

Data quality 2002, quality assurance, and field comparisons

Wenche Aas, Anne-Gunn Hjellbrekke, Stein Manø, Jan Schaug and Hilde Th. Uggerud

Norwegian Institute for Air Research PO Box 100, NO-2027 Kjeller, Norway Chemical Co-ordinating Centre of EMEP (CCC)

NILU:EMEP/CCC-Report 4/2004REFERENCE:O-95024DATE:AUGUST 2004

EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

Data quality 2002, quality assurance, and field comparisons

Wenche Aas, Anne-Gunn Hjellbrekke, Stein Manø, Jan Schaug and Hilde Th. Uggerud

Norwegian Institute for Air Research P.O. Box 100, N-2027 Kjeller, Norway

Contents

Page

Su	mmar	·y	5
1.	Intro	oduction	7
2.	Mea	surement programme and data completeness	7
3.	Ion k	palances	8
4.	Accu	racy, detection limits and precision	9
5.	Resu	lts from field comparisons	10
	5.1	Main components in air	10
		5.1.1 Introduction	10
		5.1.2 Reference instrumentation	10
		5.1.3 Comparison at Preila (LT15), Lithuania	11
		5.1.4 Comparison at Rucava (LV10), Latvia	14
		5.1.5 Comparing the measurements at Rucava and Preila	18
	5 0	5.1.6 Comparison at Lahemaa, Estonia	19
	5.2	Heavy metals in precipitation	23
		5.2.1 Parallel sampling of wet-only and bulk at Langenbrugge	22
		(DE02)	23
	Ð	5.2.2 Farance sampling of wet-only and burk at Knokke (BE04)	23
6.	Kesu	Its from laboratory comparisons	25
	6.1	Main components	23 27
	0.2 6.3	POP _o	27 28
_	0.5	-	20
7.	QA 1	lags	29
	/.l 7.2	Introduction	29
	1.2	QA hags for 2002	31
8.	Audi	its	33
	8.1	Introduction	33
9.	Refe	rences	33
10.	List	of participating institutions and the national quality assurance	
	man	agers (NQAM)	35
An	nex 1	Data quality objectives	37
An	nex 2	Data capture	41
An	nex 3	Ion balances in precipitation samples 2002	53
An	nex 4	Detection limits and precision	
A	nov 5	Sulphoto in oir and sulphur disvide in EMED dass and	
An	nex 5	comments	85
			05

Summary

This report is mainly concerned with the quality of the 2002 data and new results from field and laboratory comparisons.

The requirement with respect to data completeness for the main components in precipitation, i.e. 90 per cent, is generally met, and only two participants have less than a complete precipitation measurement programme. The situation is less favourable for air components with respect to data completeness. There is a strong need for more sites for nitrogen components in air, and only two countries perform accurate measurements of nitric acid and particulate nitrate, and ammonia and ammonium in particles separately by use of denuder systems.

The ion balance for many countries was within ± 20 per cent, which indicate valid data when pH is less than 5.5 (Annex 2). For higher pH values there is often a systematic difference that is not yet fully understood. However, it should be emphasized that the ion balance does not give an exact assessment of the quality. A flagging system has been developed to fully utilize the information from the ion balance test.

Laboratory comparison of the main components in precipitation and air is carried out annually. The main message is that the laboratory performances in general are satisfactory, but that there nevertheless is room for improvements for some components like chloride, magnesium, calcium, and potassium. Laboratory comparison of heavy metals is also performed annually. The measurements of high concentration samples give hardly any problem, but at many EMEP sites these are not very representative. Several countries have problems measuring low concentration samples of Cr, Ni, As and Cd. The results from the POP laboratory intercomparison, round 2 was in general satisfactory and the average deviation from the median are mostly within 50%.

Results from the field comparisons in Estonia, Latvia and Lithuania are presented in this report. The results from Preila (LT15) are very satisfactory, except for NO₂. The average difference is less than 10% and the spread is very small, especially for SO₂ and SO₄²⁻. NO₂ is overestimated at LT15 and the spread is large. The comparison in Rucava (LV10) indicates some problems with the SO₂ measurements, which are systematically overestimated. The SO_4^{2-} measurements are quite satisfactory although they underestimate the concentration somewhat. The measurements of both the sum of nitrate and nitric acid, and the sum of ammonia and ammonium are very good. The NO₂ measurements are also very good, the precision is not so very high but the correlation is perfect. The results from the Lahemaa intercomparison are not satisfactory. For SO₂ it is OK, both the manual method and the monitor show nice correlation with the reference, however, both methods systematically underestimate the concentration, the monitor more than the manual method. The NO2 measurements are more uncertain. The manual method is almost half of the reference concentration and the precision is also quite low. For SO_4^{2-} there are unresolved problems. There is no correlation between the measurements and these data should not be used. It is highly recommended that Estonia change their methodology, i.e. using a filterpack with higher flow.

National organized field comparisons of heavy metals in precipitation have been performed in Germany and Belgium comparing wet only and bulk collector. In the German comparison there are large deviations for some elements, especially cadmium indicating influence of dry deposition of coarse particles in the bulk collector. The Belgium data shows no correlation between the samples and it is apparent that Belgium needs to evaluate their QA/QC routines for the heavy metal measurements.

The main components in air and precipitation has been assigned a DQ flag based on results in the laboratory and field intercomparison.

Annex 3 contains detection limits and estimates of precision, both for the complete measurement methods applied, and for the chemical method in the laboratories. This Annex is based on the information and data the participants themselves have forwarded to the CCC.

Data quality 2002, quality assurance, and field comparisons

1. Introduction

The aim of quality assurance is to provide data with sufficiently good and known quality, and this series of reports is intended to document the EMEP data quality and the progress made. The present report is relevant for the 2002 data. All data included in the EMEP program is covered by this data quality report, most of the information available on the data quality is, however, on acidifying and eutrophying components.

Parts of the information given here are collected from the participating laboratories, this being data on detection limits and precision. CCC organizes annually different types of comparisons, and the EMEP Laboratory intercomparison and results from field comparisons with reference instrumentation provide important information of the data quality. Information of both these types of comparisons is used in a new flagging system based on statistical criteria.

Calculations of ion balances in precipitation samples are important supplementary information to evaluate the data quality; however, the ion balance (IB) check is mainly a control of the analytical procedure, and contamination or other field problems are not detected by this control. In addition, at high pH and/or at low ion strength the IB test is more uncertain. A flagging system has been developed to fully get use of the information from the ion balance test.

2. Measurement programme and data completeness

EMEP's measurement programme in 2002 is given in Table 1. Details on the sampling program and measurement frequency at the different sites are found in the different data reports (Hjellbrekke, 2004a and 2004b; Aas, 2004; Solberg, 2004).

Many Parties do not fulfil the measurement program. There is in general a big lack of measurements of particles, VOC, POPs and heavy metals. The new monitoring strategy being developed for 2004 -2009 aims to improve this situation and a better spatial coverage is expected.

According to the Data quality objectives (DQO) of EMEP (Annex 1), the data completeness should be at least 90 per cent for main ions and heavy metals. In Annex 2 there is a summary of the data capture for all the EMEP data for 2002.

For the precipitation components most participants broadly met the DQO, but the data completeness for the air components is less satisfactory.

	Components	Measurement period	Measurement frequency
Gas	SO ₂ , NO ₂	24 hours	Daily
	O ₃	hourly means stored	continuously
	Light hydrocarbons C2-C7	10-15 mins	twice weekly
	Ketones and aldehydes (VOC)	8 hours	twice weekly
	Hg	24 hours	weekly
Particles	SO ₄ ²⁻ , NH ₄ ⁺ , NO ₃ ⁻ , Ca ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺ , Cl ⁻	24 hours	daily
	Cd, Pb (first priority), Cu, Zn, As, Cr, Ni (second priority)	weekly	weekly
	PM ₁₀ mass	24 hours	daily
Gas + particles	HNO ₃ (g)+NO ₃ (p), NH ₃ (g)+NH ₄ (p)	24 hours	daily
	POPs (PAH, PCB, HCB, chlordane, lindane, α -HCH, DDT/DDE)	daily/weekly	once weekly
Precipitation	Amount, $SO_4^{2^-}$, NO_3^- , CI^- , pH, NH_4^+ , Na^+ , Mg^{2^+} , Ca^{2^+} , K ⁺ , conductivity	24 hours/weekly	daily/weekly
	Hg, Cd, Pb (first priority), Cu, Zn, As, Cr, Ni (second priority)	weekly	weekly
	POPs (PAH, PCB, HCB, chlordane, lindane, α-HCH, DDT/DDE)	weekly	weekly

Table 1:EMEP's measurement programme 2002.

For heavy metals, VOC and POPs the data capture is lower than for the main components, especially for air samples. The reason is that several countries analyse e.g. one or two air samples weekly. This will give poor data completeness, but the seasonal distribution is anyhow satisfactory, and the annual average will probably give a reasonable estimate even though there are no measurements on the majority of the days.

3. Ion balances

The ion balance is a good test on consistency and errors in the analytical results, but will not necessarily reveal a contamination of the sample. This will depend on whether or not the contamination occurred before the analysis started. The ion balance will also fail to discover errors related to the precipitation sampling.

The ion balances for all precipitation samples from 2002 are presented in Annex 3, as a function of pH. Ion balances for samples with pH < 5 were, for

many countries, better than 15–20%, indicating fairly good accuracy in the determination of the individual ions.

At some sites there were many samples with pH > 5. This is particularly the case in Mediterranean countries due to alkaline dust as clearly seen from the Portuguese and Spanish results, as well as at other continental sites and in the far north of Europe. It is an experience made that ion balances become markedly poorer with increasing pH above 5–6. Some countries seem to have systematic deficit of anions, i.e. in contrast to the large spread in the ion balances seen in the Mediterranean. This is seen at many sites, e.g. in Austria, Latvia and Norway. In other countries, e.g. in Denmark and Germany, the systematic anion deficit does not occur.

The reason for the poor ion balances at pH values above 5–6 is not yet fully understood. One contributing factor is certainly due to unmeasured ion species present in the sample, i.e. organic acids and bicarbonate. Biological degradation of some precipitation components may also contribute. The systematic deficit of anions at pH above 5–6 is a general problem, which also occurs in other networks in other parts of the world. The current situation with the very poor ion balances for samples with pH above 5 is highly unsatisfactory since we will only have limited information about the consistency of these results. Countries having weakly acidic samples as a larger fraction of their precipitation could supplement their current pH measurements with titration for determining weak acid concentrations, preferably as described in the Manual (EMEP, 1996). Only one site does this today, Kollumerwaard, Netherlands (NL09).

4. Accuracy, detection limits and precision

A request for quality assurance data for the main components was made earlier this year: measurement and laboratory lower detection limit and precision results from control samples, and detection limits and precision for monitors. The information collected on detection limits and precision is given in Annex 4.

There are various ways of defining the measurement and laboratory precision and detection limit. The methods for calculating these data are defined in the EMEP Manual (EMEP, 1996). To quantify the precision in the measurements, parallel sampling is necessary and the precision should be given as M.MAD and CoV, relative standard deviation (RSD) is also an informative parameter. M.MAD expresses the spread of the data and equals the standard deviation if the population has a normal distribution. CoV expresses the relative spread of the data, and, similar to the M.MAD, approaches the relative standard deviation for a normal distributed population. Both parameters are non-parametric statistics, which make them particularly useful for measurements with spikes in the data. The definitions of M.MAD and CoV are (Sirois and Vet, 1994):

$$M.MAD = \frac{1}{0.6754} median\left(\left|e_{i} - median\left(e_{i}\right)\right|\right)$$

where e_i is the error in the two measurements

$$CoV \ \frac{M.MAD}{median \ (\overline{C})} *100\%$$

where C is the average of the two corresponding results. If a reference method is used to evaluate the national/local measurements, the median of the reference measurements is used.

The detection limit is calculated using three times the standard deviation of the field blanks and given in the same unit as the measurement data. By using split samples and laboratory blank samples, laboratory precisions and detection limits can be assessed in a similar way.

5. Results from field comparisons

5.1 Main components in air

5.1.1 Introduction

Many Parties have applied measurement methods different from the recommended ones, and this has contributed to systematic concentration differences and a comparability problem in EMEP. Laboratory comparisons and field studies are organized in order to quantify systematic differences and errors and, as far as possible, to assess the measurement accuracies. Field comparisons have been carried out, and so far completed in United Kingdom, Ireland, Portugal, France, Germany, Poland, the Czech Republic, Croatia, Spain, Netherlands, Slovenia and Switzerland (e.g. Aas et al., 2003). Results from the field intercomparison in Estonia, Latvia and Lithuania are presented in this report.

The comparisons are carried out at an EMEP site using a set of reference instruments that corresponds to the specifications in the EMEP Manual. An inherent advantage of the reference methods is that the samples are stable and may be mailed from one country to another without any deterioration or change of concentrations. In order to make the comparison valid for a representative period, it was decided to distribute the comparison measurements over a whole year and for the air components about 100 measurements were considered necessary. The reference sampler is usually sampled one week every month. The measurements are assigned a QA flag in accordance to the definitions described in Chapter 7.

5.1.2 Reference instrumentation

The EMEP manual recommends a filterpack method with an aerosol filter for collection of sulphate, and subsequent absorption of sulphur dioxide on a cellulose filter impregnated with KOH. This filterpack is also suitable for determining the sum of nitrate aerosol and gaseous nitric acid. Evaporation of ammonium nitrate collected on the aerosol filter during the sampling period will lead to nitric acid that is collected on the impregnated filter. The quantity of nitrate accumulated on the impregnated filter will therefore usually represent an overestimate of the airborne gaseous nitric acid.

For nitrogen dioxide, the recommended sampling method is conversion to nitrite, using sodium iodide as reducing agent, which is added to a glass sinter frit in a glass bulb. The methods are described in more detail in the EMEP Manual for Sampling and Chemical Analysis (EMEP, 1996).

5.1.3 Comparison at Preila (LT15), Lithuania

At Preila they use the reference methods for measuring the main ions and gases in air. Sum of nitric acid and nitrate and sum of ammonia and ammonium are sampled using a one stage filterpack with KOH and oxalic acid impregnated Whatman 40 filter respectively, the flow is 16-17 m^3 /day. SO₂ and SO₄ are sampled using a two-stage filterpack; the aerosol filter is a Whatman 40, and then a KOH impregnated Whatman 40 filter for SO₂, the flow is 24 m^3 /day. For NO₂ KI impregnated glass sinters are used. The analytical methods used in the laboratory at Institute of Physics are also in accordance to the recommendations in the EMEP Manual, using IC for sulphate and nitrate and spectrophotometry for NO₂ and ammonium. The difference between the co-located NILU samplers is the location of the filters; the filters from the local sampler are placed inside a box with openings, similar box as for finding standard meteorological parameters. The NILU sampler has the filters outside covered with a plastic cap to prevent rain on the filterpack. Preila is located very close to the Baltic Sea and a proper cover is necessary to prevent too much sea spray on the filters.

The results from this comparison are found in Figure 1–Figure 5 and Table 2.

Figure 1: Comparison of the co-located measurements of SO₂ at Preila. Outliers (red dots in xy plot) are not included to estimate the slope.

Figure 2: Comparison of the co-located measurements of SO_4^{2-} at Preila. Outliers (red dots in xy plot) are not included to estimate the slope.

Figure 3: Comparison of the co-located measurements of $sum(HNO_3 + NO_3)$ at *Preila. Outliers (red dots in xy plot) are not included to estimate the slope.*

Figure 4: Comparison of the co-located sum $(NH_4^+ + NH_3)$ measurements at *Preila. Outliers (red dots in xy plot) are not included to estimate the slope.*

Figure 5: Comparison of the co-located NO₂ measurements at Preila. Outliers (red dots in xy plot) are not included to estimate the slope.

	SO ₄	SO ₂	NO ₂	sumNH ₄	sumNO ₃
Mean ref:	0.95	0.68	0.77	1.30	0.69
Mean:	1.07	0.72	1.06	1.27	0.76
Median ref:	0.79	0.40	0.66	1.09	0.47
Median:	0.88	0.36	0.86	1.03	0.56
Num pairs:	92	91	96	94	92
Average of diff:	-0.12	-0.04	-0.29	0.03	-0.07
Median of diff:	-0.09	-0.01	-0.28	-0.07	-0.08
M.MAD:	0.13	0.09	0.28	0.25	0.16
CoV:	17%	22%	43%	23%	35%
slope	0.85	0.83	0.75	0.96	0.85
QA flag	10	10	32	00	10
QA category	В	В	В	A	В

Table 2: Summary of results of co-located measurements at Preila, in $\mu g/m^3$.

The results from this comparison are very satisfactory, except for NO₂. The average difference is less than 10% and the spread is very small especially for SO₂ and SO₄²⁻. The reason for not defining all the filterpack measurements within the QA category A is because the slopes are below 0.90 for all except sumNH₄ indicating a systematic overestimation; however this is rather small. For NO₂ the overestimation is larger; in addition the spread is quite large with a CoV of 43%. One reason might be that the NO₂ intake at Preila is rather close to the floor. Another reason can be a problem with field blanks. One can see in Figure 5 that in some months the difference between the co-located measurements are rather big (i.e. June and July), but the measurements are clearly correlated indicating that the field blanks used to correct the data is biased.

5.1.4 Comparison at Rucava (LV10), Latvia

At Rucava they use 2 filterpacks with Whatman 41 filters and a flow of 13-18 m³/day to measure SO₂, SO₄ and sum of nitrate and sum of ammonium. The Latvian Hydrometeorological Agency (LMA) analyse SO₂, SO₄ and sum of nitrate using ion chromatography (IC) while ammonium is analysed using spectro-photometry (Indophenol method). NO₂ is sampled using absorbing tubes with glass granules and KI solution. The flow is 0.3-0.5 m³/day. NO₂ is analysed spectrophotometrically using the Griess method. In addition, in two of the months (2 x 2 weeks) an extra set of filters were installed at Rucava, filter 3-packs identical to the reference method. These filters were analysed at LMA while the original filters from Rucava were sent to NILU for analysis. This was done to better understand the origin of the differences in field or laboratory.

Figure 6: Comparison of the co-located measurements of SO₂ at Rucava. Outliers (red dots in xy plot) are not included to estimate the slope.

Figure 7: Comparison of the co-located measurements of $SO_4^{2^-}$ at Rucava. Outliers (red dots in xy plot) are not included to estimate the slope.

Figure 8: Comparison of the co-located measurements of $sum(HNO_3 + NO_3^-)$ at Rucava. Outliers (red dots in xy plot) are not included to estimate the slope.

Figure 9: Comparison of the co-located $sum(NH_4^+ + NH_3)$ measurements at Rucava. Outliers (red dots in xy plot) are not included to estimate the slope.

Figure 10: Comparison of the co-located NO₂ measurements at Rucava. Outliers (red dots in xy plot) are not included to estimate the slope.

	SO ₂ -S	SO ₄ -S	SumNO ₃ -N	SumNH ₄ -N	NO ₂ -N
Mean ref:	0.36	0.73	0.48	1.35	0.90
Mean:	0.44	0.55	0.41	0.98	0.90
Median ref:	0.29	0.62	0.30	1.18	0.68
Median:	0.40	0.44	0.27	0.84	0.73
Num pairs:	89	92	91	91	74
Average of diff:	-0.08	0.17	0.07	0.37	0.00
Median of diff:	-0.05	0.18	0.04	0.24	0.00
M.MAD:	0.19	0.28	0.13	0.36	0.30
CoV:	66%	45%	44%	30%	44%
slope	0.52	1.17	1.19	0.99	0.94
QA flag	50	22	10	02	02
QA category	В	В	В	В	В

Table 3: Summary of results of co-located measurements at Rucava, in $\mu g/m^3$.

The comparison indicates some problems with the SO_2 measurements; nevertheless the results are within the limit of what is acceptable, and falls in QA category B. The correlation is good but the local measurement is systematically overestimating the SO_2 concentration. The comparison with the extra filters does not give an obvious answer to the problem, as these results are pretty uncertain because of very high field blanks. But even when subtracting with these very high field blanks the local measurements are overestimating the SO_2 concentration. The only difference between the reference measurements and the extra filter is that extra filters are prepared and installed by the local lab; the analysis of both filters is done at NILU. It is therefore presumable that the large deviations are due to the preparation of the filters, e.g. contamination of the impregnation solution, or SO_2 in the laboratory atmosphere. However, the preparation of the filters are done in a special sampling division outside the chemical laboratory, no sources of SO_2 are found here.

The SO_4^{2-} measurements are on the other hand somewhat underestimated, but the difference is not critical and the precisions is OK so the measurements are quite satisfactory. The sum of nitrate and nitric acid measurement is very good. There is a small underestimation, but it can just as well be some overestimation for the reference since NILU have experienced some NH_4NO_3 contamination problems lately. This is then also true for the sum of ammonia and ammonium which show excellent correlation if one exclude the measurements in April and September. The NO_2 measurements are also very good, the precision is not so very high but the correlation is perfect.

5.1.5 Comparing the measurements at Rucava and Preila

These two sites are very close to each other and one would expect correlated results for long range transported air pollution. The comparisons were therefore done at the same days so it would add an extra dimension to this comparison.

There is a strong correlation between the SO_4 measurements at the two sites. The same is seen for sum of nitrate, sum of ammonia and nitrogen dioxide. The correlation between the two reference samplers are better than comparing the local measurements. This is natural since the difference is then mainly due to difference in air quality and not influenced by laboratory and field methods. For SO_2 there is hardly any correlation, except for some months were there is a correspondence between the two reference methods. This indicates that the SO_2 concentration is influenced by local sources or contaminants.

Figure 11: Comparison of the co-located SO_4^{2-} measurements at Rucava and Preila.

*Figure 12: Comparison of the co-located SO*₂ *measurements at Rucava and Preila.*

5.1.6 Comparison at Lahemaa, Estonia

At Lahemaa there is both manual and automatic measurements of SO_2 and NO_2 . The manual SO_2 and SO_4^{2-} measurements are done using a filter 2-pack with an aerosol filter (Whatman 40) and a NaOH-impregnated Whatman 40 filter; the flow is 4-5 m³/day. The manual NO₂ method is absorbing tubes with a KI solution; the flow is 0.3 m³/day. The Chemiluminescence and UV-fluorescence monitors are from Horiba. The national parallel measurements of SO₂ and NO₂ are performed for two full years, 2002 and 2003.

Figure 13: Comparison of the co-located SO₂ measurements at Lahemaa. Outliers (red dots in xy plot) are not included to estimate the slope.

*Figure 14: Comparison of the national SO*₂ *measurements at Lahemaa, 2002 and 2003.*

Figure 15: Comparison of the co-located SO_4^{2-} measurements at Lahemaa.

*Figure 16: Comparison of the co-located NO*₂ *measurements at Lahemaa. Outliers (red dots in xy plot) are not included to estimate the slope.*

*Figure 17: Comparison of the national NO*₂ *measurements at Lahemaa, 2002 and 2003.*

	SO4 ²⁻	SO ₂ manual	SO ₂ monitor	NO ₂ manual	NO ₂ monitor
Mean ref:	0.61	0.68	0.70	0.87	0.88
Mean:	0.36	1.08	0.86	0.49	1.01
Median ref:	0.50	0.35	0.36	0.69	0.69
Median:	0.34	0.86	0.50	0.35	0.79
Num pairs:	83	79	79	94	92
Average of diff:	0.25	-0.4	-0.17	0.39	-0.13
Median of diff:	0.12	-0.39	-0.13	0.31	-0.10
M.MAD:	0.33	0.27	0.19	0.32	0.30
CoV:	65%	76%	54%	46%	43%
Slope	-	0.85	0.72	1.45	0.72
QA Flag	82	12	30	62	32
QA Category	С	В	В	В	В

Table 4: Summary of results of co-located measurements at Lahemaa, in $\mu g/m^3$.

Table 5: Summary of results of national co-located measurements at Lahemaa, in $\mu g/m^3$.

	SO2-S	NO2-N
Mean manual:	0.94	0.44
Mean monitor:	0.80	0.90
Median manual:	0.67	0.36
Median monitor:	0.45	0.67
Num pairs:	669	674
Average of diff:	0.15	-0.46
Median of diff:	0.15	-0.31
M.MAD:	0.47	0.36
CoV:	71%	99%

The results from the Lahemaa intercomparison are not satisfactory. For SO₂ it is OK, both the manual and the monitor show nice correlation with the reference method both methods systematically underestimate the concentration, the monitor more than the manual method. This is also true when comparing the national measurements for two full years, Table 5. The NO₂ measurements are more uncertain. The manual method is almost half of the reference concentration and the precision is also quite low. The NO₂ monitor shows better correlation with the reference method. When comparing the national measurements for two years it is quite clear that the manual method totally underestimate the NO₂ concentration. It is recommended that the NO₂ method at Lahemaa is changed to the reference method or that the monitor data are reported to EMEP. For SO₄ there are problems. There is no correlation between the measurements and these data should not be used. Estonia has reported that the detection limit for sulphate in air is $0.5 \text{ }\mu\text{g-S/m}^3$. This is much too high for a background site. The reason is probably that the flow is too low for this method and it is highly recommended that Estonia change their methodology, i.e. using a filterpack with higher flow.

5.2 Heavy metals in precipitation

One site in Belgium (BE04) and one in Germany (DE03) have parallel wet only and bulk sampler for measurements of heavy metal in precipitation. In the EMEP Manual (1996) it is recommended to use a wet only for weekly precipitation sampling of heavy metals, however, if the bulk sampler shows equivalent results this may also be used.

5.2.1 Parallel sampling of wet-only and bulk at Langenbrügge (DE02)

At Langenbrügge there was in 2002 one wet only collector that was sampled weekly and one bulk collector that was sampled every day both reported to EMEP. The monthly and annual mean were compared, Table 6. If the differences are within 10% one may say that the methods are equivalent. The results for the different elements are varying somewhat; in general there is a slightly larger heavy metal concentration in the bulk collector compared with the wet only. There are a few exceptions were the wet only shows a higher level, this can be due to contamination. Cadmium shows much higher concentration in the bulk collector compared with the wet only in all months, but the concentration level is quite low so the absolute difference is not that high. Nevertheless this comparison shows clearly that dry deposition of particles with heavy metals has an influence of the concentration in the bulk precipitation.

5.2.2 Parallel sampling of wet-only and bulk at Knokke (BE04)

At Knokke they have had parallel sampling of wet only and bulk collectors for several years. They report monthly concentrations to the CAMP program, however it is unclear whether this is the real sampling time or not. Is not recommended to have longer sampling time than one week for heavy metals in precipitation to minimize the problems with contamination. In Figure 18 a scatter diagram shows the volume weighted annual average concentrations of the heavy metals in the two collectors. There are obvious problems with measuring heavy metals in precipitation. Hardly any correlation is seen between the two collectors and the concentrations are in general higher in the wet only collector. Some of the difference can be explained by differences in the precipitation amount, which is more than 20% higher in the bulk collector, but the main reason must be the method used, many of the measurements are e.g. under the detection limit. It is highly recommended that Belgium evaluate their methods; today these measurements are not very useful.

			< -50		<-50,-1	0>		<-10,10)>		<10,50	>		>50
		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	2002
As	bulk	0.09	0.09	0.18	0.22	0.27	0.25	0.09	0.14	0.11	0.09	0.23	0.18	0.15
Differe	wet only	0.06	0.10	0.12	0.23	20%	0.15	0.08	0.12	0.08	0.09	0.20	0.16	0.13
Dillere	lice	30 /0	-0 /0	J4 /0	-J /0	20 /0	0570	10 /0	21/0	5570	-1 /0	11/0	1370	1370
Cd	bulk wet only	0.09 0.02	0.12 0.03	0.11 0.06	0.17 0.07	0.24 0.07	0.17 0.05	0.12 0.03	0.14 0.05	0.12 0.03	0.07 0.03	0.10 0.03	0.07 0.03	0.13 0.04
Differe	nce	370%	310%	98%	156%	257%	254%	343%	196%	303%	103%	197%	115%	218%
Cr	bulk	0.20	0.21	0.17	0.26	0.41	0.31	0.23	0.18	0.16	0.12	0.12	0.12	0.20
	wet only	0.19	0.10	0.14	0.17	0.27	0.32	0.21	0.18	0.23	0.24	0.20	0.49	0.22
Differe	nce	3%	110%	24%	55%	53%	-3%	9%	1%	-32%	-52%	-41%	-75%	-6%
Co	bulk	0.02	0.02	0.05	0.04	0.08	0.06	0.03	0.03	0.03	0.02	0.04	0.05	0.04
	wet only	0.01	0.02	0.03	0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.04	0.02	0.03
Differe	nce	75%	11%	64%	11%	27%	48%	36%	39%	63%	41%	-9%	153%	29%
Cu	bulk	3.47	1.68	3.45	2.11	2.35	2.04	3.11	4.08	1.43	1.12	0.89	0.69	2.49
Difforo	wet only	0.73	1.44	1.67	1.62	2.02	1.82	0.99	1.34	2.25	1.32	0.92	1.98	1.36
Dillere	lice	51170	1770	107 70	30%	1070	1270	21370	20470	-30%	-13%	-370	-05%	0370
Fe	bulk	37	45	42	46	85	68	39	41	44	27	34	18	42
Difforo	wet only	13	22	34	35	58	39	27	36	1629/	16	37	9	30
Dillere	lice	17070	107 /0	21/0	J1/0	40 /0	1370	45 /0	14 /0	102 /0	0970	-970	9970	43 /0
Pb	bulk wet only	0.93	1.23 1.35	2.03	1.93 2.07	2.26 2.10	2.17	1.09 0.99	1.58	0.72	1.00 0.94	1.59 1.30	1.15	1.43 1 30
Differe	nce	5%	-9%	43%	-7%	7%	26%	10%	-13%	51%	6%	23%	-13%	3%
Mn	bulk	1.84	4.40	3.68	3.68	6.79	6.20	2.85	3.06	4.28	3.10	2.56	1.18	3.42
Differe	wet only	79%	128%	2.02	2.31 59%	30%	3.27 90%	2.21	2.34	170%	1.00%	2.35	1.06	48%
Dillere		1070	12070	0070	0070	0070	0070	2070	0170	11070	10070	070	1070	4070
Ni	bulk	0.49	0.73	0.58	0.55	0.85	0.72	0.76	0.42	0.48	0.32	0.26	0.35	0.56
Difforo	wet only	0.29	0.25	0.16	0.59	0.51	0.59	0.46	0.39	0.45	0.33	0.33	0.33	0.40
Dillere	lice	0970	19170	20170	-1 70	0070	23%	05%	070	1 70	-370	-20%	1 70	3070
v	bulk	0.38	0.54	0.90	0.60	0.83	0.49	0.39	0.25	0.67	0.37	0.35	0.28	0.44
Difforo	wet only	0.31	0.74	0.55	0.55	0.64	0.39	0.29	0.21	0.45	0.32	0.30	0.21	0.37
Dillere	lice	22%	-20%	04%	9%	31%	24%	35%	19%	49%	15%	10%	39%	19%
mm	bulk	52	87	37	58	52	41	168	153	21	69	81	38	858
	wet only	58	95	47	69	50	64	164	138	24	84	76	41	911
Differe	nce	-9%	-8%	-21%	-16%	4%	-37%	3%	11%	-13%	-18%	5%	-8%	-6%
mm Hg	y wet only	59	95	46	67	48	60	165	128	22	84	76	41	890
Differe	nce	-11%	-8%	-21%	-13%	10%	-32%	2%	20%	-6%	-17%	5%	-8%	-4%

Table 6:Monthly and annual average concentration of heavy metals at DE02in precipitation, 2002, in $\mu g/l$ and per cent difference.

Figure 18. Scatter plot of volume weighted annual average concentrations of heavy metals in precipitation at BE04 from 1996 to 2002, $\mu g/l$.

6. Results from laboratory comparisons

6.1 Main components

The twentieth intercomparison (Uggerud et al., 2003) of main components in air and precipitation is relevant for the data reported for 2002. The results of the systematic and random errors are shown in Table 7 and Table 8, respectively. The details on how these calculations are done are found in last year QA report (Aas et al., 2003).

The results are mostly good. There are some elements that are more difficult than other and sometimes outliers can cause large deviations, but this is not necessarily the general performance for the laboratory. One should look at the performance for several years if one needs a general picture.

	Precipitation												Air		
	SO_4	NO_3	NH_4	pН	Н	Mg	Na	CI	Са	К	Cond	NO_2	SO_2	HNO₃	
AT	1.1	1.6	4.4	7.2		3.3	2.9	3.2	3.4	2.3	2.5				
CZ	0.5	0.4	2.4	2.1	2	1.1	1.8	1.5	1.8	1.8	1.5	4.4	1.4	2.4	
DK	1.4	1.6	1.2	2.2		1.8	8.9	2.6	2	50.5	2.3	1.6	1.5	2.3	
FI	2	0.6	3.8	2.8		0.4	0.4	1.1	3.3	1.2	0.5		3.9	1.3	
FR	0.3	0.5	0	2.1	8	0.4	0.9	4	2.9	2.8	1.3				
DE(Leip.)	1.3	0.5	1.8	4.1		6.2	0.2	1.8	2.5	0.7	10.4				
DE(Shau.)	0.3	0.3	2	4.1		0.7	0.9	1.2	2.9	0.7	2	0.8	2.3	2.7	
HU	2	0.5	1	2.5		3.3	5.7	20	7.4	2.1	0.8	1.2			
IS	1.3	2.4	1.9	7.4		1.1	5.7	8.7	0.8	8.9	2.1		5.5	9.5	
IE (MET)	0.3	0.7	3.6	1.5		0.4	0.8	1.3	2	2.1	1.2	1.2			
IT-CNR	1.5	1	2.3	2.8		1.5	0.8	0.8	4.5	0.9	0.7				
NL	1.7	0.4	1.4	6.3	4	0.7	2.5	2.3	1.5	3.6	1.5				
NO	1.2	0.7	3.4	4		0.7	1.2	3.4	1.6	1.4	2.1	0	2.6	2.1	
PL	1.3	2.2	4.2	2.6		2.5	1.6	2.8	1.4	1.6	0.7	1.6	2.2	5	
PT	1.9	0.9	3.7	30.4		2.2	3	65.6	1.1		3.5		21.4		
RO			14.1	7.8				8.6			4				
ES	1	0.4	6	2.7		0.4	1		1	2	0.7	7.2	13.8		
SE	0.2	0.5	0.7	5.3		3.3	2.8	0.7	2.3	3.9	5.3	1.2	4.2	2.3	
СН	0.2	0.4	1.4	2.9		0.7	1.1	1.3	0.8	2.1	0.6		1.5		
RU	0.4	1.5	1.3	8		1.8	10.6	15.3	2.5	15.3	1.5	2.8	5.9	16.3	
UK	0.5	0.9	1.2	4.5		0.7	0.6	0.5	3.1	1.6	2.7	1.2	0.8		
YU				5.7		10.9	2.3		10.6	2.1	10.1				
CA	0.4	0.4	0.5	5.7		0.7	0.5	0.9	0.7	1.8					
US-I	0.4	0.7	1.7	4.4	4	0.7	0.7	0.5	0.3	2.7	0.6				
SK	0.8	1.4	3.8	3		1.1	2.1	6	3.1	2.5	1.1	5.5	4.2	2.3	
LT	0.9	0.1	2.4	5.2	5		8.8	1.7	11.6	5.3	3.1	0.4	10.9	11.9	
LV	1.4	1	2.9	4		1.1	0.6	5.8	1.6	0.9	0.7	1.2	1.9	4.1	
TR	0.3	0.4	3.6	3.7	3	1.5	5	4	4.4	5.9	4.3	2.4	2.5	2.7	
CR	1.3	0.7	0.6	3	3	6.9	2.7	2.1	4.6	0.7	1.3	1.6			
SI	1	0.5	3.2	5.9	6	1.1	0.7	0.5	0.4	0.7	1.3	0.8	5.5	1.1	
IE (ESB)	1.6	2	1.6	22		6.9	4.1	4.4	10.6	2.8	2.9				
EE	1	1.1	2.4	7.6		4	3.4	6.6	3.3	3.9		0.8	13.6		
PL	2.7	1.2	4.2	5.8		0.7	0.8	5.2	1.4	1.1	3.1	7.6	2.6	2.7	
MK		17.7	6.1			8.4	6.2	25.2	0.3	3.2	4.9				

Table 7:Random errors (2RSD%) in the 20th laboratory intercomparison for
precipitation and air.

1-2 DQO

> 2 DQO

					Air									
	SO ₄ -S	NO₃-N	NH ₄ -N	pН	н	Mg	Na	CI	Са	к	Cond	NO_2	SO_2	HNO_3
AT	4 P	2	3	-5		-9 N	-7 N	-6 N	-9 N	<mark>-24</mark> N	-1			
CZ	1 P	-3 N	-15 N	-2	-2	-2	-4 N	-5 N	1 P	1	-3 N	6	-4 N	-1
DK	3 P	3 P	-3 N	-7 N		<mark>-12</mark> N	2	-4 N	-1	-32 N	-4 N	2	-5 N	1
FI	-1	2 P	-1	-6 N		2 P	1 P	-2	8 P	1	0		5 P	3 P
FR	-3 N	-4 N	0	-1	-4 N	-9 N	-1	-5	3	-6 N	-4 N		-1	
DE(Leip.)	5 P	1 P	-1	-5 N		-9 N	0	-4 N	-7 N	-1 N	-13			
DE(Shau.)	0	-2 N	3	<mark>-11</mark> N		1	-1	-2 N	-2	1 P	-3	-5 N	7 P	0
ни	3	0	-5 N	9 P		0	<mark>-18</mark> N	-3	10 P	-7 N	0	-3 N		
IS	-1 N	3 P	2	<mark>-18</mark> N		-5 N	<mark>-13</mark> N	<mark>10</mark> P	-5 N	-38 N	-4 N		<mark>-15</mark> N	-36 N
IE (MET)	0	0	-5 N	-3 N		-1 N	-1 N	-1	-6 N	-6 N	4 P	-1		
IT-CNR	2	0	0	-7 N		4 P	1	0	5 P	1	2 P			
NL	11 P	1 P	-2	-21 N	-3 N	-7 N	-7 N	-2 N	-7 N	2	-5 N			
NO	1	-1 N	1	-11 N		6 P	0	-2	7 P	2 P	-4 N	-9 N	1	3 P
PL	-2	-3 N	-5 N	4 P		-6 N	-2	-2	-1	-4 N	-2 N	-2	7 P	-3
PT	6 P	1	<mark>15</mark> P	-7 N		-2	<mark>-21</mark> N	36	<mark>-20</mark> N		-1		15	
RO			12 P	<mark>28</mark> P				-11			5			
ES	-1 N	-2 N	21 P	-19 N		0	-5 N		1 P	0	0	-5 N	-11	
SE	0	1 P	-3 N	<mark>-19</mark> N		<mark>14</mark> P	-2	-3 N	4 P	<mark>12</mark> P	10 P	-1	<mark>11</mark> P	0
СН	4 P	0	-2 N	-8 N		0	-2 N	0	3 P	-6 N	-2 N		3	
RU	-10 N	-6 N	-5 N	<mark>-14</mark> N		-7 N	<mark>-25</mark> N	-31 N	<mark>-15</mark> N	-2	-6 N	6 P	-29 N	-24 N
GB	0	3 P	-4 N	-4		-3 N	-10 N	-2 N	-2	-8 N	<mark>14</mark> P	-3 N	6 P	
YU				<mark>-14</mark> N		-34 N	-4 N		-36 N	-1	-35 N			
CA	-1 N	-2 N	-2 N	-11 N		0	0	-1	1 P	2				
US-I	2 P	1 P	-6 N	<mark>-12</mark> N	<mark>-12</mark> N	-3 N	1	-1	-3 N	1	1 P			
SK	1 P	-1	-2	-2		0	-3 N	2	4	0	-1	<mark>-21</mark> N	0	-1
LT	-8 N	1 P	5	<mark>-12</mark> N	<mark>-12</mark> N		<mark>10</mark> P	-6 N	-41 N	3	0	1 P	6 P	1
LV	3 P	2	7 P	-11 N		0	-1	-1 N	0	-3 N	-2 N	3 P	<mark>12</mark> P	-3
TR	0	-3 N	-2	-9 N	-10 N	1	3	-7 N	9	<mark>-17</mark> N	-3	-2	-5 N	-6 N
HR	4 P	0	-2 N	<mark>-15</mark> N	<mark>-15</mark> N	-53 N	<mark>-11</mark> N	-3	-46 N	-5 N	-3 N	3 P		
SI	-3 N	-1 N	1	-9 N	-9 N	-3 N	1 P	-2 N	1 P	-3 N	-6 N	1	<mark>15</mark> P	-2 N
IE (ESB)	-2 N	1	10 P	45 P		-27 N	0	-8 N	-17	<mark>-22</mark> N	-3 N			
EE	-9 N	-7 N	-5 N	<mark>-13</mark> N		-20 N	<mark>-11</mark> N	-8 N	-5 N	<mark>-13</mark> N		-1	<mark>-13</mark> N	
PL	6 P	3 P	<mark>11</mark> P	<mark>-14</mark> N		1	-1	-9 N	1 P	-1 N	-8 N	4	-2	-1
МК		<mark>64</mark> P	72 P			0	7	26	9 P	<mark>-26</mark> N	-33 N			
P systematic	nositiv	bias				N evet	matic		hiae					
r systematic														
more than	20 % or	less the	an -20%	hias		between 10 and 20 % or between -10 and -20 % bias								

Table 8:Systematic error (RB%) in the 20th laboratory intercomparison for
precipitation.

6.2 Heavy metals

The data quality objectives (DQO) in EMEP states that the accuracy in the laboratory should be better than 15% and 25% for high and low concentrations of heavy metals, respectively. One important measure to check the data quality is the laboratory ring test. There is a marked improvement in the laboratory performance for both lead and cadmium since the beginning of the laboratory comparison in 1995. The intercomparison completed last year is relevant for the 2002 data (Uggerud and Skjelmoen, 2003). In Table 9, there is a summary of the results from this laboratory intercomparison. Sweden, Denmark (precipitation) and Iceland were not participating because these measurements were analyzed in Norway. The measurements of high concentration samples are quite OK except for As maybe, however, at many EMEP sites these samples are not very

representative. Several countries have some problems with measuring low concentration samples of Cr, Ni and Cd. In addition, there are some countries reporting measurement data without participating in the laboratory intercomparison: Belgium, Ireland, Portugal, and Spain. Data from these countries are of unknown quality; and it is therefore strongly recommended that they take part in the annual laboratory intercomparison.

Table 9:	Average per cent error (absolute) in low and high concentration
	samples, results from the heavy metal laboratory intercomparison in
	2002.

	0	Cr	1	Ni	C	Cu	Z	'n	A	ls	C	d	F	b
	low	high	low	high	low	high	low	high	low	high	low	high	low	high
AT	8	2	5	4	0	4	4	7	0	5	5	4	1	2
CZ	10	5	13	8	5	2	5	4	2	2	17	3	0	3
DE	1	5	1	0	2	3	4	3	20	9	3	1	3	2
EE		1		12	7	5		13		40	13	12		2
FI	20	9	14	9	7	4	5	4	19	15	7	8	7	7
FR	0	5		3	3	6	21	4	0	24		1	13	5
GB	4	26	54	3	8	7	11	8	3	3	6	5	3	11
LT	4	7	40	10	12	2	3	0	11	16	59	13	7	2
LV	68	14	53	6	9	13	4	4	20	11	10	3	11	2
NL	13	1	0	3	8	2	0	2	5	1	3	2	4	5
NO	2	3	5	4	0	0	6	0	7	3	9	7	1	2
PL	15	0	0	2	12	2	16	2			0	0	0	7
PL05	15	1		7	9	15	14	4				6		13
SK	1	1	22	3	4	1	0	2	11	4	21	1	2	1
	1/2 - 1 DQQ					1-2	DQO			> 2 D	QO			

6.3 POPs

The data quality of the POP measurements can to some extent be addressed by evaluating the results from the laboratory intercomparison in 2000-2002 (Manø and Schaug, 2003). The comparison was a two-step exercise: Round 1: Analysis of a mixture of standards of known composition but with unknown concentrations. Round 2: Analysis of two raw-extracts from filter and gas phase adsorbents after high volume air sampling. Two groups of POPs were investigated during the exercise: Organochlorine compounds including pesticides, hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The second round showed the importance of using an analytical method and instrumentation able to cope with possible interferences without loss of analyte even while working at low concentrations, while round 1 mainly was a calibration exercise. To assess the data quality of the EMEP sites, it is therefore looked at the second round. Not all countries reporting data to EMEP took part in the laboratory intercomparison, these are Finland, Sweden, and Netherlands. In principle the data quality from these countries are unknown. Ireland did only participate in round 1, but their results are very crude because of instrument problems. Those EMEP laboratories that did participate in round 2 did in general satisfactory and are mostly within 50% of the average deviation from the median, Table 10. The Czech laboratory had some problems with insufficient cleaned silica during the comparison, which may explain the high deviation in the PCB analysis.

28

Table 10: Average of the absolute percent deviation from the median in the POP laboratory intercomparison, round 2.

Lab	Napht-	Acen- apht-	Acen- aph-	Fluor-	Phen- an-	Anthra-	Fluor anth-	Pyr-	B[a]A	Chrys-	B[b]F	B[k]F	B[a]P	Indeno-	DiB	B[ghi]P	B[e]P
	alene	ylene	thene	ene	threne	cene	ene	ene		ene				pyrene	[a,n]A		
BE	24	7	94	48	0	7		1 45	89	1	25	15	0	11	68	55	
CZ	7	36	25	29	16	27	2	5 25	22	33	14	14	23	10	3	3 9	
DE	32		34	25	24	435	23	3 2	21	10	22	25	13	16	26	6 <mark>1</mark>	-
LT													66				
NO	7	23	1	23	7	1		1 2	10	7	93		14	1	8	3 1	17
b) (Organo	ochlo	rine o	compo	ounds	5											
Lab	pp-DD	T pp'-	DDE	g-Chlor-	a-Ch	lor- g-l	НСН	a-HCH	н нс	B PCE	B PC	B P	CB F	CB F	PCB	PCB	PCB
		-		uane	ua	ie -				20	52			10	130	155	160
BE							2	2	27	11							
CZ	6	64	19			1	54	4	45	7 5	5 1	29	176	91	262	80	61
DE	2	27	176				18	2	25	12			1	71	303	162	397
IS		17	2		3	22	5		1	1	1	22	5	7	8	6	23
NO		19	13		9	13	15		5	24 1	7	10	7	10	6	7	33
														_			
	< 25%							between 25 and 50%								>50	%

A) PAH compunds

7. QA flags

7.1 Introduction

The data quality (DQ) flag is divided in two two-digit numbers, the leftmost two digits describing the performance in field comparisons and the two rightmost being based on the laboratory comparisons. The two-digit flags are furthermore defined by letting the first digit represent an estimate of the systematic error and the second digit the random error. Most of the SO₂ and NO₂ in air and SO₄ in aerosols data have been given a four-digit DQ flag. The rest of the air data have not been assigned any flag due to few field- and laboratory comparisons for these components. For precipitation data there has been very few field comparisons and therefore only two flags representing the performance in the laboratory comparisons are given. Details on how these flags are defined are found in Aas et al. (2003).

It should be understood that the field comparisons have been far less both in number and in length with respect to different meteorological situations than desirable, and that the DQ flag cannot be expected to give a precise estimate of the quality. The flags will give a data user a quick overview of the expected errors in a data set and hopefully also give the user reasonable estimates of systematic deviations from a reference and of random errors in the data.

One may also group the different flags in a simpler classification, i.e. A, B, and C or as shown in Table 11 and Table 12 in three colour codes. The data series flagged with any of the red flags (C) will be classified as invalid data. The rest of the data are classified as valid data although those marked with a green colour (A) is considered by CCC as the most accurate data in the EMEP database. The data user may create other criteria or quality groups depending on the use of the data.

	M.MAD CoV	≤ 0.25 μg S/m³	[0, 25 %]	≤ 0.50 μg S or N/m ³	< 25%, 50 %]	> 0.50 μg S or N/m³ and < 50%, → >
	[1.50, → >	80	81	82	83	84
Regression slope (a) Ref = a ^x Lab	[1.30, 1.50]	60	61	<mark>62</mark>	63	64
	[1.20, 1.30]	40	41	42	43	44
	[1.10, 1.20]	20	21	22	23	24
	[0.90, 1.10]	00	01	02	03	04
	[0.80, 0.90]	10	11	12	13	14
	[0.70, 0.80]	30	31	32	33	34
	[0.50, 0.70]	50	51	52	5 3	54
	< ←, 0.50]	70	71	72	73	84

Table 11: Criteria used for classification of data quality based on field comparison results.

 Table 12:
 Criteria used for classification of data quality based on laboratory comparison results.

	2RSD %	<0, 1*DQO]	<1*DQO - 2*DQO]	<2*DQO - 4*DQO]	<4*DQO,
	<	80	81	82	83
	[-40, -20 >	60	<mark>61</mark>	<mark>62</mark>	63
	[-20, -10 >	40	41	42	43
	[-10, -5 >	20	21	22	23
RB %	[-5, +5]	00	01	02	03
	< 5, 10]	10	11	12	13
	< 10, 20]	30	31	32	33
	< 20, 40]	50	51	52	53
	< 40, -→ >	70	71	72	73

7.2 QA flags for 2002

Several countries have never participated in field comparisons, and some countries have changed their measurement method since they took part. The comparisons carried out so far are therefore far from sufficient to express the comparability of all measurements. There are probably many comparisons performed outside EMEP, and if this information is made available, further updates of the flags will be done.

The results obtained in one comparison are used to flag data for all the years this method has been in use at the site. A poor performance in a field comparison can therefore influence the flagging for many years of data. If the data quality is determined to a large extent by the sampling method then this seems to be an acceptable approach. If on the other hand the sampling is fairly simple and the laboratory work determines most of the overall measurement quality, then the performance in the annual laboratory comparisons will more important than the results from a field comparison. Details on the flags for SO₂ and SO₄ in air and CCC's recommendations on whether the field or laboratory flag should be prioritised is shown in Annex 5.

In Table 13 and Table 14 the flags relevant for 2002 are listed. The field flags are based on last results in the latest field intercomparison that the country has participated in, while the laboratory flag is based on the results in the 20th laboratory intercomparison (Uggerud et al., 2003). For SO₄ in air, only field flags are shown since this component is taken out from the laboratory intercomparison. SO₄ in precipitation should be representative for the laboratory performance also for SO₄ on filters. For the sum of nitrate and ammonium the flags are not included. The reason is the uncertainty in the field comparisons. Very often there has been large deviation because of very high blank values; these deviation may be both negative and positive and it is therefore difficult to say whether there are systematic deviations or not.

As seen there are very few measurements that should be considered invalid (marked in red); however, the B category is rather big and included measurements with quite high systematic error as well as low precision. It is up to the data user to select which data to be used based on the quality flags depending on the accuracy needed.

	SC)4	NH	H_4	NC)3	C	а	С	I	K	(Μ	g	Na	а	pł	Η	Н	Со	nd
AT	00	Α	00	Α	00	Α	20	А	20	А	60	В	20	Α	20	Α	00	Α		00	Α
СН	00	А	00	А	00	Α	00	А	00	Α	20	А	00	Α	00	А	20	A	00 A	00	Α
CZ	00	А	40	В	00	А	00	А	20	А	00	А	00	Α	00	А	00	Α		00	Α
DE	00	А	00	А	00	Α	00	А	00	Α	00	Α	00	Α	00	А	40	В		00	Α
DK	00	А	00	А	00	А	00	А	00	А	62	В	40	В	00	А	20	Α		00	А
EE	20	А	00	А	20	А	20	А	20	А	40	В	60	В	40	В	40	В			
ES	00	А	50	В	00	А	00	А			00	А	00	Α	00	А	40	В		00	Α
FI	00	А	00	А	00	А	10	А	00	А	00	А	00	Α	00	А	20	Α		00	А
FR	00	А	00	А	00	А	00	А	00	А	20	А	20	Α	00	А	00	Α	00 A	00	А
GB	00	А	00	А	00	А	00	А	00	А	20	А	00	Α	20	А	00	Α		30	В
HR	00	А	00	А	00	А	80	С	00	А	00	А	80	С	40	В	40	В	40 B	00	Α
HU	00	А	00	А	00	А	10	А	01	А	20	Α	00	А	40	В	10	Α		00	А
IE0001	00	А	00	А	00	А	20	А	00	А	20	А	00	А	00	А	00	Α		00	А
IE (ESB)	00	А	30	В	00	А	40	В	20	А	60	В	60	В	00	А	71	C		00	А
IS	00	А	00	А	00	Α	20	А	30	В	60	В	00	Α	40	В	40	В		00	Α
IT0001	00	А	00	А	00	А	00	А	00	А	00	А	00	Α	00	А	20	Α		00	А
LT	20	А	10	А	00	А	80	С	20	А	00	А			30	В	40	В	40 B	00	А
LV	00	А	10	А	00	А	00	А	00	А	00	А	00	Α	00	А	40	В		00	А
MK			70	С	71	С	10	А	51	В	60	В	00	Α	10	А	60	В		60	В
NL	30	В	00	А	00	А	20	А	00	А	00	А	20	Α	20	А			00 A	00	А
NO	00	А	00	А	00	А	10	А	00	А	00	А	10	Α	00	А	40	В		00	А
PL	00	А	00	А	00	А	00	А	00	А	00	А	20	Α	00	А	00	Α		00	А
PL0005	10	А	30	В	00	А	00	А	20	А	00	А	00	Α	00	А	40	В		20	А
PT	10	А	30	В	00	А	40	В	53	С			00	А	60	В	22	В		00	А
RO			30	В					40	В						В	50	В		00	А
RU	20	А	00	А	20	А	40	В	61	В	01	А	20	Α	60	А	40	В		20	А
SE	00	А	00	А	00	А	00	А	00	А	30	В	30	В	00	А	40	В		10	А
SI	00	А	00	А	00	А	00	А	00	А	00	А	00	Α	00	А	20	Α	20 A	20	А
SK	00	А	00	Α	00	А	00	А	00	А	00	А	00	Α	00	Α	00	Α		00	А
TR	00	А	00	Α	00	Α	10	А	20	А	40	В	00	Α	00	Α	20	Α	20 A	00	А
YU							60	В			00	А	60	В	00		40	В		60	В

Table 13: QA flag and category for main components in precipitation.

 Table 14:
 QA flag and category for main components in precipitation.

	N	O_2	SC	D ₂	SO ₄	sum NO ₃	
	field lab		field	lab	field	lab	
AT30			22 B				
CH01	31 B						
CH	33 B		32 B	00 A			
CZ	03 B	10 A	12 B	00 A	01 A	00 A	
DE	23 B	20 A	01 A	10 A	00 A	00 A	
		00 A	00 A	00 A		00 A	
EE	02 B	00 A	12 B	41 B	82 0		
ES	30 B	20 A		41 B	00 A		
				00 A	00 A		
	52 D		20 B	10 A			
	53 D				00 A		
	12 D						
	50 B		00 4				
19	50 D			40 B		60 B	
10			00 A	11 B	00 4		
IT	32 B	00 A	10 B		10 B	01 A	
	02 B	00 A	50 B	30 B	22 B	00 A	
NI	03 B	00 1	11 B		00 A		
NO	00 A	20 A	00 A	00 A	00 A	00 A	
PL	43 B	00 A	00 A	10 A	01 A	00 A	
PL05	52 B	00 A	20 B	00 A	32 B	00 A	
PT				32 B			
RU01			10 A	60 B			
RU	00 A	10 A	23 B		00 A	61 B	
SE	10 B	00 A	00 A	30 B	00 A	00 A	
SI		00 A	00 A	30 B	20 B	00 A	
SK	53 B	60 B		00 A		00 A	
TR		00 A	00 A	20 A		20 A	
YU	53 B						

8. Audits

8.1 Introduction

Audit is not being done regularly from CCC, but will be done when needed. It is recommended regular audits at all EMEP sites, at least as an internal control every year, but also with visitors from e.g. neighbouring countries. Forms to be used for auditing main components in air and precipitation, and ozone can be downloaded from EMEP's homepage, <u>http://www.nilu.no/projects/ccc/qa/index.htm</u>. It is recommended that all the external auditing is reported to CCC.

9. References

- EMEP (1996) Manual for sampling and chemical analysis. Revised Nov. 2001. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 1/95). URL: http://www.nilu.no/projects/ccc/manual/index.html.
- Eurachem (2000) Quantifying uncertainty in analytical measurements. 2nd edition. URL: <u>http://www.eurachem.ul.pt/guides/QUAM2000-1.pdf</u>.
- Fähnrich, B., Hanssen, J.E. and Nodop, K. (1993) Comparison of measuring methods for nitrogen dioxide in ambient air. Kleiner Feldberg, Federal Republic of Germany 21st April to 31st May 1991. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 3/93).
- Hjellbrekke, A.-G. (2003) Data report 2001. Acidifying and eutrophying compounds. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 3/2003).
- Manø, S. and Schaug, J. (2003) EMEP POP laboratory comparison 2000–2002. Kjeller, Norwegian Institute for Air Research (EMEP/CCC report 10/2003).
- Nodop, K. and Hanssen, J.E. (1986) Field intercomparison of measuring methods for sulphur dioxide and particulate sulphate in ambient air. Langenbrügge, Federal Republic of Germany, 7th November 1985 to 24th January 1986. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 2/86).
- Schaug, J., Semb, A. and Hjellbrekke, A.-G. (1998) Data quality 1996, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/98).
- Schaug, J., Semb, A., Hjellbrekke, A.-G., Hanssen, J.E. and Pedersen, A. (1997) Data quality and quality assurance report. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 8/97).
- Semb, A., Andreasson, K., Hanssen, J.E., Lövblad, G. and Tykesson, A. (1991) Vavihill. Field intercomparison of samplers for sulphur dioxide and sulphate in air. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 4/91).

- Sirois, A. and Vet, R.J. (1994) Estimation of the precision of precipitation chemistry measurements in the Canadian air and precipitation monitoring network (CAPMoN). In: *EMEP Workshop on the Accuracy of Measurements*. *Passau, 1993*, ed. by T. Berg and J. Schaug. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 2/94). pp. 67-85.
- Solberg, S. (2003) VOC measurements 2001. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 2/2003).
- Uggerud, H.T., Hanssen, J. E., Schaug, J. and Skjelmoen, J.E. (2003) The twentieth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 8/2003).
- Uggerud, H. T. and Skjelmoen, J.E. (2003) Analytical intercomparison of heavy metals in precipitation, 2002. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 7/2003).
- Aas, W. and Hjellbrekke, A.-G. (2003) Heavy metals and POP measurements, 2001. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 1/2003).
- Aas, W., Hjellbrekke, A.-G., Manø, S., Schaug, J., Solberg, S. Uggerud, H.Th. (2002) Data quality 2000, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 3/2002).
- Aas, W., Hjellbrekke, A.-G., Schaug, J. and Solberg, S. (2001) Data quality 1999, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/2001).
- Aas, W., Hjellbrekke, A.-G. and Schaug, J. (2000) Data quality 1998, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/2000).
- Aas, W., Hjellbrekke, A.-G., Semb, A. and Schaug, J. (1999) Data quality 1997, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/99).
10. List of participating institutions and the national quality assurance managers (NQAM)

Country	Institute	NQAM
Austria	Umweltbundesamt	Christian Schuetz
Croatia	Meteorological and Hydrological Service of Croatia	Sonja Vidic
The Czech Republic	Czech Hydrometerological Institute	Nadezda Melichova
Denmark	National Environmental Research Institute	Lone Grundahl
Estonia	Estonian Environmental Research Lab. Ltd	Toivo Truuts
Finland	Finnish Meteorological Institute	Veijo Pohjola
France	l'Ecole des Mines de Douai Laboratories Wolff	Patrice Coddeville
Germany	Umweltbundesamt	Markus Wallasch
Greece	Ministry of Environment Physical Planning and Public works	Vasiliki Smirnioudi
Hungary	Hungarian Meteorological Service, Institute for Atmospheric Physics	Laszlo Haszpra
Island	The Icelandic Meteorological office	Johanna Thorlacius
Ireland	Environmental Protection Agency	Concannon Colman
Italy	CNR Instituto Inquinamento Atmosferico	Cinzia Perrino
EU at Ispra, IT04	Joint Research Center (JRC)	Frank Raes and Jean-Philippe Putaud
Latvia	Latvian Hydrometeorological Institute	Iraida Lyulko
Lithuania	Institute of Physics	Dalia Sopauskiene and Vidmantas Ulevicius (HM and POP)
The Netherlands	National Institute for public Helath and Environmental Protection (RIVM)	Arien Stolk
Norway	Norwegian Institute for Air Research (NILU)	Jan Erik Hanssen
Poland	Institute of Meteorology and Water Management and Institute of Environmental Protection	Grazyna Mitosek and for PL05: Anna Degorska
Portugal	Instituto de Meteorologia	Amelia Lopes
Russia	Institute of Global Climate and Ecology	Alexey Ryaboshapko
Serbia and Montenegro	Federal Hydrometeorological Institute	Momcilo Zivkovic
Slovenia	Environment Agency - Slovenia	Brigita Jesenovec
Slovak Republic	Slovak Hydrometeorological Institute	Marta Mitosinkova
Spain	Subdirección General de Calidad Ambiental	Montserrat Fernández San Miguel
Sweden	Swedish Environmental Research Institute (IVL)	Karin Sjöberg
Switzerland	Swiss Federal Laboratory of testing Materials and Research (EMPA)	Robert Gehrig
Turkey	The Ministry of Health of the Republic of Turkey	Canan Yesilyurt
United Kingdom	AEA Technology	Keith Vincent

Data quality objectives

DQO for the acidifying and eutrophying compounds

- 10% accuracy or better for oxidised sulphur and oxidised nitrogen in single analysis in the laboratory,
- 15 % accuracy or better for other components in the laboratory,
- 0.1 units for pH,
- 15–25% uncertainty for the combined sampling and chemical analysis (components to be specified later),
- 90 % data completeness of the daily values.
- The targets, with respect to accuracy in the laboratory, for the very lowest concentrations of the main components in precipitation follow the WMO GAW (1992) recommendations for regional stations:

	Accuracy	
SO4 ²⁻	0.032 mg S/l	(1 µmol/l)
NO ₃ -	0.014 mg N/l	(1 µmol/l)
$\mathrm{NH_4}^+$	0.028 mg N/l	(2 µmol/l)
Cl	0.107 mg Cl/l	(3 µmol/l)
Ca^{2+}	0.012 mg Ca/l	(0.3 µmol/l)
K^+	0.012 mg K/l	(0.3 µmol/l)
Mg^{2+}	0.007 mg Mg/l	(0.3 µmol/l)
Na^+	0.007 mg Na/l	(0.3 µmol/l)

The targets for the wet analysis of components extracted from air filters are the same as for precipitation. For SO_2 the limit above for sulphate is valid for the medium volume method with impregnated filter. For NO_2 determined as NO_2^- in solution the accuracy for the lowest concentrations is 0.01 mg N/l.

The aim for data completeness is valid for the current definition used by the CCC. This definition will, however, be harmonised with the WMO GAW definition and modified.

DQO for heavy metals

- 90% completeness
- 30% accuracy in annual average
- Accuracy in laboratory (c= concentration):

Pb:	15% 25%	if c > 1 μg Pb/l if c < 1 μg Pb/l
Cd:	15% 25%	$\label{eq:constraint} \begin{array}{l} \mbox{if } c > 0.5 \ \mbox{\mug Cd/l} \\ \mbox{if } c < 0.5 \ \mbox{\mug Cd/l} \\ \end{array}$
Cr:	15% 25%	if c > 1 μg Cr/l if c < 1 μg Cr/l
Ni:	15% 25%	if c > 1 μg Ni/l if c < 1 μg Ni/l
Cu:	15% 25%	if c > 2 μg Cu/l if c < 2 μg Cu/l
Zn:	15% 25%	if $c > 10 \ \mu g \ Zn/l$ if $c < 10 \ \mu g \ Zn/l$
As:	15% 25%	if c > 1 μg As/l if c < 1 μg As/l
Hg:	15% 25%	if $c > 0.01~\mu g~Hg/l$ if $c < 0.01~\mu g~Hg/l$

Data capture

Code	mm	mm off	pН	SO ₄	XSO ₄	NH_4	NO ₃	Na	Mg	CI	Са	к	cond
AT0002R	100	-	100	100	100	100	100	100	100	100	100	99	100
AT0004R	100	-	83	83	83	83	83	81	83	83	83	81	82
AT0005R	100	-	100	100	100	100	100	100	100	93	100	100	100
BY0004R	100	-	77	100	100	87	100	94	99	99	100	93	1
CH0002R	100	-	98	96	96	96	96	96	96	96	96	96	98
CH0004R	100	-	100	100	100	100	100	100	100	100	100	100	100
CH0005R	100	-	99	98	98	98	98	98	98	98	98	98	99
CZ0001R	100	-	89	89	89	94	89	94	94	89	94	94	88
CZ0003R	100	-	98	98	96	96	98	97	97	98	97	97	96
DE0001R	98	-	99	99	99	99	99	99	99	99	99	99	99
DE0002R	100	-	99	100	100	100	100	100	100	100	100	100	99
DE0003R	100	-	100	100	100	100	100	100	100	100	100	100	100
DE0004R	100	-	99	100	100	100	100	100	100	100	100	100	99
DE0005R	100	-	100	100	100	100	100	100	100	100	100	100	100
DE0007R	100	-	100	100	100	100	100	100	100	100	100	100	100
DE0008R	100	-	100	100	100	100	100	100	100	100	100	100	100
DE0009R	100	-	100	100	100	100	100	100	100	100	100	100	99
DK0005R	100	-	100	100	100	100	100	100	100	100	100	100	100
DK0008R	100	-	91	100	100	100	100	100	100	100	100	100	100
DK0022R	100	-	100	100	100	100	100	100	100	100	100	100	100
EE0009R	100	-	100	100	100	99	100	99	99	100	99	99	100
EE0011R	100	-	70	70	70	70	70	70	70	70	70	70	70
ES0007R	99	-	96	96	96	96	96	95	95	96	95	95	87
ES0008R	99	-	99	99	99	99	99	99	99	99	99	99	98
ES0009R	97	-	97	96	96	95	96	94	94	96	94	94	90
ES0011R	99	-	97	97	97	97	97	97	97	97	97	97	97
ES0012R	97	-	99	99	99	98	99	98	98	99	98	98	99
ES0013R	98	-	99	99	99	98	99	98	98	99	98	98	90
ES0014R	100	-	91	91	91	90	91	89	89	91	89	89	91
ES0015R	97	-	86	85	85	85	85	83	83	85	83	83	85
ES0016R	92	-	99	98	98	97	98	97	97	98	97	97	92
FI0004R	100	100	100	100	100	100	100	100	100	100	100	100	100
FI0009R	100	100	99	99	99	99	99	99	99	99	99	99	99
FI0017R	100	100	98	98	98	98	98	98	98	98	98	98	98
FI0022R	100	100	99	99	99	97	99	99	99	99	99	99	99
FR0003R	100	-	60	58	58	58	58	58	58	58	58	58	60
FR0005R	100	-	92	91	91	91	91	91	91	91	91	91	92
FR0008R	100	-	98	98	98	98	98	98	98	98	98	98	98
FR0009R	100	-	97	96	96	97	96	96	96	96	96	96	97
FR0010R	100	-	85	84	84	84	84	84	84	84	84	84	85
FR0012R	100	-	93	93	93	93	93	93	93	93	93	93	93
FR0013R	100	-	90	90	90	90	90	90	90	90	90	90	90
FR0014R	100	-	94	93	93	93	93	93	93	93	93	93	94
FR0015R	100	-	96	95	95	95	95	95	95	95	95	95	96
FR0016R	100	-	94	92	92	92	92	92	92	92	92	92	94
GB0002R	100	-	100	100	100	100	100	100	100	100	100	100	100
GB0006R	102	-	100	100	100	100	100	100	100	100	100	100	100
GB0013R	100	-	100	100	100	100	100	100	100	100	100	100	100
GB0014R	100	-	100	100	100	100	100	100	100	100	100	100	100
GB0015R	100	-	100	100	100	100	100	100	100	100	100	100	100
HU0002R	100	100	88	89	89	99	89	99	99	89	99	99	88
IE0001R	100	100	99	99	99	98	99	99	99	99	99	99	99
IE0002R	100	-	100	100	100	100	100	100	100	100	100	100	100
IE0003R	100	-	100	100	100	100	100	100	100	100	100	100	100
IS0091R	95	100	97	97	-	97	97	97	97	97	97	97	97

Table A2.1:Data capture for main components in precipitation in 2002, in per
cent.

Code	mm	mm off	pН	SO_4	XSO_4	NH_4	NO_3	Na	Mg	CI	Са	к	cond
IT0001R	13	-	95	95	95	95	95	95	95	95	95	95	95
IT0004R	100	-	100	100	100	98	100	100	94	100	100	100	99
LT0015R	92	-	100	100	100	100	100	100	-	100	100	100	100
LV0010R	100	-	98	97	97	97	97	94	93	97	94	91	95
LV0016R	100	-	97	89	89	97	89	95	94	89	94	93	96
NL0009R	100	-	97	96	96	95	96	93	94	96	93	94	90
NO0001R	100	-	98	99	99	99	99	99	99	99	99	99	98
NO0008R	100	-	98	99	99	98	99	100	100	99	99	98	99
NO0015R	100	-	95	99	99	99	99	98	99	98	99	99	97
NO0039R	100	-	96	98	98	97	98	98	98	98	98	97	98
NO0041R	100	-	98	100	100	99	100	100	100	100	100	99	100
NO0055R	100	-	92	98	98	98	98	98	98	98	98	98	92
NO0099R	100	-	97	99	99	99	99	99	99	99	99	99	97
PL0002R	100	-	99	99	99	99	99	99	99	99	99	99	99
PL0003R	100	-	100	100	100	100	100	100	100	100	100	100	100
PL0004R	100	-	98	98	98	98	98	98	98	98	98	98	98
PL0005R	-	100	98	98	98	95	98	96	95	95	96	96	85
PT0001R	-	100	77	77	77	77	77	77	77	77	77	77	77
PT0003R	-	100	82	82	82	82	82	82	82	82	82	82	82
PT0004R	-	100	92	92	92	92	92	92	92	92	92	92	92
RU0001R	100	-	97	100	100	100	100	100	99	100	99	100	100
RU0013R	100	-	98	100	100	100	100	100	100	100	100	100	100
RU0016R	100	-	100	100	100	100	100	100	100	100	100	100	100
RU0018R	100	-	99	100	100	100	100	100	100	100	100	98	100
SE0005R	100	-	100	100	100	100	100	100	100	100	100	100	99
SE0011R	100	-	100	100	100	100	100	100	100	100	100	100	100
SE0014R	100	-	99	99	99	99	99	99	99	99	99	99	96
SK0002R	100	-	86	93	93	92	93	92	92	93	92	92	86
SK0004R	100	-	94	96	96	96	96	96	96	96	96	96	94
SK0005R	100	-	91	95	95	96	95	96	96	95	96	96	91
SK0006R	100	-	94	98	98	98	98	98	98	98	98	98	94
SK0007R	100	-	91	96	96	95	96	95	95	96	95	95	91
TR0001R	90	-	94	100	100	99	100	99	99	100	99	99	98
YU0005R	100	-	100	100	100	99	100	99	99	100	99	99	100
YU0008R	100	-	100	100	100	100	100	100	100	100	100	100	100

Code	SO ₂	NO ₂	SO ₄	XSO ₄	SNO ₃	NO ₃	HNO ₃	SNH ₄	NH ₄	NH ₃
AT0002R	100	99	100	-	100	-	-	99	-	-
AT0004R	-	100	-	-	-	-	-	-	-	-
AT0005R	-	99	-	-	-	-	-	-	-	-
AT0030R	95	-	-	-	-	-	-	-	-	-
BE0001R	-	86	-	-	-	-	-	-	-	-
BE0032R	-	94	-	-	-	-	-	-	-	-
BE0035R	-	78	-	-	-	-	-	-	-	-
CH0001G	81	82	100	-	-	-	-	-	-	-
CH0002R	100	100	100	-	-	-	-	-	-	-
CH0003R	-	100	-	-	-	-	-	-	-	-
CH0004R	100	99	-	-	-	-	-	-	-	-
CH0005R	100	96	100	-	100	-	-	100	-	-
CZ0001R	99	100	16	-	98	-	-	99	-	-
CZ0003R	99	99	16	-	99	-	-	100	-	-
DE0001R	100	98	100	-	100	-	-	100	-	-
DE0002R	100	69	-	-	-	-	-	-	-	-
DE0003R	97	95	97	-	96	-	-	96	-	-
DE0004R	99	97	99	-	99	-	-	99	-	-
DE0005R	99	82	-	-	-	-	-	-	-	-
DE0007R	98	97	98	-	98	-	-	97	-	-
DE0008R	98	92	-	-	-	-	-	-	-	-
DE0009R	99	99	99	-	99	-	-	99	-	-
DK0003R	97	-	96	95	96	-	-	95	-	-
DK0005R	99	-	97	97	98	-	-	99	-	-
DK0008R	99	-	99	-	99	-	-	99	-	-
EE0009R	98	97	98	-	-	-	-	-	-	-
EE0011R	99	96	-	-	-	-	-	-	-	-
ES0007R	98	98	96	-	96	-	-	98	-	-
ES0008R	96	97	92	-	97	-	-	96	-	-
ES0009R	97	95	98	-	98	-	-	99	-	-
ES0010R	97	96	93	-	91	-	-	89	-	-
ES0011R	98	97	98	-	99	-	-	100	-	-
ES0012R	98	97	96	-	94	-	-	95	-	-
ES0013R	98	96	96	-	99	-	-	99	-	-
ES0014R	98	99	90	-	96	-	-	96	-	-
ES0015R	97	97	76	-	93	-	-	86	-	-
ES0016R	94	92	92	-	96	-	-	93	-	-
FI0009R	98	90	98	-	98	-	-	100	-	-
FI0017R	100	96	100	-	100	-	-	100	-	-
FI0022R	100	98	100	-	100	-	-	99	-	-
FI0037R	100	74	98	-	98	-	-	100	-	-
FR0003R	50	-	49	-	-	-	-	-	-	-
FR0005R	100	-	95	-	-	-	-	-	-	-
FR0008R	97	-	96	-	-	-	-	-	-	-
FR0009R	100	-	100	-	-	-	-	-	-	-
FR0010R	100	-	100	-	-	-	-	-	-	-
FRUUTZR	96	-	96	-	-	-	-	-	-	-
FR0013R	98	-	95	-	-	-	-	-	-	-
FR0014R	89	-	88	-	-	-	-	-	-	-
	99	-	99	-	-	-	-	-	-	-
	94	-	94	-	-	-	-	-	-	-
GB0002R	96	-	-	-	-	-	-	-	-	-
GB0006R	100	-	-	-	-	-	-	-	-	-
GB0013R	92	-	-	-	-	-	-	-	-	-
GB0014R	96	-	-	-	-	-	-	-	-	-
GBUU15K	100	-	-	-	-	-	-	-	-	-
GBUU36K	-	98	-	-	-	-	-	-	-	-
9003/K	-	97	-	-	-	-	-	-	-	-

Table A2.2:Data capture for main components in air in 2002, in per cent.

46

Code	SO ₂	NO ₂	SO ₄	XSO ₄	SNO₃	NO ₃	HNO ₃	SNH₄	NH_4	NH₃
GB0038R	-	91	-	-	-	-	-	-	-	-
GB0043R	-	86	-	-	-	-	-	-	-	-
GB0045R	-	85	-	-	-	-	-	-	-	-
HU0002R	81	89	86	-	-	86	86	-	94	94
IE0001R	98	100	99	-	-	-	-	-	-	-
IE0002R	86	-	86	-	-	-	-	-	-	-
IE0003R	-	-	92	-	-	-	-	-	-	-
IS0091R	-	-	100	-	-	100	-	-	-	-
IT0001R	100	94	100	-	-	99	100	-	100	100
IT0004R	92	81	58	-	-	58	-	-	58	-
LT0015R	96	96	96	-	96	-	-	96	-	-
LV0010R	95	99	99	-	100	100	-	100	99	-
LV0016R	94	99	99	-	99	99	-	99	99	-
NL0009R	99	91	93	-	-	93	-	-	93	-
NL0010R	87	93	99	-	-	99	-	-	99	77
NO0001R	99	98	98	98	90	90	91	91	91	91
NO0008R	99	97	99	99	88	88	91	89	89	91
NO0015R	99	100	99	99	64	64	67	67	67	67
NO0039R	98	99	98	98	85	85	88	88	88	81
NO0041R	99	92	99	99	95	96	96	96	96	96
NO0042G	97	-	96	96	57	57	68	68	68	68
NO0055R	100	100	99	99	83	83	92	92	92	-
PL0002R	99	98	98	-	40	92	-	95	89	-
PL0003R	100	100	100	-	100	100	-	100	100	-
PL0004R	83	100	83	-	100	98	-	90	98	-
PL0005R	98	99	99	-	99	-	-	99	-	-
RU0001R	89	-	91	-	-	91	-	-	91	-
RU0016R	96	-	96	-	-	96	-	-	96	-
RU0018R	88	-	88	-	-	88	-	-	88	-
SE0005R	97	96	97	-	97	-	-	95	-	-
SE0008R	98	98	98	-	-	-	-	-	-	-
SE0011R	100	92	100	-	100	-	-	100	-	-
SE0014R	98	95	98	-	98	-	-	98	-	-
SI0008R	99	-	99	-	99	-	-	99	-	-
SK0002R	95	95	98	-	-	98	98	-	-	-
SK0004R	98	100	98	-	-	98	98	-	-	-
SK0005R	96	91	99	-	-	99	98	-	-	-
SK0006R	97	99	96	-	-	98	98	-	-	-
SK0007R	96	100	98	-	-	99	99	-	-	-
TR0001R	82	95	97	-	89	97	85	94	94	84
YU0005R	87	86	-	-	-	-	-	-	-	-
YU0008R	32	32	-	-	-	-	-	-	-	-

Code	Pb	Cd	Zn	Ha	Ni	As	Cu	Со	Cr	Mn	V	Fe	mm
BE0004R	86	86	86	94	86	92	70	-	86	-	-	-	96
CZ0001R	99	99	-	-	99	-	-	-	-	-	-	_	100
CZ0003R	99	99	-	_	99	-	-	-	-	-	-	_	100
DE0001R	100	100	100	100	100	100	100	100	100	100	100	100	100
DE0002R	95	95	95	100	90	95	93	95	93	95	95	95	100
DF0004R	99	99	99	_	99	99	99	99	99	99	99	-	100
DE0009R	98	98	98	100	98	98	91	98	98	98	98	98	100
DK0008R	100	100	100	-	100	100	100	-	100	-	-	100	100
DK0020R	100	100	100	-	100	100	100	-	100	-	-	100	92
DK0031R	100	100	100	-	100	100	100	-	100	-	-	100	100
EE0009R	100	100	100	-	-	100	100	_	-	-	-	-	100
EE0011R	72	72	69	-	_	72	72	_	-	-	_	-	100
F10008R	100	100	100	-	100	100	100	_	100	100	100	100	100
FI0009R	100	100	100	-	100	100	100	_	100	100	100	100	100
FI0017R	100	100	100	-	100	100	100	_	100	100	100	100	100
FI0022R	100	100	100	-	100	100	100	_	100	100	100	100	100
FI0036R	100	100	100	-	100	100	100	_	100	100	100	100	99
FI0053R	100	100	-	-	98	100	100	_	100	100	-	100	100
F10092R	100	100	100	-	100	100	100	-	100	100	100	100	100
FI0093R	100	100	100	-	100	100	100	_	100	96	100	100	100
FI0096R	-	-	-	100	-	-	-	_	-	-	-	-	97
FR0090R	100	100	100	-	100	100	100	_	100	-	_	-	100
GB0014R	92	100	100	-	100	100	100	_	100	-	_	-	100
GB0090R	100	100	100	-	100	97	100	_	100	-	_	-	98
GB0091R	100	100	100	-	100	100	100	_	100	-	_	-	98
IE0001R	100	100	100	100	100	100	100	_	100	100	100	_	100
IE0002R	100	100	100	-	100	100	100	_	100	100	100	_	100
120002R	100	100	100	_	100	100	100	_	100	100	100	100	90
IS0091R	100	100	100	_	100	-	100	_	100	100	-	100	96
1 T0015R	94	93	99	_	-	_	99	_	-	-	_	-	99
L V0010R	100	100	100	_	100	100	100	_	-	100	_	_	83
LV0016R	100	100	100	_	100	100	100	_	-	100	_	-	83
	72	70	70	-	72	72	72	_	72	-	_	-	96
NI 0091R	100	100	96	100	96	100	100	_	100	_	_	_	100
NO0001R	100	100	100	-	-	-	-	_	-	-	_	-	100
NO0039R	100	100	100	_	_	-	_	_	-	-	_	-	100
NO0041R	100	100	100	_	_	-	_	_	-	-	_	-	100
NO0047R	98	98	98	-	98	98	98	98	98	-	-	-	96
NO0055R	100	100	100	-	-	-	-	-	-	-	-	-	100
NO0056R	95	95	95	-	-	-	-	-	-	-	-	-	100
NO0099R	100	100	100	100	100	100	100	100	100	-	100	-	83
PI 0004R	100	100	100	-	100	-	100	-	100	-	-	-	100
PL 0005R	97	97	97	-	97	-	97	-	97	-	-	-	100
PT0001R	77	77	77	_	77	-	77	-	-	77	-	-	-
PT0003R	82	82	82	-	82	-	82	-	-	82	-	-	-
PT0004R	92	92	92	-	92	-	92	_	-	92	_	-	-
PT0010R	92	92	92	_	92	-	92	-	-	92	-	_	_
SE0005R	100	100	100	100	100	100	100	-	100	100	100	-	97
SE0011R	-	-	-	100	-	-	-	-	-	-	-	-	97
SE0014R	-	-	-	100	-	-	-	-	-	-	-	-	97
SE0051R	100	100	100	-	100	100	100	-	100	100	100	-	100
SE0097R	100	100	100	-	100	100	100	100	100	100	100	-	97
SK0002R	100	100	78	-	100	100	100	-	100	100	-	-	100
SK0004R	100	100	81	-	100	100	100	-	100	100	-	-	100
SK0005R	100	100	94	-	100	100	100	_	100	100	_	-	100
SK0006R	100	100	100	_	100	100	100	_	100	100	-	-	100
	100	100	100	_	100	-	100	-	100	100	-	-	100

Table A2.3:Data capture for heavy metals in precipitation in 2002, in per cent.

Code	Pb	Cd	Zn	Hg	Ni	As	Cu	Со	Cr	Mn	V	Fe
AT0002R	29	29	-	-	13	13	-	-	-	-	-	-
AT0004R	17	17	-	-	-	-	-	-	-	-	-	-
AT0005R	26	26	-	-	11	11	-	-	-	-	-	-
BE0004R	33	33	33	-	33	-	33	-	-	-	-	-
CZ0001R	17	17	-	-	-	-	-	-	-	-	-	-
CZ0003R	16	16	-	-	-	-	-	-	-	-	-	-
DE0001R	100	100	-	-	100	100	100	-	-	100	-	97
DE0002R	96	96	94	97	96	96	96	-	-	96	-	96
DE0003R	97	97	-	-	-	95	97	-	-	97	-	-
DE0004R	100	100	-	-	100	100	100	-	-	100	-	-
DE0005R	100	100	-	-	-	100	100	-	-	-	-	97
DE0007R	100	100	-	-	100	100	-	-	-	100	-	97
DE0008R	100	100	-	-	100	100	100	-	-	100	-	100
DE0009R	100	100	-	-	100	100	100	-	-	100	-	97
DK0003R	98	98	98	-	98	98	98	-	98	98	-	98
DK0005R	99	99	99	-	99	99	99	-	99	99	-	99
DK0008R	100	100	100	-	100	100	100	-	100	100	-	100
DK0031R	99	99	100	-	99	99	99	-	99	99	-	99
ES0008R	12	12	-	-	-	-	12	-	-	-	-	-
ES0009R	12	12	-	-	-	-	12	-	-	-	-	-
FI0036R	96	96	96	-	96	96	96	-	96	96	96	96
FI0096R	-	-	-	83	-	-	-	-	-	-	-	-
GB0014R	100	100	100	-	100	100	100	-	100	-	-	-
GB0090R	100	100	100	-	92	100	100	-	100	-	-	-
GB0091R	99	99	99	-	99	99	99	-	99	-	-	-
IS0091R	100	100	100	100	100	100	100	-	100	100	100	100
LT0015R	99	99	99	-	-	-	99	-	-	-	-	-
LV0010R	96	96	96	-	96	96	96	-	-	96	-	-
LV0016R	95	95	95	-	95	95	95	-	-	95	-	-
NL0009R	50	50	50	-	-	50	-	-	-	-	-	-
NO0042G	25	25	25	78	25	25	25	25	25	25	25	-
NO0099R	100	100	100	6	62	100	90	83	62	-	77	-
SE0005R	93	93	-	-	93	93	-	-	-	-	-	-
SE0014R	92	92	-	24	92	92	-	-	-	-	-	-
SK0002R	92	92	92	-	90	92	90	-	90	92	-	-
SK0004R	86	91	86	-	91	88	91	-	89	91	-	-
SK0005R	67	67	67	-	56	63	56	-	67	63	-	-
SK0006R	98	98	98	-	98	98	98	-	98	98	-	-
SK0007R	98	98	98	-	96	98	98	-	92	96	-	-

Table A2.4:Data capture for heavy metals in air in 2002, in per cent.

Code	O3	Code	O3	Code	O3	Code	O3
AT0002R	96	DE0009R	96	FR0010R	91	NO0039R	99
AT0004R	96	DE0012R	91	FR0012R	86	NO0041R	98
AT0005R	96	DE0026R	91	FR0013R	98	NO0042G	97
AT0030R	96	DE0035R	86	FR0014R	97	NO0043R	100
AT0032R	99	DE0039R	93	FR0015R	98	NO0045R	100
AT0033R	96	DE0042R	87	FR0016R	99	NO0048R	100
AT0034G	96	DE0045R	93	GB0002R	99	NO0052R	100
AT0037R	92	DE0046R	94	GB0006R	88	NO0055R	98
AT0038R	95	DE0047R	95	GB0013R	92	NO0056R	100
AT0040R	95	DK0005R	100	GB0014R	94	NO0488R	95
AT0041R	95	DK0010G	24	GB0015R	95	NO0489R	53
AT0042R	94	DK0011G	19	GB0031R	90	NO0492R	98
AT0043R	95	DK0031R	99	GB0032R	99	PL0002R	100
AT0044R	92	DK0041R	96	GB0033R	97	PL0003R	100
AT0045R	95	EE0009R	98	GB0034R	99	PL0004R	100
AT0046R	96	EE0011R	99	GB0035R	74	PL0005R	96
AT0047R	95	ES0007R	98	GB0036R	97	PT0004R	90
BE0001R	93	ES0008R	98	GB0037R	97	RU0016R	54
BE0011R	100	ES0009R	96	GB0038R	94	RU0018R	39
BE0013R	100	ES0010R	96	GB0039R	99	SE0011R	99
BE0032R	93	ES0011R	98	GB0043R	91	SE0012R	95
BE0035R	91	ES0012R	97	GB0044R	98	SE0013R	100
CH0002R	95	ES0013R	98	GB0045R	99	SE0014R	99
CH0003R	95	ES0014R	99	GR0002R	71	SE0032R	99
CH0004R	95	ES0015R	96	HU0002R	97	SE0035R	99
CH0005R	95	ES0016R	93	IE0031R	98	SE0039R	100
CZ0001R	98	FI0009R	74	IT0001R	92	SI0008R	91
CZ0003R	95	FI0017R	99	IT0004R	83	SI0031R	94
DE0001R	95	FI0022R	95	LT0015R	99	SI0032R	93
DE0002R	95	FI0037R	99	LV0010R	88	SI0033R	77
DE0003R	91	FR0008R	96	MT0001R	94	SK0002R	97
DE0004R	91	FR0008R	98	NL0009R	95	SK0004R	100
DE0005R	96	FR0008R	98	NL0010R	93	SK0006R	100
DE0007R	90	FR0008R	96	NO0001R	99	SK0007R	99
DE0008R	91	FR0009R	98	NO0015R	96		

Table A2.5:Data capture for ozone in 2002, in per cent.

Table A2.6: Number of valid (daily) samples of hydrocarbons and carbonyls (after inspection and removal of outliers).

According to EMEP's recommendations, the samples should be taken twice a week, implying that 104 samples per year correspond to 100% data capture. A 90% data completeness is therefore 94 samples per year.

Station	Numbe	r of samples
Station	HC	Carb
Pallas	96	-
Utö	89	-
Zingst	101	104
Waldhof	104	104
Schmücke	104	104
Brotjacklriegel	104	104
Hohenpeissenberg	337	-
Košetice	103	-
Starina ²⁾	80	-
Rigi ¹⁾	314	-
Donon	91	75
Peyrusse Vieille ²⁾	79	28
La Tardiere	104	28
Campisábalos	97	-

¹⁾ Refer to days with monitoring data ²⁾ Renovation at the station

	air (in %)	total dep (in %)	num samples	sampl frequenzy	precip (in %)
BE0004R					100
CZ0003R	14		52	1 day a week	
DE0001R					100
DE0009R					85
FI0096R	23	23	12	1 week a month	
IE0002R					70
IS0091R	100		25	biweekly	100
LT0015	100		25	monthly	
NL0091R					100
NO0042G	32		57	48h a week	
NO0099R	14		52	24h a week	100
SE0012R	22	22	12	1 week a month	
SE0014R	96	98	51	weekly	

Table A2.7:Data capture for POPs in 2002, in per cent.

Ion balances in precipitation samples 2002

EMEP/CCC-Report 4/2004

EMEP/CCC-Report 4/2004

EMEP/CCC-Report 4/2004

Detection limits and precision

Country	Precision	Detection limit	Instrument
Austria AT02,04	1 nnh	0.4 ppb	Horiba APOA 350E
AT05	i ppp	0.5 ppb	Horiba APOA 360
Polaium	1 pph	1 ppb	O341M Ozone Analyzer
Beigium	i ppp	0.5 ppb	Monitor Labs, ML 9812
Czech Republic	RSD: 10%	2 µg/m ³	Thermo Electron Series 49
Denmark		1 ppb	API Model 400 and 400A
Estonia*		2 µg/m³	Thermo Environmental Instruments TEI 49 C
Finland FI04			Thermo Environmental Instruments, TEI 49 C
F109	2 µg/m ³	2 µg/m ³	Dasibi Environmental corp., DAS 1008 PC
FI17	z µg/m	z µg/m	Environnement SA, Env. O3 41 M
FI22			Dasibi Environmental corp., DAS 1008 AH
France FR08,09,12,	a (3	a (3	Environnement SA, O341M
13, 14, 15, 16 FR10	2 µg/m°	2 µg/m°	SERES 072000
Germany		2.0 µg/m ³	
Hungary*		2.0 µg/m	Thermo Environmental Instrument Model 49
Ireland (IE01)			API Model400
Italy (IT01)	2 µa/m ³	1 µg/m ³	API Model400
Italy, EU (IT04)	2 ppb	2 ppb	Thermo Environmental Instrument, Model 49
Latvia	1%	1 ppb	O341M Ozone Analyzer
Netherlands*	1%	4 µg/m ³	
Norway*	2 µg/m³	2 µg/m ³	API Model 400
Poland	2 μg or 1%, whichever is greater	2 µg/m³	Monitor Labs Inc. ML-9810
PL05	RSD 1.8%	1 ppb	Monitor Labs Inc. ML-9810
Portugal PT04	1 ppb	1 ppb	Dasibi Environmental corp. 1008 PC
Russia	2 μg/m³	2 μg/m³	Dasibi Environmental corp., DAS 1008 PC
Slovakia	2 µg/m³	2 μg/m³	TEI M49 (at SK02, 04, 06, 07)
Slovenia*, Sl08,32			Thermo Environmental Model 49 C
SI31,33			Monitor Labs, Model 8810
Spain	2%	1 ppb	MCV, S.A. Model 48 AUV
	2 μg/m³	2 μg/m³	MCV, S.A. Model 0341 M
Sweden, SE11,12,14	1 ppb	1 ppb	Monitor Labs, ML 9810 (ML 9810 B at SE 12)
SE32	1 ppb	1 ppb	Thermo Environmental Instrument, Model 49C
SE13,35,39	1 ppb	1 ppb	Monitor Labs, ML 8810
Switzerland, CH02,04,05	RSD: 2%	1 ppb	Thermo Environmental Instruments TEI 49C
CH03	RSD: 3%	1 ppb	Monitor Labs 9810 / from 15.03.04 TEI 49C
UK, all sites except:			Monitor Labs, ML 8810
GB32	2 nnh		TECO, TE49
GB43	∠ hhn		Ambirack
GB44			API Model 400

Table A4.1: Detection limits and precision of ozone.

*Data from EE, FR, HU, NL, NO and SI are taken from earlier years

	Measurements		Laboratory	
Country	Precision	Detection limit; µg S/m3	Precision	Detection limit
Austria ¹	0.7 ppb	0.1 ppb		
Czech Republic	CoV: 26.4% M.MAD : 0.308 μg SO ₂ /m ³	0.05	S: RSD : 0.3%	0.013 mg SO4 ² /I
Denmark	M.MAD: 0.02; CoV: 5 %	DK03: 0.02; DK05, DK08: 0.01	M.MAD: 0.01 µg S/m ³ ; CoV: 3%	0.02 µg S/m ³
Estonia*		0.48		
Finland		0.04	M.MAD: 0.003 μg S/m ³ CoV: 1.0%	0.01 µg S/m ³
France			at 0.01 <c<0.1 i:<br="" mg="" s="">RSD = 8-12% at 0.1<c<0.5 i:<br="" mg="" s="">RSD = 1-3%</c<0.5></c<0.1>	0.1 mg S/L
Germany	M.MAD: < 0.02			0.01 μg/m ³
Hungary		2.20		2.49 μg S/m ³
Ireland				0.05 µgS/m ³
Italy (IT01)	RSD: 7.0% at 2.0 μg S/m ³	0.1		0.002 mg S/I
Italy, EU (IT04) ²	0.5 ppb	1 ppb		
Latvia		0.11	RSD: 2.3%	0.02 mg S/I
Lithuania		0.021 mg S/m ³	at c<0.7 mg S/m ³ : 2.4% RSD; at c>0.7 mgS/m3: 0.5-1.0 % RSD	0.017 mg S/I
Netherlands*	1%	3		
Norway*	M.MAD 0.04; CoV: 12%	0.03		0.01 μg S/m3
Poland		0.2		0.04 mg S/I
PL05	M.MAD = 0.13; CoV= 11.2%	0.1	RSD: 0.73%	0.5 mg S/I
Russia*	RU01: M.MAD 0.01; CoV= 3% RU18: M.MAD 0.01; CoV= 12%			
Serbia and Montenegro*				0.005 mg SO ₂ /m ³
Slovakia			1.25%	0.1 µg S/filter
Slovenia		0.097		0.013 μg S/ml
Spain	1% or 0.2 ppb	0.06 ppb		
Sweden	uncertainty (95% conf. int): 13%	0.02	R: 2%	0.01 μg S/m ³
Switzerland CH01	RSD: 4%	0.03		
³ CH02, CH04, CH05	RSD: 5%	0.2 ppb		
Turkey		0.11	M.MAD: 0.015; CoV: 2.8%	0.016 mg S/I*
UK				0.01 mg S/I

Table A4.2: Detection limits and precision of sulphur dioxide.

¹ AT, Monitor, (TEI 43BS to 15th December, after that TEI 43 C trace level) ² IT04. Monitor Environment SA, AF 21M ³ CH02, CH04: TEI 43C TL; CH05: TEI 43BS / from 21.08.02 TEI 43CTL

*Data from EE, NL, NO, RU, TR and YU are taken from earlier years

	Measurements		Laboratory	
Country	Precision	Detection limit, µg N/m ³	Precision	Detection limit
Austria ¹	1 ppb	0.5 ppb		
Belgium (BE01) (BE02)	0.6 μg N/m ³ 1%	0.3 0.5 ppb		
Czech Republic	RSD: 12%	0.07	RSD: 3.4%	0.001 mg NO ₂ /I
Denmark		DK08: 0.07	M.MAD: 0.01 μg N/m ³ ; CoV: 1.04%	0.01 µg N/m ³
Estonia*		0.07		
Finland**	0.3 µg N/m ³	0.3		
Hungary		0.12	M.MAD: 0.001; CoV: 6.846%	
Ireland				0.1 μg N/m ³
Italy (IT01)	0.6 µg N/m ³	0.3		
Italy, EU (IT04) ²	0.5 ppb	0.5 ppb		
Latvia		0.16	RSD: 2.8%	0.005 mg N/I
Lithuania		0.08	at c<2.0 μg N/m ³ : 3.75-6.9% RSD	0.03 mg N/I
Netherlands*	1%	2		
Norway*	M.MAD: 0.13; CoV: 5%	0.03	RSD: 7.0% at c=0.03 mgN/l RSD: 4.6% at c=0.17 mgN/l RSD: 4.2% at c=0.08 mgN/l	0.0045 mg N/l
Poland		0.2	RSD: 1.0% at 0.304 mgN/l RSD: 5.9 % at 0.015 mgN/l	0.008 mg N/l
PL05	M.MAD: 0.37; CoV: 24.5%	0.02	RSD: 3.17%	0.02 mg N/I
Serbia and Montenegro				$0.003 \text{ mg NO}_2/\text{m}^3$
Slovakia			3.51%	0.003 mg N/l
Spain	0.05 ppb	0.05 ppb		
Sweden	uncertainty (95% conf.int.): 6%	0.3	R: 2%	0.02 mg N/I
Switzerland ³ CH04, CH05	RSD: 5%	0.5 ppb		
CH02, CH03	RSD: 3%	0.5 ppb		
CH01		0.05 ppb		
Turkey	M.MAD: 0.078; CoV: 8%	0.39	M.MAD: 0.084; CoV: 9.7%	0.02 mg N/l*
UK	3.5 ppb			

Table A4.3: Detection limits and precision of nitrogen dioxide.

¹AT: Monitor, HORIBA APNA 360 ²IT04: Monitor, Thermo Environment 42C ³CH04 and CH05: Monitor Labs 9841A; CH02 and CH03: APNA 360; CH01: Eco Physics CLD 770AL ppt + PLC 760

* Data from EE, NL, NO, TR and YU are taken from earlier years. ** FI: Monitor, Thermo Environment 42TCL

	Measurements		Laboratory	
Country	Precision	Detection limit, µg S/m ³	Precision	Detection limit
Czech Republic	RSD: 18.5%			S: 2.6 ng/m ³
Denmark	M.MAD: 0.05 µg S/m ³ CoV: 6.5%	DK03, 05, 08: 0.03		
Estonia*		0.53		
Finland		0.04	M.MAD: 0.002 μg S/m ³ ; CoV: 0.5%	0.01 μg S/m ³
France			at 0.01 <c<0.1 i:="" mg="" rsd="<br" s="">8-12% at 0.1<c<0.5 i:="" mg="" rsd="<br" s="">1-3%</c<0.5></c<0.1>	0.2 µg S/filter
Germany	M.MAD < 0.02 µg/m ³			0.01 µg/m³
Hungary		0.10		<0.01 µg S/m ³
Ireland				0.05 μg/m ³
Italy (IT01)	RSD: 1.3% at 1 μg S/m ³	0.01		0.002 mg S/I
Italy, EU (IT04)		0.009 ppm	CoV: 1.3%	0.004 mg S/I
Latvia		0.11	RSD: 2.3%	0.02 mg S/I
Lithuania		0.024	at c<1.0 μgS/m ³ : 7.2% RSD; at c>1.0 mgS/m ³ : 1.0% RSD	0.024 mgS/I
Netherlands*			SD: 0.07 nmol/filter	0.7 µmol/filter
Norway*	M.MAD 0.009 μg S/m ³ at c<2.4 μg S/m ³	0.01		
Poland		0.18		0.04 mg S/I
PL05	M.MAD: 0.08; CoV=10.4%	0.1	RSD: 4%	0.5 mg S/I
Russia	RU01: M.MAD 0.01; CoV=2.5% RU16: M.MAD 0.02; CoV=7.5% RU18: M.MAD 0.01; CoV=2.3%		CoV: 1.75 μg/m³	0.02 mg/l
Slovakia			2.12%	0.03 mg S/I
Slovenia				0.013 μg S/ml
Spain				0.01 µg S/m ³
Sweden	uncertainty (95% conf. int.): 13%	0.005 μg SO ₄ -S/m ³	R: 2%	0.005 mg S/I
Switzerland	RSD: 10%	0.04		
Turkey		0.02	M.MAD: 0.033; CoV: 4.4%	0.014 mg S/l*
UK			RSD: 2%	0.01 mg S/I

Table A4.4: Detection limits and precision of sulphate in air.

*Data from EE, NL, NO and TR are taken from earlier years.

	Measuremer	nts	Laboratory		
Country	Precision	Detection limit, µg N/m3	Precision	Detection limit	
Czech Republic	M.MAD: 0.706; CoV 29.1%	0.1	NO ₃ : 2%	NO ₃ : 0.02 mg N/I	
Denmark	M.MAD: 0.04 μg N/m ³ CoV: 7,3%	DK05,08: 0.05 DK03: 0.04	M.MAD: 0,01 µg N/m ³ CoV: 1.0%	0.01 µg N/m ³	
Finland		0.02	M.MAD: 0.001 μg N/m ³ CoV: HNO ₃ = 5.0% and NO ₃ = 0.9%	0.005 μg N/m ³	
Germany	< 0.02 µg/m ³ M.MAD			0.01 µg/m ³	
Hungary		HNO ₃ : 0.06; NO ₃ : 0.07		HNO ₃ : <0.01; NO ₃ : 0.09	
Italy (IT01)	HNO ₃ : RSD: 6.2% at 0.25 μg N/m ³	HNO ₃ : 0.01		0.002 mg N/l	
	NO ₃ : RSD: 1.5% at 1 μ g N/m ³	NO ₃ : 0.01		_	
Italy, EU (IT04)		0.024	CoV: 1.2%	0.011 mg N/I	
Latvia		HNO ₃ , NO ₃ : 0.01	RSD: 2.6%	0.011 mg N/I	
Lithuania		0.014	c=0.3-1.0 μg N/m ³ ; 0.5-1.2% RSD	0.013 mg N/l	
Norway*	M.MAD 0.012 at <1.6 µg N/m ³	0.02			
Poland		0.02		0.01 mg N/l	
PL05	M.MAD: 0.11; CoV: 16.9%	0.2	RSD: 2%	0.05 mg N/I	
Russia	NO ₃ : RU18: M.MAD 0.01; CoV=4.9%			0.01 mg/l	
Slovakia			HNO ₃ : 1.71%; NO ₃ : 1.36%	HNO ₃ : 0.01 mg N/l; NO ₃ : 0.04 mg N/l	
Slovenia		NO₃: 0.011 μg N/m³		0.006 μg N/ml	
Spain				0.06 μg N/m ³	
Sweden	uncertainty (95% conf. int.): 12%	NO ₃ -N: 0.005; HNO ₃ -N: 0.01	R: 2%	NO ₃ -N: 0.005; HNO ₃ -N: 0.01 mg N/I	
Switzerland	RSD: 8%	0.04			
Turkey		NO ₃ : 0.03 HNO ₃ : 0.07	NO3: M.MAD: 0.007; CoV: 8.2% HNO3: M.MAD: 0.008; CoV: 10.8%	0.03 mg N/I*	

Table A4.5: Detection limits and precision of nitrate and nitric acid in air.

*Data from NO and TR are taken from earlier years.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg N/m ³	Precision	Detection limit
Czech Republic	NH₄: CoV: 27.2% M.MAD: 0.441 μg/m³	0.17	N: RSD: 0.6%	0.02 mg N/I
Denmark	M.MAD: 0.13 μg N/m³ CoV: 6.6%	DK08: 0.04 DK03,05: 0.05	NH₄: M.MAD: 0.02 μg N/m³; CoV: 1.3% NH₃: M.MAD: 0.01 μg	NH₄⁺: 0.01 μg N/m³ NH₃: 0.02 μg
Finland		0.04	N/m ³ ; CoV: 1.0% M.MAD: 0.004 μg N/m ³ ;	N/m³ 0.01 μg/m³
Germany	M.MAD < 0.02 μg/m ³		000.1.070	0.01 µg/m ³
Hungary		NH₃: 0.72; NH₄: 0.33		
Italy (IT01)	NH ₃ : RSD: 3.9% at 1 μ g N/m ³ NH ₄ : RSD: 4.2% at 2 μ g N/m ³	0.1		
Italy, EU (IT04)		0.17	CoV: 2.4%	0.074 mg N/I
Latvia		NH₃: 0.43, NH₄: 2.58	RSD: NH ₄ : 4%; NH ₃ : 2%	NH ₄ ; 0.03 mg N/I NH ₃ : 0.02 mg N/I
Lithuania		0.027	at c<1.0 μg N/m ³ : 4.0% RSD at c>1.0 mg N/m ³ : 0.6-1.8% RSD	0.04 mgN/l
Netherlands*	NH₃: RSD: <2%	NH ₃ : 0.12	NH₄, SD: 0.0025 nmol/filter	NH₄: 0.4 µmol/filter
Norway*		0.05-0.1		
Poland		0.06		0.03 mg N/l
PL05	M.MAD: 0.24; CoV: 20.8%	0.03	RSD: 1.64%	0.01 mg N/l
Russia	NH₄: RU01: M.MAD 0.01; CoV=4.5% NH₄: RU16: M.MAD 0.01; CoV=3.5% NH₄: RU18: M.MAD 0.01; CoV=2.1%		NH₄: M.MAD: 0.01 μg/m ³ CoV: 3.39 μg/m ³	NH₄: 0.02 mg/l
Slovenia		NH ₄ : 0.014 μg N/m ³ ; NH ₃ : 0.032 μg N/m ³		0.009 μg N/m ³
Spain		0.03	2.68 %	0.03 μg N/m ³
Sweden	uncertainty (95% conf. int.): 13%	NH₃-N: 0.03; NH₄-N: 0.02	R: 3%	NH₄: 0.017; NH₃: 0.03 (N mg/l)
Switzerland	RSD: 7%	0.1		
Turkey		NH ₄ : 0.04 NH ₃ : 0.10	NH4: M.MAD: 0.026; CoV: 5.2% NH3: M.MAD: 0.034; CoV: 14%	NH ₄ : 0.04* NH ₃ : 0.05*

Table A4.6: Detection limits and precision of ammonia and ammonium in air.

* Data from NL, NO and TR are taken from earlier years.

	Measurements		Laboratory		
Country	Precision	Detection limit, mg S/I	Precision	Detection limit, mg S/I	
Austria		0.012	RSD: 0.92%	0.002	
Belarus				0.100	
Czech Republic	CoV: 5.5% M.MAD: 0.153 mg/l	SO4: 0.294	RSD: 1.4%	0.02	
Denmark			M.MAD: 0.01 mg S/l; CoV: 1.6%	0.04	
Estonia*		0.347		0.221	
Finland			M.MAD: 0.006 mg S/l; CoV: 2.0%	0.02	
France			at c<0.2 mg S/I: RSD = 5-10% at 0.2 <c<0.5 i:="" mg="" rsd="3-5%<br" s="">at 0.5<c<5 i:="" mg="" rsd="1-3%</td" s=""><td>0.02</td></c<5></c<0.5>	0.02	
Germany				0.01	
Hungary			M.MAD=0.019; CoV=1.25%	ca. 0.03*	
Italy (IT01)	PSD: 1 1% at 1 mg S/	0.01	RSD: 0.8% at 0.5 mg S/I	0.002	
	10D. 1.170 at 1 mg 0/1	0.01	RSD: 1.6% at 0.05 mg S/I		
Italy, EU (IT04)			CoV: 1.3%	0.004	
Latvia			CoV: 3.3%	0.011	
Lithuania			c<0.5 mgS/I: 3.4% RSD	0.02	
Lititariia			c>0.5 mgS/l: 1.0% RSD	0.02	
Netherlands*			SD: 0.2	1 µmol/l	
Norway*	M MAD: 0.03 CoV: 7%		SD: 0.041 at c=2.23 mgS/l	0.01	
	W.WAD. 0.00, 00V. 770		SD: 0.019 at c=0.85 mgS/l	0.01	
Poland			RSD: 1% at 6.7 mg S/l RSD: 1.8% at 0.67 mg S/l RSD: 2% at 0.33 mgS/l	0.03	
PL05	M.MAD: 0.01; CoV: 1.8%	0.1	M.MAD: 0.04; CoV: 7.3%	0.1	
Portugal			0.75%	0.05	
Russia			CoV: 0.78%	0.02	
Serbia and Montenegro*				0.16	
Slovakia			3.13%	0.01	
Spain			CoV: 1.4 %	0.07	
Sweden Water	uncertainty (95% conf. int.): 5% (0.004-1 mg/l) uncertainty (95% conf. int.): 1% (1-28 mg/l)	0.004	R: 2%	0.004	
Switzerland	M.MAD: 0.01 mg S/I			0.01	
Turkey			M.MAD: 0.023; CoV: 1.7%	0.040*	
UK			1%	0.01	

Table A4.7: Detection limits and precision of sulphate in precipitation.

 \ast Data from EE, HU, NL, NO, TR and YU are taken from earlier years.

	Measurements		Laboratory	
Country	Precision	Detection limit mg N/I	Precision	Detection limit mg N/I
Austria		0.013	RSD: 0.7%	0.001
Belarus				0.100
Czech Republic	CoV: 5.4% M.MAD: 0.155 mg/l	0.403	RSD: 0.9%	0.03
Denmark			M.MAD: 0.02 mg N/l; CoV: 2.6%	0.02
Estonia*		0.302		0.167
Finland			M.MAD: 0.003 mg N/l; CoV: 1.5%	0.01
France			at c<0.2 mg N/I: RSD = 5-10% at 0.2 <c<0.5 i:<br="" mg="" n="">RSD = 3-5% at 0.5<c<5 i:<br="" mg="" n="">RSD = 1-3%</c<5></c<0.5>	0.02
Germany				0.01
Hungary			M.MAD=0.003; CoV=0.25%	ca. 0.03*
Italy (IT01)	RSD: 1.4% at 1 mg N/I	0.01	RSD: 0.7% at 0.5 mg N/l RSD: 1.5% at 0.05 mg N/l	0.002
Italy, EU (IT04)			CoV: 1.2%	0.011
Latvia			CoV: 0.2%	0.001
Lithuania			c<0.5 mg N/I: 5.1% RSD c>0.5 mg N/I: 1.8% RSD	0.013
Netherlands*			SD: 0.5	2 μmol/l
Norway*	M.MAD: 0.03, CoV: 8%		SD: 0.023 at c=0.86 mg N/ml SD: 0.016 at c=0.39 mg N/ml	0.01
Poland			RSD: 1.7% at 4.5 mg N/I RSD: 1.9% at 0.45 mg N/I RSD: 2.0% at 0.23 mg N/I	0.015
PL05	M.MAD: 0.03; CoV: 7.1%	0.1	M.MAD: 0.02; CoV: 5.2%	0.1
Portugal			0.25%	0.02
Russia				0.01
Serbia and Montenegro*				0.02
Slovakia			0.59%	0.01
Spain			CoV: 1.2%	0.08
Sweden Water	uncertainty (95% conf. int.): 5% (0.002-1 mg/l) uncertainty (95% conf. int.): 1% (1-6 mg/l)	0.002	R: 2%	0.002
Switzerland	M.MAD: 0.01 mg N/I			0.01
Turkey			M.MAD: 0.005; CoV: 1.1%	0.030*
UK			1%	0.01

 Table A4.8: Detection limits and precision of nitrate in precipitation.

* Data from EE, HU, NL, NO, TR and YU are taken from earlier years.
| | Measureme | nts | Laboratory | |
|---------------------------|--|----------------------------|--|----------------------------|
| Country | Precision | Detection limit,
mg N/I | Precision | Detection limit,
mg N/I |
| Austria | | 0.02 | RSD 2.98% | 0.007 |
| Belarus | | | | 0.050 |
| Czech
Republic | CoV: 11.4%
M.MAD: 0.169 mg/l | 0.061 | RSD: 0.6% | 0.02 |
| Denmark | | | M.MAD: 0.01 mg N/l;
CoV: 1.7% | 0.01 |
| Estonia* | | 0.064 | | 0.077 |
| Finland | | | M.MAD: 0.001 mg N/l;
CoV: 0.5% | 0.002 |
| France | | | at c<0.2 mg N/I: RSD = 5-10%
at 0.2 <c<0.5 i:<br="" mg="" n="">RSD = 3-5%
at 0.5<c<5 i:<br="" mg="" n="">RSD = 1-3%</c<5></c<0.5> | 0.03 |
| Germany | | | | 0.01 |
| Hungary | | | M.MAD=0.002; CoV=0.61% | ca. 0.04* |
| Italy (IT01) | RSD: 0.8% at 0.5 mg N/l | 0.005 | RSD: 0.5% at 0.5 mg N/I | 0.001 |
| | 10D. 0.0% at 0.0 mg 10/ | 0.000 | RSD: 1.8% at 0.05 mg N/I | 0.001 |
| Italy, EU (IT04) | | | CoV: 2.4% | 0.014 |
| Latvia | | | CoV: 2.9% | 0.015 |
| Lithuania | | | c<1.0 mg N/I: 3.3% RSD
c>1.0 mg N/I: 1.0% RSD | 0.04 |
| Netherlands* | | | SD: 0.2 | 1 µmol/l |
| Norwav* | M.MAD: 0.06. CoV: 20% | | SD: 0.016 at c=0.64 mg/l | 0.01 |
| | | | SD: 0.013 at c=0.32 mgN/l | 0.0.1 |
| Poland | | | RSD: 2.7% at 1 mg/l | 0.03 |
| | | | RSD: 4.6% at 0.1 mg/l | |
| PL05 | M.MAD: 0.05; CoV: 8.9% | 0.01 | M.MAD: 0.02; CoV: 3.4% | 0.01 |
| Portugal | | | 0.79% | 0.04 |
| Russia | | | CoV: 2.24%; M.MAD: 0.02 | 0.02 |
| Serbia and
Montenegro* | | | | 0.03 |
| Slovakia | | | 1.97% | 0.015 |
| Spain | | | CoV: 2.7% | 0.08 |
| Sweden Water | uncertainty (95% conf.
int.): 5% (0.01-1 mg/l)
uncertainty (95% conf.
int.): 2% (1-10 mg/l) | 0.01 | R: 3% | 0.02 |
| Switzerland | M.MAD: 0.02 mg N/I | | | 0.02 |
| Turkey | | | M.MAD: 0.007; CoV: 1.6% | 0.038* |
| UK | | | 1% | 0.01 |

Table A4.9: Detection limits and precision of ammonium in precipitation.

	Measureme	ents	Laboratory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.34	RSD: 2.02%	0.003
Belarus				0.001
Czech Republic	CoV: 13.5% M.MAD: 0.107 mg/l	0.095	RSD: 2.0%	0.014
Denmark			M.MAD: 0.01 mg/l; CoV: 3.9%	0.13
Estonia*		0.407		0.382
Finland			M.MAD: 0.001 mg/l; CoV: 2.2%	0.005
France			at c<0.2 mg/l: RSD = 10-20% at 0.2 <c<0.5 l:="" mg="" rsd="5-10%<br">at 0.5<c<5 l:="" mg="" rsd="1-5%</td"><td>0.02</td></c<5></c<0.5>	0.02
Germany				0.01
Hungary			M.MAD: 0.008; CoV: 3.83%	ca. 0.01*
Ireland				0.05
Italy (IT01)	RSD: 1.8% at 1 mg Ca/l	0.01	RSD: 1.2% at 0.5 mg Ca/l	0.002
Italy ELL(IT04)			CoV: 16%	0.014
Latvia			CoV: 4 5%	0.02
			c<0 2mgCa/l: 5 5% RSD	0.02
Lithuania			c>0.2 mgCa/l: 1.5% RSD	0.02
Netherlands*			SD: 0.4	1.5 μmol/l
Norway*	M.MAD: 0.03; CoV: 59%		SD: 0.010 at c=0.27 mg/l SD: 0.006 at c=0.15 mg/l	0.01
			RSD: 0.9% at 2 mg/l	
Poland			RSD: 1.8% at 0.8 mg/l	0.03
			RSD: 2.1% at 0.4 mg/l	
PL05	M.MAD: 0.005; CoV: 1.4%	0.02	M.MAD: 0.030; CoV: 11.8%	0.001
Portugal			1.31%	0.06
Russia			CoV: 5.88%; M.MAD: 0.03	0.05
Serbia and Montenegro*			81%	0.005
Slovakia			0.91%	0.03
Spain			CoV: 7.4%	0.04
Sweden	uncertainty (95% conf. int.): 10% (0.05-1 mg/l)	0.05	R: 5%	0.04
Switzerland	M.MAD: 0.02 mg/l			0.05
Turkey			M.MAD: 0.019; CoV: 1.6%	0.032*
UK			1%	0.02

 Table A4.10:
 Detection limits and precision of calcium in precipitation.

	Measureme	nts	Laboratory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.014	RSD: 2.85%	0.005
Belarus				0.050
Czech Republic	CoV: 10.4% M.MAD: 0.015 mg/l	0.074	RSD: 10.2%	0.008
Denmark			M.MAD: 0.01 mg/l; CoV: 3.6%	0.054
Estonia*		0.095		0.1
Finland			M.MAD: 0.002 mg/l; CoV: 3.5%	0.006
France			at c<0.2 mg/l: RSD = 10-20% at 0.2 <c<0.5 l:="" mg="" rsd="5-10%<br">at 0.5<c<5 l:="" mg="" rsd="1-5%</td"><td>0.02</td></c<5></c<0.5>	0.02
Germany				0.01
Hungary			M.MAD: 0.002; CoV: 2.22%	ca. 0.01*
Italy (IT01)	RSD: 1.4% at 1 mg K/I	0.01	RSD: 1.5% at 0.5 mg K/l RSD: 3.0% at 0.05 mg K/l	0.03
Italy, EU (IT04)			CoV: 3.7%	0.005
Latvia			CoV: 2.3%	0.043
Lithuania			RSD: 8.1% at c<0.5 mg K/l	0.02
Netherlands*			SD: 0.2	1 μmol/l
Norway*	M.MAD: 0.03; CoV: 59%		SD: 0.027; c=0.61 mg/l	0.01
Poland			RSD: 1.0% at 0.5 mg/l RSD: 2.9% at 0.1 mg/l RSD: 2.4% at 0.05 mg/l	0.02
PL05	M.MAD: 0.005; CoV: 5.7%	0.04	M.MAD: 0.017; CoV: 14.9%	0.002
Portugal			1.69%	0.077
Russia			CoV: 5.20%; M.MAD: 0.02	0.03
Serbia and Montenegro*			98%	0.015
Slovakia			2.13%	0.03
Spain			CoV: 18%	0.05
Sweden	uncertainty (95% conf. int.): 10% (0.08-1 mg/l) 6% (1-15 mg/l)	0.08	R: 8%	0.05
Switzerland	M.MAD: 0.01 mg/l			0.01
Turkey			M.MAD: 0.006; CoV: 2.6%	0.019*
UK			1%	0.02

Table A4.11: Detection limits and precision of potassium in precipitation.

	Measureme	ents	Laboratory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.034	RSD: 2.65%	0.009
Belarus				0.050
Czech Republic	CoV: 14.5% M.MAD: 0.072 mg/l	0.157	RSD: 1.4%	0.02
Denmark			M.MAD: 0.08 mg/l; CoV: 3.7%	0.08
Estonia*		0.463		0.155
Finland			M.MAD: 0.003 mg/l; CoV: 1.4%	0.01
France			at c<0.2 mg/l: RSD = 10-20% at 0.2 <c<0.5 l:="" mg="" rsd="5-10%<br">at 0.5<c<5 l:="" mg="" rsd="1-5%</td"><td>0.05</td></c<5></c<0.5>	0.05
Germany				0.01
Hungary			M.MAD: 0.032; CoV: 13.17%	ca. 0.1*
Ireland				0.05
Italy (IT01)	RSD: 0.7% at 0.5 mg Cl/l	0.005	RSD: 0.6% at 0.5 mg Cl/l RSD: 1.1% at 0.05 mg Cl/l	0.001
Italy, EU (IT04)			CoV: 2.1%	0.009
Latvia			CoV: 3.7%	0.013
			c<0.5 mg Cl/l: 4.7% RSD	
Lithuania			c>0.5 mg Cl/l: 2.3% RSD	0.01
Netherlands*			SD: 0.7	3 μmol/l
Non-vov*			SD: 0.028 at c=1.16 mg/l	0.01
Norway	WI.WAD. 0. 16, COV. 22%		SD: 0.02 at c=0.46 mg/l	0.01
Poland			RSD: 1.9% at 10 mg/L RSD: 2% at 1 mg/L RSD: 2.6% at 0.5 mg/L	0.02
PL05	M.MAD: 0.05; CoV: 11.7%	0.1	M.MAD: 0.04; CoV: 11.2%	0.1
Portugal			0.53%	0.03
Russia				0.03
Serbia and Montenegro*				0.05
Slovakia			0.66%	0.04
Spain			CoV: 4.9%	0.31
Sweden	uncertainty (95% conf. int.): 8% (0.05-1 mg/l) uncertainty (95% conf. int.): 3% (1-32 mg/l)	0.05	R: 2%	0.05
Switzerland	M.MAD: 0.02 mg/l			0.02
Turkey			M.MAD: 0.054; CoV: 7.5%	0.050*
UK			1%	0.02

 Table A4.12: Detection limits and precision of chloride in precipitation.

	Measureme	ents	Laboratory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.023	RSD: 1.34%	0.002
Belarus				0.001
Czech Republic	CoV: 10.6% M.MAD: 0.015 mg/l	0.01	RSD: 3.6%	0.002
Denmark			M.MAD: 0.02 mg/l; CoV: 7.0%	0.02
Estonia*		0.077		0.089
Finland			M.MAD: 0.001 mg/l; CoV: 2.1%	0.003
France			at c<0.2 mg/l: RSD = 10-20% at 0.2 <c<0.5 l:="" mg="" rsd="5-10%<br">at 0.5<c<5 l:="" mg="" rsd="1-5%</td"><td>0.02</td></c<5></c<0.5>	0.02
Germany				0.01
Hungary			M.MAD: 0.004; CoV: 6.85%	ca. 0.01*
Ireland				0.05
Italy (IT01)	RSD:	0.005	RSD: 0.8% at 0.5 mg Mg/l	0.001
	1.1% at 0.5 mg Mg/l	0.000	RSD: 3.2% at 0.05 mg Mg/l	0.001
Italy, EU (IT04)			CoV: 2.2%	0.002
Latvia			CoV: 4.1%	0.020
Netherlands*			SD: 0.2	1 μmol/l
Norway*	M MAD: 0.01 CoV: 30%		SD: 0.012 at c=0.31 mg/l	0.01
Norway	M.M.D. 0.01, 007.007		SD: 0.007; c=0.19 mg/l	0.01
			RSD: 1.0% at 0.25mg/l	
Poland			RSD: 1.0% at 0.1 mg/l	0.007
			RSD: 2.4% at 0.025 mg/l	
PL05	M.MAD: 0.002; CoV: 2.3%	0.01	M.MAD: 0.005; CoV: 8.7%	0.001
Portugal			0.60%	0.03
Russia			CoV: 8.17%; M.MAD: 0.09	0.001
Serbia and Montenegro*			99.5%	0.002
Slovakia			1.56%	0.01
Spain			CoV: 7.2%	0.02
Sweden	uncertainty (95% conf. int.): 20% (0.02-1 mg/l) uncertainty (95% conf. int.): 5% (1-15 mg/l)	0.02	R: 5%	0.01
Switzerland	M.MAD: 0.01 mg/l			0.001
Turkey			M.MAD: 0.006; CoV: 4.3%	0.012*
UK			1%	0.01

Table A4.13: Detection limits and precision of magnesium in precipitation.

	Measureme	ents	Laboratory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.030	RSD: 1.8%	0.003
Belarus				0.050
Czech Republic	CoV: 15.5% M.MAD: 0.019 mg/l	0.066	RSD: 2.6%	0.007
Denmark			M.MAD: 0.10 mg/l; CoV: 3.2%	0.06
Estonia*		0.095		0.1
Finland			M.MAD: 0.001 mg/l; CoV: 0.9%	0.002
France			at c<0.2 mg/l: RSD = 10-20% at 0.2 <c<0.5 l:="" mg="" rsd="5-10%<br">at 0.5<c<5 l:="" mg="" rsd="1-5%</td"><td>0.02</td></c<5></c<0.5>	0.02
Germany				0.01
Hungary			M.MAD: 0.010%; CoV: 4.71%	ca. 0.01*
Ireland				0.05
Italy (IT01)	RSD:	0.005	RSD: 1.3% at 0.5 mg Na/I	0.001
	0.9% at 0.5 mg Na/l	0.000	RSD: 2.0% at 0.05 mg Na/I	0.001
Italy, EU (IT04)			CoV: 2.1%	0.011
Latvia			CoV: 3.6%	0.03
Lithuania			RSD: 2.4-5.7%	0.02
Netherlands*			SD: 0.5	2 μmol/l
Norway*	M MAD: 0.09 CoV: 22%		SD: 0.025 at c=0.75 mg/l	0.01
literway	NI.W. (D. 0.00, 00V. 22/0		SD: 0.011 at c=0.30 mg/l	0.01
			RSD: 0.8% at 1 mg/l	
Poland			RSD: 1.4% at 0.4 mg/l	0.02
			RSD: 2.3% at 0.2 mg/l	
PL05	M.MAD: 0.002; CoV: 2.3%	0.02	M.MAD: 0.012; CoV: 11%	0.002
Portugal			0.54%	0.025
Russia			CoV: 0.45%	0.01
Serbia and Montenegro*			98.25%	0.001
Slovakia			1.28%	0.04
Spain			CoV: 14%	0.1
Sweden	uncertainty (95% conf. int.): 6% (0.12-1 mg/l) uncertainty (95% conf. int.): 2% (1-15 mg/l)	0.12	R: 4%	0.05
Switzerland	M.MAD: 0.02 mg/l			0.02
Turkey			M.MAD: 0.009; CoV: 1.4%	0.023*
UK			1%	0.01

 Table A4.14:
 Detection limits and precision of sodium in precipitation.

	Meas	Measurements Laboratory		atory
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Estonia*		0.2		
Finland			M.MAD: 0.008 µg/l; CoV: 10.5%	0.006
Latvia			CoV: 6.5%	0.7 mg/l
Germany				0.004
Slovakia			1.99%	0.5
Norway				0.1
UK				0.04 mg/l

Table A4.15: Detection limits and precision of arsenic in precipitation.

* Data from EE is taken from earlier years.

<i>Table A4.10: Detection limits and precision of caamium in precipitation</i>	Table A4.16:	ium in precipi	n in precipitatio
--	--------------	----------------	-------------------

	Measurements		Labor	atory
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	CoV: 11.5% M.MAD: 0.019 μg/l	0.06	RSD: 8.5%	0.04
Estonia*		0.01		
Finland			M.MAD: 0.002 µg/l CoV: 3.0%	0.002
Germany				0.003
Latvia			CoV: 8.1%	0.03
Slovakia			2.01 %	0.03
Netherlands*			SD: 0.00007	0.0003 umol/l
Norway				0.005
UK				0.04 mg/l

* Data from EE and NL are taken from earlier years.

Table A4.17: Detection limits and precision of chromium in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Finland			M.MAD: 0.04 μg/l; CoV: 21.8%	0.02
Germany				0.01
Slovakia			1.58 %	0.04
Norway				0.2
UK				0.008 mg/l

 Table A4.18:
 Detection limits and precision of copper in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Estonia*		26		
Finland			M.MAD: 0.057 μg/l; CoV: 4.7%	0.05
Germany				0.01
Latvia			CoV: 5.4%	0.4
Poland (PL05)	M.MAD: 0.2; CoV: 23.3%	0.3	M.MAD: 0.1; CoV:11%	0.3
Norway				0.1
Netherlands*			SD: 0.0014	0.006 µmol/l
UK				0.003 mg/l

* Data from EE and NL are taken from earlier years.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 14.6%; CoV: 15.8% M.MAD : 0.02mg/l	6	RSD: 9.4%	6
Finland			M.MAD: 3.21 µg/l CoV: 9.6%	1.5
Germany				0.5
Netherlands*			SD: 0.09	0.4 μmol/l

Table A4.19: Detection limits and precision of iron in precipitation.

* Data from NL is taken from earlier years.

Table A4.20: Detection limits and precision of manganese in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 9.1%; CoV: 7.6% M.MAD : 2.15 μg/l	0.5	RSD : 5.2%	0.5
Finland			M.MAD: 0.073 µg/l CoV: 3.4%	0.005
Latvia			CoV: 2.8%	10
Slovakia			2.96%	0.05

Table A4.21: Detection limits and precision of nickel in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	CoV: 17.3% M.MAD: 0.189 μg/l	3.1	RSD: 4.1%	1.0
Finland			M.MAD: 0.04 µg/l CoV: 15.5%	0.02
Germany				0.2
Latvia			CoV: 7.3%	0.9
Norway				0.2
Slovakia			2.34 %	0.1
UK				0.009 mg/l

 Table A4.22:
 Detection limits and precision of lead in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	CoV: 13.4% M.MAD: 0.398 μg/l	1.6	RSD: 8.2%	0.7
Estonia*		0.6		
Finland			M.MAD: 0.049 µg/l CoV: 3.7%	0.03
Germany				0.002
Latvia			CoV: 4.7%	0.4
Netherlands*			SD: 0.0005	0.002 μmol/l
Norway				0.01
Slovakia			3.52%	0.2
UK				0.002 mg/l

* Data from EE and NL are taken from earlier years.

	Measurements		Laborato	ry
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 11.3%; CoV: 9.4% M.MAD: 0.003 mg/l	3	RSD: 7.4%	3
Finland			M.MAD: 0.183 µg/l CoV: 3.1%	0.03
Germany				0.2
Latvia			CoV: 2.3%	20
Netherlands*			SD: 0.014	0.06 µmol/l
Norway				0.1
Poland (PL05)	M.MAD: 2.3 µg Zn/l; CoV: 24%	0.2	M.MAD: 0.2; CoV 1.9%	0.2
Slovakia			3.17 %	1.69
UK				0.1 mg/l

 Table A4.23:
 Detection limits and precision of zinc precipitation.

* Data from NL is taken from earlier years.

Table A4.24: Detection limits and precision of arsenic in air.

	Measur	Measurements		boratory
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit
Czech Republic	CoV: 16.1% M.MAD: 0.15 ng/m ³	0.2	RSD: 8.7%	0.75 μg/l
Germany				0.004 μg/l
Latvia		0.09	CoV: 4.8%	2.0 μg/l
Slovakia			2.34 %	0.7 μg/l
Netherlands*			0.04	0.2 ng/m ³
Norway, NO42				0.005 ng/m ³
NO99				fine: 0.9 ng/m ³ ; coarse: 0.24 ng/m ³

* Data from NL is taken from earlier years.

Table A4.25: Detection limits and precision of cadmium in air.

	Measurements		La	aboratory
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit
Czech Republic	CoV: 7.9% M.MAD: 0.018 ng/m ³	0.04	RSD: 4.1%	0.05 μg/l
Germany				0.003 μg/l
Lativia		0.005	CoV: 1.9%	0.13 μg/l
Slovakia			1.44 %	0.03 μg/l
Spain				0.01 ng/m ³
Netherlands*			0.01	0.04 ng/m ³
Norway, NO42				0.002 ng/m ³
NO99				fine: 0.002 ng/m ³ ; coarse: 0.001 ng/m ³

* Data from NL is taken from earlier years.

	Measurements		Laboratory		
Country		Precision	Detection limit, ng/m ³	Precision	Detection limit
Slovakia				1.01 %	0.4 μg/l
Norway,	NO42				0.02 ng/m ³
	NO99				fine: 0.3 ng/m ³ ; coarse: 0.6 ng/m ³

Table A4.26: Detection limits and precision of chromium in air.

Table A4.27: Detection limits and precision of copper in air.

		Measurements		Laboratory	
Country		Precision	Detection limit, ng/m ³	Precision	Detection limit
Germany					0.01 μg/l
Latvia			0.2	CoV: 1.6%	1.9 μg/l
Slovakia				1.41%	0.5 μg/l
Spain					0.18 ng/m ³
Norway,	NO42				0.01 ng/m ³
	NO99				fine: 0.04 ng/m ³ ; coarse: 0.02 ng/m ³

Table A4.28: Detection limits and precision of manganese in air.

	Measurements		Laboratory	
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit
Germany				0.002 μg/l
Latvia		0.21	CoV: 1.7%	6.0 μg/l
Slovakia			3.06%	0.1 μg/l
Norway, NO42				0.07 ng/m ³

Table A4.29: Detection limits and precision of nickel in air.

		Measurements		Laboratory	
Country		Precision	Detection limit, ng/m ³	Precision	Detection limit
Germany					0.01 μg/l
Latvia			0.26	CoV: 3.2%	2.9 μg/l
Slovakia				1.32%	0.4 μg/l
Norway,	NO42				0.02 ng/m ³
	NO99				fine: 0.008 ng/m ³ ; coarse: 0.02 ng/m ³

	Measurements		Lab	oratory
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit
Czech Republic	CoV: 8.9% M.MAD: 0.486 ng/m ³	0.5	RSD: 2.1%	0.78 μg/l
Germany				0.002 μg/l
Latvia		0.05	CoV: 1.1%	1.8 μg/l
Slovakia			1.96%	0.4 μg/l
Spain				0.4 ng/m ³
Netherlands*			0.06	0.2 ng/m ³
Norway, NO42				0.007 ng/m ³
NO99				fine: 0.008 ng/m ³ ; coarse: 0.004 ng/m ³

Table A4.30: Detection limits and precision of lead in air.

* Data from NL is taken from earlier years.

Table A4.31: Detection limits and precision of zinc in air.

		Measurements		Laboratory	
Country		Precision	Detection limit, ng/m ³	Precision	Detection limit
Lativia			0.7	CoV: 2.2%	12.0 μg/l
Slovakia				3.53%	4.6 μg/l
Netherlan	ds*			3.6	15 ng/m ³
Norway,	NO42				0.01 ng/m ³
	NO99				fine: 0.05 ng/m ³ ; coarse: 0.02 ng/m ³

* Data from NL is taken from earlier years.

 Table A4.32:
 Detection limits and precision of measurements of particulate matter.

Country	Precision	Detection limit
Germany (PM10)		1 μg/m ³
Italy IT01 (PM10)	2.00%	2 μg/m ³
Slovakia (TSP)	2.00%	1.0 μg/m ³
Spain	2.00%	1 μg/m ³
Switzerland (PM10)	RSD: 7%	1 μg/m ³
Norway (PM10)	RSD: 5%	0.2 μg/ ^{m3}
UK	4 μg m ⁻³	

	Laboratory detection limit. [ppb]					
Compound	Czech Republic	France	Germany	Finland	Spain	UK
VOC (general)		0.01	0.01		0.01	0.01
Ethane	0.055			0.008		
Ethene	0.020			0.009		
Ethyne	0.041			0.011		
Propane	0.008			0.006		
Propene	0.011			0.007		
Propyne	0.003			0.004		
N-butane	0.003			0.005		
2-methyl propane (i-butane)	0.005			0.005		
2-methyl propene (i-butene)	0.006			0.006		
1-butene	0.009			0.005		
Trans-2-butene	0.004			0.005		
Cis-2-butene	0.008			0.006		
1.3-butadiene	0.009			0.006		
N-pentane	0.003			0.005		
2-methyl butane (i-pentane)	0.008			0.005		
1-nentene	0.000			0.000		
Trans_2-pentene	0.012			0.005		
Cis-2-pentene	0.012			0.000		
2 methyl pentone	0.003			0.000		
2 methyl pentane	0.003			0.000		
	0.012			0.000		
Isoprene	0.006			0.008		
N-nexane	0.011			0.006		
Hexene	0.000			0.000		
Cyclonexane	0.003			0.006		
N-neptane	0.023			0.004		
Benzene	0.012			0.003		
Methyl benzene (toluene)	0.021			0.004		
Ethyl benzene	0.019					
1,3-dimethyl benzene (m-xylene)	0.058					
1,2-dimethyl benzene (o-xylene)	0.013					
1,3,5-trimethyl benzene	0.013					
1,2,4-trimethyl benzene	0.007					
2 and 3-methyl pentane	5.8					
(combined areas)		in ua/m ³				
methanal		0.03				
ethanal		0.00				
propagaga		0.025				
propanol		0.03				
propertal		0.03				
propanal		0.03				
hutanaltiaahutanal		0.025				
bulanal+isobulanal		0.04				
		0.03				
pentanai+toluaidenyde		0.04				
nexanai		0.03				
giyoxal		0.025				
metnylgiyoxal		0.03				
metnylpropenal		0.025				
ethylmethylketone		0.03				

 Table A4.33:
 Detection limits and precision of volatile organic carbons, VOC.

<u> </u>	Labor	atory detection limit, pg/n	n ³
Compound	Czech Republic	Norway	UK
PCB 28	0.5	0.05	
PCB 31	0.5	0.05	
PCB 52	0.5	0.05	
PCB 101	0.5	0.05	
PCB 105	0.5	0.05	
PCB 118	0.5	0.05	
PCB 138	0.5	0.05	
PCB 153	0.5	0.05	
PCB 153	0.5	0.05	
PCB 180	0.5	0.05	
alfa-HCH	0.5	0.05	
beta-HCH	0.5		
gamma-HCH	0.5	0.05	
delta-HCH	0.5		
НСВ	0.5	0.05	
p,p'-DDE	0.5	0.05	
p,p'-DDD	0.5	0.05	
p,p'-DDT	0.5	0.05	
Hexachlorbenzene	0.5	0.05	
Pentachlorbenzene	0.5		
tr-chlordane		0.05	
cis-chlordane		0.05	
tr-nonachlor		0.05	
cis-nonachlor		0.05	
PAH (general)		1	
Naphtalene	2.5		
Acenaphthylene	2.5		
Acenaphthene	2.5		
Fluorene	2.5		
Phenanthrene	2.5		
Anthracene	2.5		
Fluoranthene	2.5		
Pyrene	2.5		
Benz[a]antracene	2.5		
Chrysene	2.5		
Benzo[b]fluorantene	2.5		
Benzo[k]fluorantene	2.5		
Benzo[a]pyrene	2.5		< 10
Indeno[123cd]pyrene	2.5		
Dibenz[ah]anthracene	2.5		
Benzo[ghi]perylene	2.5		

Table A4.34: Detection limits and precision of persistent organic pollutants (POP).

Annex 5

Sulphate in air and sulphur dioxide in EMEP, flags and comments

Sulphate in air and sulphur dioxide in EMEP, flags and comments

Jan Schaug, Jan Erik Hanssen, Wenche Aas Norwegian Institute for Air Resarch P.O.B. 100, N-2027, Kjeller, Norway

Results from laboratory and field comparisons for sulphate in air and sulphur dioxide have been used to flag data series in a quasi-quantitative way. More exact measures of data quality and comparability for EMEP's data would have required more frequent and longer field tests. The methodology applied when assigning flags to laboratory and field comparison results has been described elsewhere.

The data series have been flagged with four digits where the two leftmost digits give information on the complete measurements as judged from field comparisons alone while the two rightmost digits are based on the performance in interlaboratory comparisons.

A good laboratory performance is a necessary, but not a sufficient requirement for high data quality. Sometimes the field and laboratory results are inconsistent, and in a few cases no recommendation has been given below. Except for this, the best flags, as far as one can judge, have been given in bold characters when a choice must be made whether to rely on the field or on the laboratory comparison results.

Sulphate in air

Measurement methods for sulphate concentrations in air

Different types of samplers have been used in EMEP for sulphate in aerosols, the most common being in-line low volume samplers $(1-3 \text{ m}^3/24 \text{ h})$ and medium volume open-face samplers $(15-60 \text{ m}^3/24 \text{ h})$, both without a specified cut-off. Spain has made use of a high volume sampler, and Italian measurements are by denuder.

Wet-chemical methods and quantification by X-ray fluorescence (XRF) have both been used for determining the sulphate concentrations on the filters. The laboratories have applied different calibration procedures for sulphur on filters by XRF. They have also made use of different types of filters for their EMEP measurements. The Thorin method (CCC, 1996) was recommended for chemical analysis from the start. It takes, however, both experience and dedication obtaining exact results with this method. Ion chromatography (IC) is now being applied by an increasing number of laboratories and gives generally much better data.

Laboratory and field comparisons

A long series of laboratory comparisons with synthetic and exposed filter samples has been organized since EMEP's start (Thrane, 1978, 1980,1981; Hanssen, et al., 1983–1985, 1987, 1988, 1990, 1992, 1994–1997, 2001; Uggerud et al., 2001–2003).

A comparison between the Thorin method at the CCC at the Norwegian Institute for Air Research (NILU), with the XRF method at the reference laboratory for the XRF measurements (Institute for Energy Research, Kjeller, Norway) was organized in 1981. Filter samples generated with an aerosol generator equipped with a multi-channel open sampler were prepared for the 6th comparison. Most of the samples were analysed by the participating laboratories, but seven samples from each batch were analysed by the CCC with an automated Thorin method after extraction, and by the reference laboratory by XRF analyses. The differences between the CCC wet chemical results and the XRF results from the reference laboratory were always less than 10 per cent (Hanssen et al., 1983). Exposed filters, analysed for sulphur by XRF in the reference laboratory, were again distributed to the participants in the 7th exercise, and the results revealed that the average ratio between the reference and the national laboratories (both XRF) varied between 0.73 and 1.20. Different calibration procedures and filter types were noted as possible explanations. The corresponding ratio for reference (by XRF) to national by wet chemical analysis varied between 0.79 and 1.29.

Two large-scale field comparisons for sulphate in aerosols have been organized in EMEP, at Langenbrügge (DE 2) in northern Germany, November–January in 1985, and at Vavihill (SE 11) in southern Sweden, January–March in 1990 (Nodop and Hanssen, 1986; and Semb et al., 1991). All EMEP field studies, but the Vavihill exercise, have been comparisons of complete measurements where participating laboratories analysed their own samples.

One of the conclusions from the Vavihill field comparison (Semb et al., 1991) was that the choice of medium or low volume sampler for sulphate did not seem to be critical. It was noted that the medium volume sampler gave somewhat higher concentrations and that this could be due to impaction of particles in the tubes. The average difference was, however, only 0.15 μ g S/m³ over the sampling period. This was about 10 per cent of the average over that measurement period

Figure 1 compares the low, medium, and high volume results obtained at the Vavihill field comparison. The low and medium volume concentrations in the Figure are the medians of the low, respectively medium samplers' results. The high volume results are the Spanish results. High and medium volume samples were analysed by NILU and the low volume samples by the Swedish Environmental Research Institute (IVL), all samples by IC. The differences in Figure 1 between the sampler types are in the best group for systematic errors ($\pm 10\%$) used in the classification.

During the second half of the nineties a series of on-site comparisons of national measurements with reference instrumentation have been carried out in EMEP (Schaug et al., 1997 and 1998; Aas et al., 1999, 2000,2001, 2002, 2003). The reference instrumentation is a three-filter-pack method with an aerosol filter followed by a KOH impregnated filter for SO₂, and a third filter with oxalic acid for NH₃ sampling. The instrument has a mass flow control unit and operates at about 10 m³/24 hours (e.g. Schaug et al., 1998).

Some countries never participated in field comparisons, and some countries changed their measurement method after participation in a field comparison.

89

Additionally some results were rather unsatisfactory, and there is a need to repeat some of the comparisons from the past to see if improvements have been made. The comparisons carried out so far are therefore far from sufficient to fully express the comparability of sulphate measurements since 1978.

Figure 1. Vavihill field comparison of sulphate in air; medium volume sampler concentrations compared with low volume and high volume results. Medium and low volume concentrations are the medians of medium samplers' results and low volume samplers' results respectively. 4 high volume outliers are not taken into account. High and medium volume samples were analysed by NILU, low volume samples by IVL, all samples by IC.

The validation of the field comparison data has been based on the differences between national measurements and reference data by using non-parametric statistics; M.MAD, the coefficient of variation, and the median of the differences in order to detect random errors and bias. X-Y plots and regression lines and graphs of differences as function of reference measurements have also carefully been investigated for different concentration ranges as a further support.

Specific comments to some of the countries and quality flags for sulphate in air have been given in Annex 1.

Sulphur dioxide

Measurement methods for sulphur dioxide in EMEP

Four sampling principles have been used for SO2; the H_2O_2 absorbing solution method, the KOH or NaOH impregnated filter method, the tetrachloromercurate method (TCM), and mostly recently monitors based on UV fluorescence. CCC has recommended the two first methods in the Manual (CCC, 1996).

Several analytical chemical methods have been applied. The most sensitive UV monitors compare well with the impregnated filter method when care is taken (Finnish unpublished results, com. to CCC). Interferences from hydrocarbons and nitrogen monoxide may, however, occur and should be tested out. Some important results from comparisons of the three other methods have been given below.

Laboratory and field comparisons

As for other components, a long, nearly annual, series of laboratory comparisons with synthetic SO_2 samples, has been organized by the CCC since EMEP's start in 1977. Frequently it can be seen that the performance in a field comparison can be explained by the results obtained in the most relevant inter-laboratory comparison. There are, however, also examples of the opposite; countries performing fairly well in laboratory comparisons may obtain rather unexplainable results in field exercises

Synthetic samples for the TCM method were never a part of the laboratory comparisons and SO_2 results obtained with this method must be judged from field comparisons alone.

Three central laboratories analysed the samples in the Vavihill comparison; IVL analysed the H_2O_2 absorbing solution samples, NILU analysed the impregnated filter samples while the nearby Swedish Laboratory for Cereals analysed the tetrachloromercurate (TCM) samples. Comparisons of IVL's and NILU's performance in the laboratory comparison most relevant for the Vavihill results, have been used to slightly correct the results. The Vavihill results have been used below to compare the H_2O_2 absorbing solution and the impregnated filter methods.

Table 1, and Figures 2 and 3 compare the daily medians of the Vavihill measurements as obtained with the participants modifications of the H_2O_2 absorbing solution method. (4 samplers) with the impregnated filter method (8 samplers). The samples were all analysed by IC.

Concentration interval	Slope	Intercept	R ²	N
0 – 3 µg S/m³	0.751 (0.732, 0.770)	-0.26 (-0.30, -0.22)	0.91	24
3 – 20 µg S/m ³	0.904 (0.897, 0.911)	-0.55 (-0.60, -0.50)	0.99	27

Table 1. Vavihill field comparison. Medians of results with the impregnated filter method (Y) versus the hydrogen peroxide absorbing solution results (X) in a linear regression. Slopes and intercepts with their 95 % confidence intervals, R^2 and number of data.

The peroxide absorbing solution is quite inaccurate at the lowest concentrations (Semb et al., 1994) and is thought to overestimate, but give more correct results at high concentrations. The slope for the $3-20 \ \mu g \ S/m^3$ interval is within the [0.90, 1.10] interval that is the best class for systematic errors.

Figure 2. Measurements of sulphur dioxide at Vavihill January–March 1990. Medians of daily measurements obtained with H_2O_2 absorbing solution against the corresponding medians of impregnated filter results. SO_2 concentrations higher than 3 µg S/m³.

Figure 3. As Figure 1. SO_2 concentrations up to $3 \mu g S/m^3$.

The slope and intercept for a specific participant when compared with reference instrumentation will depend on far more factors than the sampling method, e.g. the analytical chemical method applied and the QA procedures including air volume calibration. The results corresponded reasonably well with other comparisons e.g. carried out in the UK later in the nineties. A comparison between the two methods by using the Langenbrügge results obtained by NILU, the Danish National Environmental Research Institute (DMU), and Warren Spring Laboratory (WSL) in the UK gave a near 1:1 correspondence with R^2 at 0.98 for the 3–20 µg S/m³ interval. Similar results were obtained for the lower concentrations with R^2 at 0.79. The three laboratories' results are considered to be accurate since they obtained very good results during the analytical comparison during this exercise and in the 9th laboratory comparison the following months. A comparison between the French sampler and the reference in the nineties showed an opposite relation; the reference data were higher than the French concentrations. The French results were, however, lower than impregnated filter results also during the Langenbrügge comparison thirteen years earlier, but this sampler was not tested during the Vavihill experiment.

Germany has long data series with the TCM method, and the Langenbrügge results have been used to compare the TCM method with both the H_2O_2 absorbing solution method and the impregnated filter result obtained by the three laboratories above. Figures 4 and 5 present the results.

The Figures shows that the TCM method gave slightly higher concentrations both for concentrations in the interval $3 - 20 \ \mu g \ S/m^3$ and for the lowest concentrations (Figure 5).

Hungary and Turkey, besides Germany, previously applied the TCM method for EMEP measurements. Potential interferences in this method should have been minimized or eliminated by different means. If kept at 5 deg C after completion of sampling the solution should be stable for up to 30 days (Scaringelli et al., 1967). The samples need to be shielded from direct sunlight.

The field comparison at Schauinsland (DE3) in 1998 (Aas et al., 1999) revealed that the TCM method gave too low results below $1 - 2 \mu g$ S/m3, at least during summer conditions. National comparisons carried out in Germany for complete years showed that the TCM method gave slightly lower results than the impregnated filter method during winter, in contrast to the Langenbrügge results presented above. The TCM summer data gave lower results than the impregnated filter method, and annual data set gave somewhat lower results than the impregnated filter method for complete years (Aas et al., 2003). National comparison in Turkey February - November (1997) showed low TCM results compared to corresponding impregnated filter data (Aas et al., 2003)

It seem that the TCM method gives quite acceptable results compared to the impregnated filter method and the H_2O_2 absorbing solution method during winter conditions with respect to systematic errors. The summer results are somewhat low compared to the impregnated filter method. This should be kept in mind when using the TCM data.

Specific comments to some of the countries and quality flags for sulphur dioxide are given in Chapter 2.

Figure 4. Measurements of sulphur dioxide from the Langenbrügge field comparison

Results obtained with the TCM method of UBA, the H_2O_2 absorbing solution method of NILU and WSL, and the impregnated filter results of DMU and NILU. SO_2 concentrations 3–20 µg S/m³.

Figure 5. As Figure 3 for concentrations up to $3 \mu g S/m^3$.

Comments to some countries and quality flags

Sulphate in air

Czech republic and Czech part of the former Czechoslovakia

The sulphate data are invalid until 1989 due to a sampling error as explained for SO_2 .

The Czech measurements were compared with other measurements at Langenbrügge (1985), Vavihill (1990) and at Košetice during 1998–1999. The error above was detected as a result of the Langenbrügge exercise. The Czech samplers performed excellent both with respect to precision and comparability with the other samplers in the Vavihill comparison.

The number of samples taken during the on-site comparison at Košetice in 1998–1999 was far too low to allow for firm conclusions on the data quality. However, the low concentrations seem to be of acceptable quality, but at concentrations above $2 \mu g/m^3$ there are indications that the concentrations may be too low. Since the XRF method has not been compared since 1993 and the sampler performs well, the error sources could be connected to the XRF analysis.

Germany

The Langenbrügge exercise (1985) revealed a spread in the measurements when compared with the reference data set, but the regression line had a slope close to 1. The Vavihill comparison confirmed a good correspondence with the reference measurements. The comparison in 1998 at Schauinsland showed a good agreement with the reference measurements with small random differences.

The German Democratic Republic (DDR) never took part in EMEP's field comparison and the performance of their instrumentation. The laboratory comparison results were good except for the very first years from 1979 to 1982.

France

The French background network was reorganized in 1989 as described for sulphur dioxide.

France took part in the Langenbrügge comparison in 1985 and an on-site comparison at Donon with reference instrumentation in 1998. The field comparison at Langenbrügge (1985) indicated systematic low results. The comparison at Donon (1998) revealed again large systematic deviations in the French measurements relative to the reference method.

French laboratories have taken part in laboratory comparisons from the start. IRCHA had very high systematic deviations from the reference laboratory until 1981/82. The random errors also seem to have been quite high until 1980. After 1982 there have been systematic low values by 10 to 20 per cent with random errors less than 20 per cent. The low laboratory results could fit with the low French results in the Langenbrügge field comparison two years later, in 1985.

The new laboratory had a good laboratory performance after 1991.

Hungary

The Hungarian laboratory made use of the isotope dilution method until 1995 when ion chromatography took over. The laboratory participated in the Langenbrügge comparison and the results revealed large systematic low Hungarian measurements when compared with the reference. This corresponds with too low results in the most relevant laboratory comparison.

Ireland

Ireland has three laboratories taking part in the analyses of the samples; they are the Meteorological Service of Ireland, the Environmental Protection Agency (EPA), and the Electricity Supply Board (ESB). The Met. Service is responsible for the oldest site, IE 1 at Valentia Observatory. EPA was responsible for the site IE2 during 1995–1997, but the analyses are now carried out by the ESB that also analyse samples from the other Irish sites IE3 and IE4.

The Met. Service took part in the Vavihill field comparison with the sampler, with satisfactory, but slightly low results. An on-site comparison took place during 1996–1997 with reference instrumentation at Valencia Observatory and gave similar results

Met. Service has taken part in the laboratory comparisons from the start while the EPA took part 1994–1997. The ESB has not until recently taken part in the comparisons.

Italy

The denuder system from Istituto sull'Inquinamento Atmosferico, Consiglio Nazionale delle Ricerche (CNR) took part in the Vavihill comparison and obtained very good results when compared with the reference.

CNR is the only Italian laboratory having taken part in the comparisons and all other sulphate aerosol data therefore have an undocumented quality, the ISPRA site IT4, that is run by the Commission for the European Communities (CEC), not included.

Portugal

An on-site comparison took place in Portugal in 1997, and the laboratory has taken part in most of the laboratory comparisons since 1981. The field comparison revealed a fairly large spread in data lower than 2 μ g S/m³. Most of the measurements fell unfortunately in this interval during the exercise. Concentrations above 4–5 μ g S/m³ were far too high. The most relevant laboratory comparison showed slightly high Portuguese data, the test solutions corresponded, however, all to concentrations lower than 4 μ g S/m³.

Soviet Union

The samples from the Soviet network were divided between two laboratories as explained for sulphur dioxide. The Institute for Applied Geophysics, which is identical to today's Institute for Global Climate and Ecology in Moscow, took part in the laboratory comparisons. This institute analysed the samples from SU1, 5, and 9. The quality of the remaining Soviet samples remains unknown.

Sweden

Two sampling systems have been in operation, the low-volume and the currently used medium-volume system were both compared with other samplers, and performed very good, at the Vavihill exercise in 1990.

The low-volume sampler was also tested in the Langenbrügge comparison and showed Swedish results to be higher than other measurements with different analytical methods. The reason for this may be the calibration procedure for the XRF that was used at that time for analysis. Analytical comparisons carried out in Sweden in 1986–1987 gave different results. The XRF results were lower than those obtained by IC and should be multiplied with factors between 1.1 and 1.6 (Kindbom et al., 1994).

The National Swedish Environment Protection Board operated the site SE12 1984–1989 while the Swedish Environmental Research Institute was responsible for the remaining sites.

United Kingdom

Warren Spring Laboratory was responsible for the UK measurements until 1994 when AEA Technology took over.

Notes applied with the SO₄ flags

UK: unknown

- NR: not relevant
- (1): field flag is based on less than 40 data and considered uncertain
- (2): the sums of sulphur dioxide and aerosol sulphate concentrations are available
- (3): See comments and proposals for corrections given by Dr. M. Wallasch
- (4): concentrations $< 4 \ \mu g \ S/m^3$
- (5): concentrations $\geq 4 \ \mu g \ S/m^3$
- (6): all Soviet sites except SU1, SU5, SU9
- (7): Swedish sites except SE12

D 11	1. 0	•		1 1	1
Recommended	anality flags	s are given	in hold	numbers be	MOLE
Recommended	quality mage	, are groon	III DOIG	numbers	210 **

Austria		
AT	1978	20 20
AT	1979	2000
AT	1980	2010
AT	1981	2001
AT	1982,1983	20 20
AT	1984,1985	2040
AT	1986	2000
AT	1987,1988	2040
AT	1989 - 1994	2061
AT	1995,1996	2061
AT	1997 - 2000	NPNP
Belgium		
BE	1979 - 1991	NPNP
Czech republic and Czech part of	the former Czechoslovakia	
CZ	1979 - 1988	NRNR (2)
CZ	1989,1993	0000
CZ	1994 - 2000	01NP (1)
Denmark		
DK	1978	0000
DK	1979,1980	00 10
DK	1981	0021
DK	1982 1983	0010
DV	1,1,02,1,005	
DK	1984 - 1986	00 00
DK DK	1984 - 1986 1987 - 1994	00 00 00 00
DK DK DK	1984 - 1986 1987 - 1994 1995 - 2000	00 00 00 00 00 00
DK DK DK Estonia	1984 - 1986 1987 - 1994 1995 - 2000	00 00 00 00 00 00
DK DK DK Estonia EE	1984 - 1986 1987 - 1994 1995 - 2000	00 00 00 00 00 00 NP 71

Finland		
FI	1977,1978	00 40
FI	1979,1980	0051
FI	1981 - 1986	00 00
FI	1987 - 1990	00 20
FI	1991 - 1993	00 00
FI	1994	00 30
FI	1995 - 2000	00 00
France		
FR	1978 - 1980	6373
FR	1981	6371
FR	1982,1983	6360
FR	1984	6321
FR	1985 - 1987	63NP
FR	1988,1989	6300
FR	1990	6372
FR	1991,1992	2020
FR	1993,1994	2000
FR	1995,1996	2000
FR	1997,1998	2020
FR	1999,2000	2000
Germany (4)	1070 1070	00(0
DE	19/8,19/9	0060
DE	1980	0030
DE	1981	0061
DE	1982,1983	0040
DE	1984,1985	0030
DE	1986	0040
DE	1987,1988	0030
DE	1989,1990	0000
DE	1991,1992	0030
DE	1993	00 41
DE	1994	00NP
DE	1995 - 2000	00NP
German Democratic Republic		
DD	1980	NP02
DD	1981	NP01
DD	1982 1983	NP32
DD	1984 1985	NP40
	1986	NP00
DD	1987 - 1990	NP31
Greece		
GK	1978,1979	NP73
GR	1980	NP83
GR	1981	NP23
GR	1982,1983	NP61

CD	1004 1005	
GR	1984,1985	NP20
GR	1986 - 1988	NP40
GR	1989 - 1992	NP21
GR	1993	NP41
GR	1994	NP71
GR	1995 - 1998	NP73
GR	1999.2000	NP20
-	,	
Hungary		
Hungar y	1077 1078	NIP 22
	1070	ND52
	1979	NIC2
HU	1980	NK02
HU	1981	NK52
HU	1982,1983	NRII
HU	1984,1985	NR61
HU	1986	NR21
HU	1987,1988	NR61
HU	1989,1990	NR82
HU	1991,1992	NR62
HU	1993	NR00
HU	1994	NR71
HU	1995,1996	NR51
HU	1997 1998	NR10
HU	1999 2000	NR00
	1999,2000	111100
Iceland		
IC	1070 1082	NIDNID
	1979 - 1985	ND51
	1904	NDND
15	1983,1980	NPNP
15	1987,1988	NP20
IS IS	1989 - 1991	NP51
IS	1992 - 1994	NP00
IS	1995,1996	NP00
IS	1997,1998	NP30
IS	1999,2000	NP00
Ireland		
IE0001	1980	NP42
IE0001	1981,1982	NP41
IE0001	1983 - 1986	20 20
IE0001	1987,1988	20 40
IE0001	1989 1990	2020
IE0001	1991 1992	2041
IE0001	1993 1994	2000
IE0001	1995 - 1998	2000
IE0001	1999 2000	NDND
IE0001	1001 - 100/	NDUU
	1005 1007	NDOO
	1773 - 1777	NPUU
	1998 - 2000	NPNP
		NINND

Italy		
IT0001	1983 - 1989	NPNP
IT0001	1993	00 31
IT0001	1994 - 1996	00 00
IT0001	1997,1998	0010
IT0001	1999,2000	00 00
IT0002,IT0003,IT0005	1977,1994	NPNP
IT0002,IT0003,IT0005	1995,2000	NPNP
IT0002,IT0003,IT0005	1995,2000	NPNP
IT0004	1985 - 1990	NP00
IT0004	1991 - 1993	NP20
IT0004	1994	NP10
IT0004	1995 - 2000	NP00
Latvia		
	1991	NPNP
LV0010	1992	NP60
LV	1993	NP60
LV	1994	NP31
IV	1995 - 2000	NP40
	1775 - 2000	111 40
Lithuania		
LT0015	1991	NPNP
LT	1992,1993	NP20
LT	1994	NP51
LT	1995,1996	NP51
LT	1997	NP20
LT	1998 - 2000	NP00
Netherlands		
NL	1977 - 1979	NP40
NL	1980	NP61
NL	1981,1982	NP40
NL	1983 - 1986	NP40
NL	1987 - 1989	NP30
NL	1990 - 1992	00 30
NL	1993	00 00
NL	1994	00 30
NL	1995.1996	00 00
NL	1997,1998	0010
NL	1999,2000	00 00
Norway		
NO	1977 1978	00 01
NO	1979	0000
NO	1980	0001
NO	1981	0042
NO	1982 - 1985	0000
NO	1986	0020
NO	1987 - 1993	0000
	1707 - 1775	0000

NO	1994	00 10
NO	1995 1996	0050
NO	1997 - 2000	0000
	1997 2000	0000
Poland		
PL0001 - PL0004	1978	01 60
PL0001 - PL0004	1979	0140
PL0001 - PL0004	1980	01 01
PL 0001 - PL 0004	1981	01 61
PL 0001 - PL 0004	1982	0123
PL 0.001 - PL 0.004	1982 - 1986	0125 01NP
PL 0.001 - PL 0.004	1987 - 1990	0171
PL 0001 - PL 0004	1001	0171
PL 0001 - PL 0004	1991	0100
PL0001 - PL0004	1992,1995	0131
PL0002 - PL0004	1994	0100
PL0002 - PL0004	1995,1996	0100
PL0002 - PL0004	1997	0110
PL0002 - PL0004	1998 - 2000	0100
PL0005	1995 - 2000	3200
Portugal		
PT	1979 - 1981	NP61
PT	1982	NP40
PT	1983 - 1985	NPNP
PT	1986	NP00
PT	1987,1988	NPNP
PT	1989	NP73
PT	1990	NPNP
PT	1991,1992	NP32
PT	1993	NP00
PT	1994	NPNP
PT	1995,1996	NP60
PT	1997,1998	0310 (4)
РТ	1997,1998	3410 (5)
PT	1999,2000	NP00
	,	
Russian Federation		
RU	1991,1992	0011
RU	1993	0020
RU	1994	0030
RU	1995 1996	0000
RU	1997 1998	0020
RU	1999 2000	0000
KC .	1999,2000	0000
Slovakia and Slovakian nart of t	he former Czechoslovskia	
SK	1978 - 1990	NDND
SK	1991 1992	NDO1
SK SIX	1003	NDAA
SIX	1995	ND10
	1774	INI IU

SK	1995 1996	NP00
SIX SIX	1007 2000	ND20
SK	1997 - 2000	INP20
Slovenia		
SI	1006 1008	NDOO
	1990 - 1998	INF UU
SI	1999,2000	20NP
Soviet Union		
	1070	NDID
500001,500005,500009	1979	NPID
SU0001,SU0005,SU0009	1980	00 83
SU0001.SU0005.SU0009	1981 - 1983	00NP
SU0001 SU0005 SU0009	198/ 1985	0061
SU0001,SU0005,SU0007	1004	0001
500001,500005,500009	1986	0021
SU0001,SU0005,SU0009	1987 - 1991	00NP
SU	1979 - 2000	NPNP (6)
G		
Spain		
ES	1984,1985	00NP
ES	1986	00 00
FS	1097 1099	0032
ES ES	1987,1988	0032
ES	1989,1990	00NP
ES	1991,1992	00 61
ES	1993	00 60
ES	1004	0020
ES ES	1994	0020
ES	1995 - 2000	00 00
Sweden		
SE	1078	2220
	1978	3230
SE	1979	3200
SE	1980	3230
SE	1981 - 1983	3200
SE	1094 1095	3200 3240 (8)
	1904 - 1903	3240 (8)
SE	1986	3200 (8)
SE	1987-1988	00NP(8)
SE	1989	0010 (8)
SE	1000 1003	0000
SE	1990 - 1995	0000
SE	1994	0010
SE	1995 – 1999	0000
SE	2000	0010
SE0012	1094	OOND
SE0012	1984	UUNP
SE0012	1985 – 1986	00 00
SE0012	1987 – 1988	0010
SE0012	1989	00 00
520012	1707	
Switzerland		
СН	1978,1979	NP30
СН	1980	NP51
СЦ	1001 1000	ND10
	1901,1982	INPIU
СН	1983	NP51
СН	1984,1985	NP10

СН	1986	NP30
СН	1987,1988	NP10
СН	1989,1990	NP00
СН	1991,1992	NP30
СН	1993,1994	NPNP
СН	1995 - 2000	NPNP
Turkev		
TR	1993	NP30
TR	1994	NP40
TR	1995,1996	NP20
TR	1997,1998	NP40
TR	1999,2000	NP00
United Kingdom		
GB	1977,1978	00 60
GB	1979	00 31
GB	1980	00 51
GB	1981,1982	00 00
GB	1983	00 51
GB	1984,1985	0000
GB	1986	00 31
GB	1987,1988	00 20
GB	1989 - 1992	0000
GB	1993	00 31
GB	1994	00 00
GB	1995,1996	00 00
GB	1997-2000	00 00

Sulphur dioxide

Czech Republic and the Czech sites in Czechoslovakia

The impregnated filter method has been applied for SO_2 from the start. The aerosol filter and the KOH impregnated filter were, however, not properly separated, which caused variable amounts of SO_2 to be absorbed in the aerosol filter. The data before 1989 are given as the sum of SO_2 and SO_{4air} only, and can be found in the database.

France

The French central laboratory was located at Institute National de Recherche Chimique Appliquee (IRCHA) until the summer 1990. After a reorganization of the network the responsibility was given to Ecole Nationale Superieure des Techniques Industrielles et des Mines de Douai.

Data before June 1990

The Langenbrügge comparison revealed a large spread in the data, particularly below 5 μ g S/m³. The laboratory applied the Thorin method for analysis at that time and changed to IC in 1988, which should have improved the results.

Data after June 1990

The SO_2 measurements were compared to the reference instrumentation through eleven months in 1998. The field comparison results indicate that the French data are too low for concentrations larger than 0.5 µg S/m³, which corresponds to the performance in the laboratory comparison

Germany, Fed. Rep.

The stability of exposed TCM samples is affected by temperature and light and have therefore been analysed at the various sampling sites shortly after exposure. This suggests that the data quality could be somewhat different from one site to the next. The winter data compare well with the H_2O_2 absorbing solution method and the KOH impregnated filter method. The TCM summer data gave lower results than this method, and annual data set gave somewhat lower results than the impregnated filter method for complete years (Aas et al., 2003).

Hungary

Hungary applied the TCM method until 1997. Compared with the other results from the Langenbrügge comparison there was a systematic difference that increases rather strongly with concentration. Hungary did not take part in the Vavihill exercise, and comparisons with reference instrumentation at the Hungarian site are not yet initiated.

Portugal

A on-site comparison took place 1996–1997. The results revealed rather high random errors. The field comparison indicated too high Portuguese measurements while the laboratory comparison suggested too low data.

Russian Federation.

The measurements at RU 1 were carried out with an UV fluorescence monitor as a co-operation between Russian and Finnish scientists. Comparisons between the

monitor and the Finnish filter-pack method, carried out at Finnish sites present a good correspondence.

Soviet Union

Most of the USSR EMEP samples were analysed in a central laboratory in Ventspils, in today's Latvia. When the USSR was separated into independent states at the very beginning of the nineties, this laboratory was closed down permanently. The central laboratory in Ventspils never took part in the laboratory or field comparisons and the data quality therefore remains unknown for a larger part of the USSR sulphur dioxide measurements.

The samples from the sites SU 1, 5, and 9 were analysed by the Institute for Applied Physics which is today's Institute of Global Climate and Ecology in Moscow.

The results from the Vavihill comparison were quite close the reference data set below 5 μ g S/m³. Above this concentration the Soviet/Russian results were about 20% too low. Both Russian and reference samples were analysed by NILU, and the error is therefore in the sampling device.

Spain

Spain took part in the Vavihill comparison with their H_2O_2 absorbing solution sampler. The data had more spread than expected.

A follow-up comparison at Zarra for about one year from May 2000 gave mostly data less than the detection limit at 0.5 μ g S/m³ from the Spanish laboratory while the reference measurements gave higher results. The Spanish results reported above the dl where far to high.

Notes applied with the SO₂ flags

UK: unknown quality
NR: not relevant
NP: not participated
MoUV: Monitor, UV monitor
DOAS: DOAS has been applied, data should not be used
MoFP: Monitor flame photometry
(1): Consider to apply the Vavihill hydrogen peroxide/impregnated filter relation before the laboratory corrections.
(2): based on national comparisons
(3) the sums of sulphur dioxide and aerosol sulphate concentrations are available
(4): Based on the Langenbrügge data. For concentrations lower than 30 μg S/m³.
(5): See comments and proposals for corrections given by Dr. M. Wallasch (see page 114).
(6): Based on the Langenbrügge data. For concentrations 5–50 μg S/m³.

Austria	
AT 1978	11 30 (1)
AT 1979,1980	11 11 (1)
AT 1981 - 1986	1100 (1)
AT 1987,1988	1120 (1)
AT 1989 - 1992	1100 (1)
AT 1993	11 31 (1)
AT 1994	1100 (1)
AT 1995 - 1998	UKNR DOAS
AT0002 1999 - 2002	NPNP
AT0030 1999 - 2003	22NR MoUV(2)
Belgium	
BE 1979 - 1991	UKNR MoFP
Croatia	
HR 1991 - 1996	64NR
Czech republic and Czech part of the former Czechoslovakia	
CZ0001 1978 - 1988	UKNR (3)
CZ 1989,1990	1200
CZ 1991	12 10
CZ 1992 - 1994	1200
CZ 1995 - 1996	12 30
CZ 1997 - 2001	12 10
Denmark	
DK 1979,1980	01 00
DK 1981	01 10
DK 1982 - 1985	01 00
DK 1986	01 20
DK 1987 - 1992	0000
DK 1993 DK 1994 - 2001	00 20 00 00
----------------------------	------------------------------
Estonia	
EE09 1997 - 2001	NE 41
EE11 1997 – 2001	NRNR MoUV
Finland	
FI 1978,1979	12 10 (1)
FI 1980 - 1988	1200 (1)
FI 1989	12 40 (1)
FI 1990,1991	01 20
FI 1992 - 1996	01 00
FI 1997	01 11
FI 1998 - 2001	01 00
France	
FR 1978	2330 (4)
FR 1979	2310 (4)
FR 1980	2300 (4)
FR 1981	2310 (4)
FR 1982 - 1985	2300 (4)
FR 1986 - 1988	2330 (4)
FR 1989,1990	2341 (4)
FR 1991,1992	2000 (1)
FR 1993	2030 (1)
FR 1994	20 10 (1)
FR 1995 - 1997	2000(1)
FR 1998 - 1999	2041(1)
FR 2000,2001	2020 (1)
Germany (5)	
DE 1978 – 2000	01NR
German Democratic Republic	
DD 1978 - 1991	NPNP
Greece	
GR 1978,1979	NP20(1)
GR 1980	NP40 (1)
GR 1981	NP20 (1)
GR 1982,1983	NP61 (1)
GR 1984 - 1986	NP00 (1)
GR 1987,1988	NP40 (1)
GR 1989,1990	NP41 (1)
GR 1991	NP10 (1)
GR 1992	NP32 (1)
GR 1993 - 1995	NP52 (1)
GR 1996 - 1999	NP32 (1)

Hungary	
HU 1978 - 1996	63NR (6)
HU 1997	NP00
HU 1998 - 2001	NPNP
Indone	
	01/1
IE0001 1980 IE0001 1981	01 41
IE0001 1981 IE0001 1982 1983	0120
IE0001 1982,1985	01 00
IE0001 1984,1985	0120
IE0001 1980 IE0001 1987 - 1990	0120
IE0001 1987 - 1990 IE0001 1991	0020
IE0001 1991 IE0001 1992 - 2001	0020
IE0007 1992 - 2001 IE0002 1991 - 1993	NPNP
IE0002 1991 - 1995	NP20
IE0002 1994 IE0002 1995 1997	NI 20 NI 41
IE0002 1995 - 1997 IE0002 1008 2000	NI 41 NDND
IE0002 1998 - 2000 IE0002 2001	NPOO
120002 2001	INFOU
Italy	
IT0001 1983 - 1985	NPNP
IT0001 1986	NP20
IT0001 1987	NP00
IT0001 1988 - 1990	00 00
IT0001 1991,1992	00 30
IT0001 1993,1994	00 40
IT0001 1995 - 2001	00 00
CEC	
IT0004 1985 - 1988	NP 00
IT0004 1989 - 2001	NPNR MoUV
Lithuania	
L1 1991,1992	NENP
L1 1993	NE61
L1 1994	NE10
L1 1995,1996	NE73
L1 1997,1998	NE31
LT 1999	NE00
Latvia	
LV 1991,1992	NENP
LV 1993	NE40
LV 1994	NE12
LV 1995,1996	NENP
LV 1997,1998	NE21
LV 1999,2000	NE40
LV 2001	NE61

Netherlands

NL0002 1977 - 1985	NP00 (1)
NL0002 1986 - 1993	11NR MoUV
NL0005 1977 - 1984	NP00 (1)
NL0006 1977 - 1983	NP00 (1)
NL0007 1983 - 1987	NP00 (1)
NL0008 1987	NPNP
NL0008 1988 - 1992	11NR MoUV
NL0009 1985 –1992	11NR MoUV
NL0010 1985 –1992	11NR MoUV
NL 1993 - 2001	11NR MoUV
Norway	
NO 1977 - 1981	00 20
NO 1982 - 1985	00 00
NO 1986	00 40
NO 1987 - 2001	00 00
Poland	
PL 1978	NP11 (1)
PL 1979	NP01 (1)
PL 1980 - 1983	NP00 (1)
PL 1984,1985	NPNP (1)
PL 1986 - 1990	00NP
PL 1991	00 20
PL0001 - PL0003 1992	00 20
PL0001 - PL0004 1993	00 31
PL0002 - PL0004 1994	00 31
PL0002 - PL0004 1995 - 1996	00 00
PL0002 - PL0004 1997 - 1998	0010
PL0002 - PL0004 1999 - 2000	00 20
PL0002 - PL0004 2001	00 00
PL0005 1992 - 1994	20NP
PL0005 1995 - 1996	20 40
PL0005 1997 - 1998	20 00
PL0005 1999 - 2000	20 20
PL0005 2001	20 00
Portugal	
PT 1979	3400
PT 1980 - 1985	34NP
PT 1986 - 1988	3400

РТ	1980 - 1985
РТ	1986 - 1988
РТ	1989
PT00	01,PT0003,PT0005 1990 - 1992
PT00	01,PT0003,PT0005 1993
PT00	01,PT0003,PT0005 1994 - 1997
PT00	04 1990 - 1997

Russian Federation

RU0001 1992 - 2001

10NR MoUV

NPNR MoUV

RU0013 - RU0018 1992 RU0013 - RU0018 1993 - 1994 RU0013 - RU0018 1995 - 1998 RU0013 - RU0018 1999,2000 RU0013 - RU0018 2001	 2320 2340 2300 2320 2340
Slovenia SI 1996 - 1998 SI 1999,2000 SI 2001	00 00 00 11 00 00
Slovakia and Slovakian part of the former Czechoslovakia	
SK 1978 - 1988 SK 1989 - 2001	NPNP NP00
Soviet Union	
SU 1979 - 1989	NPNR
SU0001 1989,1990	23NP
SU0001 1990,1991	10NR MoUV
SU0002 - SU0014 1990,1991	23NP
Spain	
ES 1986	34 10
ES 1987 - 1992	34 30
ES 1993 - 1996	34 00 34 01
ES 1997,1998	34 01 34 61
ES 1999 ES 2000 2001	3401 32NR Moliv
25 2000,2001	32 NK 1000 V
Sweden	
SE 1977 - 1978	1300 (1)
SE 1979	1311 (1)
SE0001 - SE0008 1980 - 1984	1300 (1)
SEU001 - SEU011 1985 - 1988	1330(1)
SE0002 - SE0011, SE0013 1989 - 1992 SE0002 SE0011 1002 1008	1310(1)
SE0002 - SE0011 1993 - 1998 SE0002 - SE0011 1000	0040
SE0002 - SE0011 1999 SE0002 - SE0011 2000 2001	0040
SE0002 - SE0011 2000,2001 SE0012 1984	NPNP
SE0012 1985 - 1989	0000
Switzerland	
СН 1979 - 1987	NP 00 (1)
CH0001 1988	NP 10 (1)
CH0001 1989	NP 30 (1)
CH0001 1990 - 2001	NP 00 (1)
CH0002 1988 - 1991	32NR MoUV
CH0002 - CH0005 1992 - 2002	32NR MoUV

Turkey	
TR 1993-1999	64NR
TR 2000,2001	00 00 (2)
United Kingdom	
GB 1977	10 03
GB 1978	10 01
GB 1979,1980	10 00
GB 1981	10 31
GB 1982 - 1986	10 00
GB 1990 - 1992	10 00
GB 1993	10 30
GB 1994	10 00
GB 1995	10 30
GB 1996 - 1998	10 00
GB 1999	10 30
GB 2000,2001	10 10

Yugoslavia

YU 1977 - 1991

64NP

Comments to German EMEP data

Note to be attached to the German EMEP data

author

Markus Wallasch (QA-Manager) Langen (Germany), 07 March 2003

This note refers to:

- SO₂ measured by the TCM method for the period of time from the begin of measurements until end of year 2000.

- NO₂ measured by the Salzmann method the period of time from the begin of measurements until end of year 2001.

- Sulfur in Particles by the X-ray fluoreszens method in the period of time from the begin of measurements until 31. August 1999.

Parallel measurements over long periods suggest systematic errors for the above mentioned components. Therefore, it is recommended to rescale the data according to the equation given bellow before making comparisons with other measurements or model calculations. The details of the parallel measurements and on how the rescaling equations are derived will be given in an additional paper. It should be noted here, that these relations are to be understood in a statistical sense, i.e.they apply to a large ensemble with a considerable scatter of the "data points". So the rescaling may be most helpful, if one is interested in long term averages (for example, annual averages). They are of a more limited usefulness if individual values or short periods are considered. Therefore, it was decided to keep the data in the database as they are. Instead, it is left to the user of the data if he or she likes to follow the recommendation and rescale the data before use, as this decision may depend crucially on the purpose of the study. **Rescaling Equations:**

for SO₂:
$$Y = 1.46 X$$

for NO₂: $Y = 1.50 X + (1.0 - 6.0 EXP(-0.1 X^2))$
if negative values of Y occur, these must be
discarded !
for Sulfur in Particles : $Y = 1.50 X$

where: X: old concentration in μ g m⁽⁻³⁾, daily values Y: new concentration in μ g m⁽⁻³⁾, daily values EXP: exponential function

References

- Chemical Co-ordinating Centre of EMEP (1996) EMEP manual for sampling and chemical analysis. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 1/95).
- Hanssen, J.E., Ladegård, N.E., Thrane, K.E. (1983) Report on the sixth intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 2/83).
- Hanssen, J.E., Ladegård, N.E. (1984) The seventh intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 1/84).
- Hanssen, J.E., Ladegård, N.E. (1985) The eighth intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 4/85).
- Hanssen, J.E., Ladegård, N.E. (1987) The ninth intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 4/87).
- Hanssen, J.E. (1988) The tenth intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 3/88).
- Hanssen, J.E. (1990) The eleventh intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 1/90).
- Hanssen, J.E., Skjelmoen, J.E. (1992) The twelfth intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 7/92).
- Hanssen, J.E., Skjelmoen, J.E. (1994) The thirteenth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 1/94).
- Hanssen, J.E., Skjelmoen, J.E. (1995) The fourteenth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 3/95).
- Hanssen, J.E., Skjelmoen, J.E. (1996) The fifteenth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 2/96).
- Hanssen, J.E., Skjelmoen, J.E. (1997) The sixteenth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 2/97).
- Hanssen, J.E., Skjelmoen, J.E. (2001) The seventeenth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 10/2001).
- Nodop, K., Hanssen, J.E. (1986) Field intercomparison of measuring methods for sulphur dioxide and particulate sulphate in ambient air. Langenbrügge, Federal Republic of Germany, 7th November 1985 to 24th January 1986. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 2/86).
- Scaringelli, F.P., Saltzman, B.E., Frey, S.A. (1967) Spectrophotometric determination of atmospheric sulphur dioxide. *Analytical Chemistry*, *39*, pp1709, 1719.
- Schaug, J., Semb, A., Hjellbrekke, A.-G., Hanssen, J.E., Pedersen, A. (1997) Data quality and quality assurance report (1995). Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 8/97).

- Schaug, J., Semb, A., Hjellbrekke, A.-G. (1998) Data quality 1996, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/98).
- Semb, A., Andreasson, K., Hanssen, J.E., Lövblad, G., Tykesson, A.(1991) Vavihill, Field intercomparison of samplers for sulphur dioxide and sulphate in air. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 4/91).
- Semb, A., Schaug, J., Hanssen, J.E. (1994) Accuracy and precision in the EMEP data. A first evaluation on the basis of available information. In EMEP Workshop on the accuracy of measurements. Ed. by T. Berg and J. Schaug. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 2/94).
- Thrane, K.E. (1978) Report on the first intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 2/78).
- Thrane, K.E. (1980) Report on the second and third intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 1/80).
- Thrane, K.E. (1980) Report on the fourth intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 5/80).
- Thrane, K.E. (1981) Report on the fifth intercomparison of analytical methods within EMEP. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 2/81).
- Uggerud, H.T., Hanssen, J.E., Skjelmoen, J.E. (2001) The eighteenth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 11/2001).
- Uggerud, H.T., Hanssen, J.E., Schaug, J., Skjelmoen, J.E. (2002) The nineteenth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 1/2002).
- Uggerud, H.T., Hanssen, J.E., Schaug, J., Skjelmoen, J.E. (2003) The twentieth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 8/2003).
- Aas, W., Hjellbrekke, A.-G., Semb, A., Schaug, J. (1999) Data quality 1997, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/99).
- Aas, W., Hjellbrekke, A.-G., Schaug, J. (2000) Data quality 1998, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/2000).
- Aas, W., Hjellbrekke, A.-G., Schaug, J., Solberg, S. (2001) Data quality 1999, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/2001).
- Aas, W., Hjellbrekke, A.-G., Manø, S., Schaug, J., Solberg, S., Uggerud, H.Th. (2002) Data quality 2000, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 3/2002).
- Aas, W., Hjellbrekke, A.-G., Schaug, J. (2003) Data quality 2001, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/2003).