate N ensemble members are chosen

randomly:

12

Data assimilation using Kalman filtering



A model reduction approach to data
assimilation

Arlrl I'r()terrr 1lìe "rrqrr'¿ìl rr,rxrel,ìrll(ì thr\ \,rt, \t)H{ ts
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I lrts \r¡1, \t)a(;e (:arì l)e ,,elerr,rrìeil i,v 'rìilì(r(¡lrnL¡ lir..
l-( )l rt Drrrrn(:al ( )rtiroq(ìrìar Fü,ìrlrrìrsr ('r àr' erìse¡ilnlÊ
ol rrìr)r)ei srrJrl¡lâlr.rì!

,2142M5
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A model reduction approach to data
assimilation

rre¡rÊr¿lp âr, pilserrrblÉ 
'rt \ r¡rrrrtel sil¡ìi,lalr)¡ì.

[)ÊlêrilÍ,e ltìc,t (t(ìr¡ìr¡arì! F{)l ì,ll' \r)ar;p {

P¡{)le(rl (,rrqrrral,ili¡rel orrl' í'rlhrr rertrrrres 't
lrrOrlr("rai ür()(rPl qrììrialÍ)rrs I lrF r(il(jIll ts rì('û

P-rlxrr, lire' 4rlrrrìr/ârr.r'r,r' teori,:eo \tra(:r

Rel)eat 1lìe tilr:ess trrìr¡, llrF \l¿rrl rl 
'ìe(.essâr\

-I

1214t2&5

EOF - patterns

Data assimilation using Kalman filtering
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sl:-*rr*¡....&-_

\=lrr*r

Minimizing an objective function

lzlÅtM

Results - 42 parameters

t2t14t2W5 I

. :,.'r i -'

Kalr¡ìar ¡11e('r(1 ol Ûìailv iarup sr:aie ¡¡¡¡lr llne¿t
rrrrrilerroirl rilrrreis r\ ilo\ù ieåsrhle Lrsrì!i
[-rserthle Kâir¡râo ¡11êrr ra

l-(¡, lirp eslrrìr;ìlr{ìrì r'l rrnìslarìr l)ar¡rrÈlFr\ rlìê.

/arralÍ)nâl l ¡eliìr irr:. .ìrÞ sr¡0pil('Ì

I lìF â(¡t('rrlt tr¡rlìlÊr'ìerìlalr(ìr, r¡râv l)F av('roer:
!¡sIr0 rrr()(rei rerl[(lrrr

Conclusions

Data assimilation using Kalman filtering
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