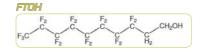

Toxicological studies of PFOA (Perfluorooctanoic acid) and 8:2 FTOH (1H, 1H, 2H, 2H-Perfluorodecanol)


Nilsen A-J¹, Osmundsen H³, Berger U², Fonnum F¹

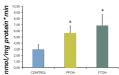
¹Norwegian Defence Research Establishment (FFI) Kjeller, Norway ²Norwegian Institute for Air Research (NILU), Tromsø, Norway ³Oral Biologi, University of Oslo

INTRODUCTION

- · Fluorinated organic compounds have been manufactured for more than 50 years. They are employed in the production of fire-fighting foams, herbicides and insecticides, lubricants, paints, adhesives and acid etching solutions (Jackson, Laikhtman et al. 1999; Kannan, Franson et al. 2001)
- These compounds have recently gained much attention because of their high stability and wide distribution in the environment.

MATERIALS AND METHODS

- Male HanTac:WH rats (300g) were exposed to 25mg/kg body wt of PFOA or of 8:2 FTOH per oralt for ten successive days.
- Peroxisomal β-oxidation (Osmundsen, Braud et al. 1998) and liver carboxylesterase was measured (Sterri, Johnsen et al. 1985)
- Catalase was assayed as disappearence of H_2O_2 at 240nm.
- Changes in gene-expression were monitored by using 7K Rat micro-arrays from the microarray core facility at NTNU Trondheim (7K-S1-62-65).


RESULTS

Chemical analysis in liver after PFOA and FTOH treatment

Table 1: Each value is mean from six animals. (* p<0.05, Anova, Dunnet's test).

	PFOA analyses ug/g liver- tissue	Changes in body- weight(g)	Liver- weight(g)	Liver- weight % of body- weight(g)
Control	0,5	26,3	11,6	3,7
PFOA	50	8,3*	15,8*	5,5*
FTOH	5	21,8	15,9*	5,0*

8 - oxidation

measured spectrophotometrically at 340 mm as rates of palmitoyl-Cod-dependent reduction of NAD+. Each value is mean + SD from six animals. The results show a significant increase in peroxisomal 6-oxidation after treatment with PFOA and FTOH (*p-Co.01, Anova, Dunnet's test).

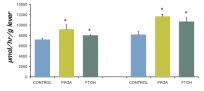
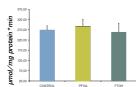
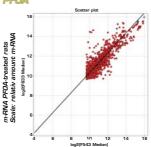



Fig 1: Liver carboxylesterase activity was measured spectrophotometrically. The substrates, 4-nitrofenylacetat (4-NFA) (0.6M) and 4-nitrofenylbutyrat (4-NFB) (0.15M), were converted to 4-nitrofenol which was measured at 400 nm. Each value is shown as mean + SEM from six animals. The results show that the carboxylesterase-activity is significantly higher compared to control with 4-NFA and 4-NFB, for both PFOA and FTOH treated animals (*p<0.05, Anova, Dunnet's test).


disappearence of H₂O₂ at 240nm. Each value is mean + SD from six animals. The results show that the catalase activity was not significantly changed in the PFOA or FTOH treated animals.

Microarray

Microarray was used to monitor levels of m-RNA in rat liver, m-RNA from vehicle treated rats was labelled with Cy3 (F 543-green color), m-RNA from rats treated with PFOA/FTOH was labelled with Cy5 (F633-red color). Mixture of Cy3 and Cy5 results in yellow spots. All together 7000 genes were examined.

PFO₄

amount m-RNA m-RNA

FTOH FTOH treated rats relativ amount m-RNA

Rig 8: Scale: relative amount m-RNA m-RNA

Scatterplots are shown as log₂ plots of the two channel intensities, log2 633 versus log2 543. Spots that fall on the 45° diagonal represent those m-RNAs whose abundances are equal for the vehicle rats and the PF00-/FT0H treated rats. Spots away from the diagonal represent differential expressed gene

Tables 2-5: Indicating different groups of genes expressed as ratio PFOA/Control, FTOH/Control

Table 2

Mitochondrial and peroxixomal genes	PFOA	FTOH	
2.4-dienovi CoA reductase 1 mitochondria	7,9	7.6	
Acetyl-Co A acetyltransferase 1 mitochondrial	4.4	6.2	
Carnitine palmitovitransferase 1	2.4	2.9	
Dodecencyl-coenzyme A delta isomerase	11,5	9.3	
Enoyl coenzyme A hydratase 1	2.6	2.9	
Acetyl Co A acetyltransferase 1 mitochondrial	4.4	6.2	
Acyl Coenzyme A dehydrogenese long chain	3,6	3.0	
Stearoyl-Coenzyme A desaturase 1	6.8	5.6	
Serine-pyruvate aminotransferase	2.5	2.6	
Acyl-coA oxidase	10,8	13,0	
Engyl-Goenzyme A hydratasa/3-hydroxyacyl Coenzyme A Dehydrogenase	15,3	14,8	
Dodecenovi coenzyme A delta isomerase	11.5	9.3	
Cytosofic acyt-CoA thioesterase 1	21.6	29.4	
Stearovi-Coenzyme A desaturase 1	6.8	5.6	
Catalase	1.3	1,2	

Table 3

Xenometabolism genes	PFOA	FTOH
Cytochrome P450 subfamily IVB polypectide 1	22.0	25.0
Cytochrome P450 subfamily IIIA polypeptide 3	1.5	5.2
Cytochrome P450 subfamily 2e1 (ethanol-inducible)	3,7	2,1
Rat Cyp4a locus encoding cytochrome P450 (IVA3) mRNA complete cds	6,1	6,1
UDP glycosytransferase 1 family polypeptide A6	2,8	3,7
UDP glycosyftransferase 1 family polypeptide A7	3,2	2,7
UDP-glucuronosytransferase	0,5	0,5

Acute phase genes	PFOA	FTOH
Sulfotransferase hyroxysteroid gene 2 Heat shock 70 kD protein 5 Serum amyloid P-component Transthyretin	0,2 1,6 0,6	0,0 0,3 0,3 0,4

Various genes	PFOA	FTOH
Cd36 antigen	10.5	
Metallothionein		0,1
Aldehyd Dehydrogenase 1 subfamily A1	9,2	10,5
Alcohol dehydrogenase (class 1)	2,5	1,5

CONCLUSION

The results show that exposure to 25 mg/kg PFOA or FTOH per oralt for ten successive days leads to increased liver weight and changes in gene-expression in rats. Gene-expression of m-RNA in liver was 2 to 30-fold increased for more than 50 genes (some of the genes with increased or decreased expression are shown in table 2-5). As an example β-oxidation was increased 2-3 fold (and m-RNA also increased 2-30 fold), whereas no change was observed for catalase, (m-RNA increased 1,2-1,3 fold)

Jackson, P. E., M. Laikhtman, et al. (1999). 'Determination of trace level perchlorate in drinking water and ground water by ion chromatography.' <u>J.Chromatogr. A</u> 850(1-2): 131-5.

Kannan, K., J. C. Franson, et al. (2001). 'Perfluoroctane sulfonate in fish-eating water birds including bald eagles and albatrosses.'

Environ Sci Technol 35(19): 3065-70.

Osmundsen, H. H. Braud, et al. (1998). 'Effects of dietary treatment of rats with eicosapentaenoic acid or docosahexaenoic acid on hepatic lipid metabolism.' Biochem_J 331(Pt 1): 153-60.

Stern; S. H. B. A. Johnsen, et al. (1995). 'Are conditionation and deviation and deviati