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Summary

At the example of the April-May, 2010 volcanic eruptions of
Eyjafjallajokull, Iceland, we demonstrate for the first time
that dramatic improvements can be made in quantitative pre-
dictions of the fate of volcanic ash emissions, by using an
inversion scheme that couples a priori source information and
the output of a Lagrangian dispersion model with satellite
data to estimate the volcanic ash source strength as a func-
tion of altitude and time. From the inversion, we obtain a total
fine ash emission of the eruption of 8.3+4.2 Tg for particles
in the size range of 2.8—28 pm diameter and extrapolate this
to a total ash emission of 11.9+5.9 Tg for the size range of
0.25-250 pm m.

We evaluated the results of our a posteriori model using
independent ground-based, airborne and space-borne meas-
urements both in case studies and statistically. Subsequently,
we estimate the area over Europe affected by volcanic ash
above certain concentration thresholds relevant for the avia-
tion industry. We find that during three episodes in April and
May, volcanic ash concentrations at some altitude in the at-
mosphere exceeded the limits for the “Normal” flying zone in
up to 14% (6--16%), 2% (1--3%) and 7% (4--11%), respec-
tively, of the European area. For a limit of 2 mg m™ only two
episodes with fractions of 1.5% (0.2--2.8%) and 0.9% (0.1--
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Figure 1: A priori and a posteriori ash emissions. (a) Comparison of temporally-
averaged vertical profiles of ash emissions used a priori (black line) and obtained
a posteriori by the inversion when using ECMWF meteorological data (red line)
and GF'S meteorological data (blue line). (b) A priori emissions as a function of
altitude and time. (c) A posteriori emissions, averaged for the two inversions using
alternative meteorological data sets, as a function of altitude and time. (d) Verti-
cally integrated a priori (black line) and a posteriori emissions (red and blue lines)
as a function of time. Notice the switch from a linear to a logarithmic scale above
10t s (yellow area).
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Figure 2: Area of Europe affected by volcanic ash. Area in the domain 10°W-30°E
and 36°N-60°N, expressed in relative (left axis) and absolute numbers (right axis)
and shown as a function of time, where modeled ash was present somewhere
between the surface and 13 km altitude at concentrations higher than 0.2, 2 or 4 mg
m3. Results are shown for model runs using two different meteorological data sets
(ECMWF and GFS). Lines show reference model values and transparent areas indi-
cate the span for a model uncertainty of £50%. Notice the change in ordinate scale
at 3% (yellow area). For clarity, 2 mg m? lines are dotted.

1.6%) occurred, while the current “No-Fly” zone criterion of
4 mg m* was rarely exceeded. Further details can be found in
Stohl et al. (2011).

Method

The analytical inverse method to determine volcanic ash
emissions merges a priori information on the ash emissions,
satellite observation data (SEVIRI and IASI volcanic ash re-
trievals) and simulations with a dispersion model to derive
improved a posteriori ash emissions. The emissions were de-
termined every 3 hours and with a 650 m height resolution,
optimizing the agreement between satellite data and obser-
vations as well as a priori and a posteriori emissions. The a
priori emissions were determined with a 1-D column eruption
model nudged towards observed plume heights.

The results were evaluated based on independent satellite
(CALIPSO) data, ground-based lidar data as well as with air-
craft measurements. It was shown (Stohl et al., 2011) that the
inversion improved the results consistently, leading to good
quantitative agreement between measured and modeled data.
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