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Key messages 

The present report synthetises the main features of the evolution over the 1990-

2012 time period of the concentration and deposition of air pollutants relevant in 

the context of the Convention on Long-range Transboundary Air Pollution: (i) 

ozone, (ii) sulfur and nitrogen compounds and particulate matter, (iii) heavy 

metals and persistent organic pollutants. It is based on observations gathered in 

State Parties to the Convention within the EMEP monitoring network of regional 

background stations, as well as relevant modelling initiatives. The main 

conclusions of this assessment for each type of compounds are as follows. 

Ozone: 

 Atmospheric measurements show a substantial decrease in the main ozone 

precursors: ambient NO2 and NMVOCs (non-methane volatile organic 

compounds) concentrations in Europe. This decrease is consistent with 

reported decrease in European emissions of ozone precursors since 1990;  

 The magnitude of high ozone episodes has decreased by about 10% between 

1990 and 2012, resulting in reductions of 20 to 50% of the number of days 

exceeding the guidelines of the World Health Organisation or the European 

long term objective, respectively. It should be noted however that such 

thresholds are still exceeded at a majority of stations, thereby demonstrating 

both the efficiency of control measures undertaken over the past 20 years, and 

the need for further action; 

 Annual mean ozone levels measured at EMEP stations were increasing in the 

1990s, and show a limited negative trend starting in 2002. This feature is 

generally attributed to the evolution of the global baseline of tropospheric 

ozone for which further hemispheric control strategies are needed; 

 There was a sharp reduction of the fraction of sites with an upward trend 

between the 1990s and the 2000s. Over the 2002-2012 time period, none of 

the considered stations reported significant increase of ozone for any of the 

metrics (except for the annual mean for which an increase was reported at one 

site). Most stations reported a downward trend, however, because of the large 

inter-annual variability of ozone and the relatively short time period, the 

downward trends are statistically significant at only 30 to 50% of the sites, 

depending on the metric considered; 

 The efficiency of ozone precursor abatement measures is very clear for human 

and vegetation exposure levels (as measured by SOMO35 and AOT40, 

respectively) that have experienced a relative decrease of 30 and 37%, 

respectively, from 2002 to 2012.  

Sulfur and nitrogen compounds and particulate matter: 

 Observed atmospheric concentrations of gas phase SO2 decreased by about 

92% while particulate sulfate was reduced by 65% and 73% in air and 

precipitation, respectively, this is in response to sulfur emissions abatement 

over the 1990-2012 period in the EMEP region; 

 Acidifying and eutrophying nitrogen pollutant emissions (NOx and NH3) also 

decreased over the period 1990-2012 but not to the same extent as sulfur 

emissions, this is also reflected in the reduction of atmospheric concentrations 

in oxidised nitrogen: 41% for NO2 and 33% for NO3
- in precipitation. A 
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similar overall trend is observed for reduced nitrogen for the 1990-2012 period 

(29% reduction for NH4
+ in precipitation) but the decrease appears much 

slower over the later part of the period, where the trends are not statistically 

significant at 80% of the sites. The observed trends are broadly consistent with 

the reported emission reductions in Europe for the same period (49% for NOx 

and 29% for NH3). 

 Decreases of measured oxidised nitrogen are determined both by emissions 

and atmospheric chemistry. Particulate matter (PM) composition has shifted 

from ammonium sulfate to ammonium nitrate so that reductions in emissions 

are not directly transferred to decreases in concentrations; 

 Reduced nitrogen remains a major area for concern as there are either near-

zero or increasing trends observed at the majority of available sites over recent 

years; 

 For inorganic aerosols, larger decreasing changes were observed in the 1990-

2001 period compared to 2002-2012; 

 PM10 and PM2.5 mass were only measured extensively enough to assess trends 

after 2001. Over the 2002-2012 period, decreases of 29% and 31% were 

observed at the sites included in the assessment for PM10 and PM2.5 

respectively; 

 Separation of measurements of gas phase and particulate phase atmospheric 

components for oxidised and reduced nitrogen would allow a clearer 

understanding of the processes occurring in the atmosphere, which drive 

trends and environmental impacts. 

Heavy Metals and Persistent Organic Pollutants  

 Heavy metal deposition decreased significantly, with about 80%, 60% and 

35% reductions for lead, cadmium and mercury in EU28 countries based on 

modelled trends, these numbers being 76%, 49% and 10% in EECCA 

countries. Most of the reduction occurred in the 1990s;  

 Most of the trend is attributed to anthropogenic emission changes within the 

EMEP region for lead and cadmium. For mercury, the influence of non-EMEP 

sources is large; 

 Where observations are available, the model gives reasonable results. The 

most important discrepancies are (i) an underestimation of cadmium levels at 

the beginning of the 1990s, and (ii) an underestimation of the downward trend 

of mercury concentration in precipitation; 

 Amongst the various POPs considered over the 1990-2012 period, the largest 

modelled reduction is estimated for HCB (90%) and the lowest for B[a]P 

(30%) for which modelled concentrations revert to an increase over recent 

years on average in the EMEP region; 

 The agreement between model and observation trends is good for POP, except 

for HCB at sites at the outskirts of the domain that are influenced by non-

EMEP sources. 
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1 Introduction 

In the late 1960s, early warnings were issued that air pollution could go beyond 

the limits of urban areas and industrial facilities, potentially affecting the acidity 

of precipitations at the scale of the whole European Continent. After a pioneer 

monitoring network was set up under the auspices of OECD (Organisation for 

Economic Co-operation and Development) a political consensus emerged for the 

need to elaborate a specific Convention on Long-range Transboundary Air 

Pollution (CLRTAP) that was signed in 1979 and entered into force in 1983. 

The historical monitoring network was thereafter a full part of the Cooperative 

Programme for Monitoring and Evaluation of the Long-range Transmission of Air 

Pollutants in Europe (EMEP, established in 1977), together with numerical 

modelling and emission reporting capacities. These capacities are supported by 

five Programme Centres (Centre for Emission Inventories and Projections - CEIP, 

Chemical Coordinating Centre - CCC, Meteorological Synthesizing Centre-West 

– MSC-W, Meteorological Synthesizing Centre-East – MCS-E, and Centre for 

Integrated Assessment Modelling - CIAM). The work of the Centres is evaluated 

and discussed in Task Forces bringing together EMEP Centre experts and 

Representatives of the State Parties to the Convention. Such Task Forces are also 

a forum to further develop working methods and tools. The Task Force on 

Measurements and Modelling (TFMM) in particular has been set up by the 

Executive Body in 2000 to perform this role with the Chemical Coordinating 

Centre, the Meteorological Synthesizing Centre-West, and the Meteorological 

Synthesizing Centre-East. 

One of the first decision of the TFMM at its inaugural meeting was to undertake a 

review of the status and evolution of air pollution, both modelled and measured, 

throughout the EMEP region since the onset of the Programme in order to support 

the EMEP Assessment Report published in 2004 (Lövblad et al., 2004). It is now 

timely to mobilise the TFMM community to propose an update of this work and 

assess of the evolution of air pollution in the EMEP region over the 1990-2012 

period. The Working Group on Effects of the Convention also published in 2015 a 

Trend Report, (De Wit et al., 2015), and an Assessment Report of all the activities 

undertaken under the Convention was published in 2016 (Maas and Grennfelt 

2016). The goal of the present report is to provide the observational and 

modelling evidences of atmospheric composition and deposition change in 

response to actions taken by Member countries to control emissions. It is also 

an opportunity to demonstrate the outstanding value of the EMEP 

monitoring and modelling strategies in supporting to the implementation of 

environmental policies.  

Consistent with the mandate of the Convention, TFMM focuses its analysis on 

European regional-scale background ozone as observed at EMEP stations with 

additional contextual information on ozone trends in the State Parties of the 

Convention in North America as well as measurements gathered at urban 

monitoring sites. The trends are considered over the 1990 – 2012 period and the 

1990-2001 and 2002-2012 sub-periods. 

The monitoring and modelling capacities in support of EMEP have substantially 

advanced with time as demonstrated in the EMEP Status Reports published 
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annually1. The review of (Tørseth et al., 2012) highlighted the increase of the 

amount of observational data delivered to the EMEP database2 thanks to the 

involvement of State Parties and collaboration with other  programmes and 

initiatives such as the Global Atmosphere Watch (GAW) under the World 

Meteorological Organisation or the European Research Infrastructure projects, 

such as the current project on observation of Aerosol, Clouds, and Trace gases 

Research Infrastructure Network (ACTRIS). This development is illustrated in 

Figure 1.1 that shows the evolution of contributions received from State Parties.  

Numerical dispersion models have also undergone substantial improvements. A 

recent overview of the EMEP/MSC-W model was presented in (Simpson et al., 

2012), and the latest results of the EMEP/MSC-E model were presented in 

(Shatalov et al., 2014). For the main pollutants covered by EMEP/MSC-W, the 

collaboration of national experts in modelling mandated by State Parties within 

the TFMM was implemented through the various phases of the EURODELTA 

project (Thunis et al., 2008; Bessagnet et al., 2014). This project largely 

contributed to benchmark the performances of the MSC-W model in terms both 

comparison with observations and sensitivity to incremental emission changes. 

EURODELTA is now undertaking a multimodel hindcast experiment which is 

particularly relevant to support the present work on air quality trends. As far as 

heavy metals are concerned, collaboration between MSC-E and State Parties was 

strengthened through various national-scale case studies (for the Netherlands, 

Croatia, the Czech Republic3) initiated by the TFMM. 

 

Figure 1.1: Development of the EMEP monitoring programme. Bars represent the number of 

parties/countries submitting data according to the level-1 and level-2 monitoring requirements, respectively. 

Lines indicate the number of sites for which measurements of the various variables have been measured (g) = 

gaseous, (a) = aerosol, adapted from (Tørseth et al., 2012). 

                                                 

1 http://www.emep.int/publ/common_publications.html and http://www.msceast.org/index.php/reports  

2 http://ebas.nilu.no 

3 http://www.msceast.org/documents/CaseStudy_Booklet.pdf 

http://www.emep.int/publ/common_publications.html
http://www.msceast.org/index.php/reports
http://ebas.nilu.no/
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These developments form the basis for the present assessment on air pollution 

trends in the EMEP region. The methodology to perform trend analyses was 

discussed at the annual meetings of the TFMM in 2014 (Bologna) and 2015 

(Krakow), as well as during a dedicated workshop held in Paris in 2014. State 

Parties and Centres agreed on the EMEP monitoring stations to be used for such 

analyses and appropriate statistical methodologies. The quantitative analysis was 

performed by the Centres and supplemented by specific analyses undertaken by 

State Parties. The European Environment Agency (EEA) and its European Topic 

Centre on Air Pollution and Climate Change Mitigation (ETC/ACM) also 

performed a trend analysis following the agreed methodology for O3, NO2 and 

PM on the whole set of monitoring stations included in the EEA Air Quality e-

reporting database4. The modelling was performed by the Centres, and 

supplemented by the input of State Parties (in particular through the 

EURODELTA exercise).  

The present assessment synthesises the results of analyses reported by the group 

of experts from the TFMM, CCC, MSC-E and MSC-W for ozone trends (Chapter 

2), sulfur and nitrogen compounds and particulate matter (Chapter 3), and heavy 

metals and persistent organic pollutants (Chapter 4). Supplementary material on 

the methodology for the statistical analysis for the main pollutants and heavy 

metals and POPs as well as trends in air pollution emission (in collaboration with 

the Centre for Emission Inventories and Projections - CEIP) are provided in 

Annex C. 

                                                 

4 http://www.eea.europa.eu/data-and-maps/data/aqereporting, the former AirBase. 

http://www.eea.europa.eu/data-and-maps/data/aqereporting
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2 Ozone 

Main authors: Kathleen Mar, Augustin Colette, Sverre Solberg 

Contributors: Mario Adani, Paul Almodovar, Eva Berton, Bertrand Bessagnet, 

Gino Briganti, Andrea Cappelletti, Kees Cuvelier, Richard Derwent, Massimo 

D'Isidoro, Hilde Fagerli, Marta Garcia Vivanco, Alberto González Ortiz, 

Christoph Hueglin, Jennifer Kerr, Frank de Leeuw, Astrid Manders, Mihaela 

Mircea, Maria Teresa Pay, Jean-Philippe Putaud, Valentin Raffort, Yelva 

Roustan, Stéphane Sauvage, Kimber Scavo, David Simpson, Oksana Tarasova, 

Mark Theobald, Kjetil Tørseth, Svetlana Tsyro, Markus Wallasch, Peter Wind.  

 

2.1 Overview of ozone trends  

An important challenge when addressing ozone distributions and trends lies in the 

multiplicity of processes underlying ozone variability. Photochemical ozone 

production occurs via reactions of nitrogen oxides (NOx) and non-methane 

volatile organic compounds (NMVOCs) in the presence of sunlight, and is 

maximized under conditions of high solar radiation and high temperatures (Monks 

et al., 2015). This leads to ozone diurnal maxima in the afternoon with the highest 

peaks typically observed in the summer months, when exceedances of regulatory 

thresholds are most frequent. Once formed, ozone and reservoir species 

accumulates in the atmosphere, where it can be transported over hemispheric 

distances, with a typical lifetime of the order of weeks. The concentration of 

ozone at any particular place and time is the result of complex interactions 

between precursor emissions of both local and non-local sources by means of 

chemical transformations, transport and deposition processes.  

Systematic ozone monitoring in Europe began in 1957 during the International 

Geophysical Year, with the longest running time series at Cape Arkona – Zingst 

on the Baltic Sea coast of Germany. The monitoring network in State Parties to 

the Convention developed substantially since then so that, since the beginning of 

the 1990s, an ensemble of high quality records is available for statistical analyses 

of ozone pollution trends in the EMEP region.  

Most EMEP monitoring sites selected for the present analysis are influenced by 

both hemispheric baseline ozone and by regional air pollution sources, in contrast 

to remote and free tropospheric observatory sites, which are designed to be free of 

local and regional influences. The list of stations passing the data completeness 

filter and thereby included in the present analysis is given in Table A.1 in 

Annex A.  

An important methodological aspect of any ozone assessments lies in the selection 

of the metrics (or indicators) because they depict different impacts. Their trends 

may also show different features. The present assessment focuses on three aspects 

of ozone evolution: (i) the global baseline, (ii) human and vegetation exposure, 

(iii) severe photochemical episodes. At rural background sites, baseline ozone 

trends are well represented by the annual mean, whereas close to emission sources 

this metric can also be influenced by night-time and wintertime ozone titration. 

Impacts on health and ecosystems are assessed using the SOMO35 (sum of ozone 
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daily maxima above 35 ppb) and AOT40 (cumulated hourly ozone above 40 ppb) 

metrics, respectively. The trends in severe photochemical episodes are assessed by 

investigating both the number and magnitude of high ozone days. The number of 

episodes is defined by the number of exceedances of the 50ppb and 60ppb 

thresholds (WHO and European criteria) for ozone MDA8 (daily maximum of the 

8-hour running mean). The magnitude of the episodes is assessed from the fourth 

highest MDA8 recorded each year, which represents approximately the annual 

99th percentile when the data coverage is complete.  

The overall evolution of the fourth highest MDA8 and annual mean ozone 

observed at EMEP monitoring sites is displayed in Figure 2.1 for the 1990-2012 

period (see the Methods in Annex A) for details on the station selection criteria). 

For both metrics we show the median over the whole EMEP network as well as 

the envelope constituted by the 25th and 75th percentiles. The year to year 

variability is high for summertime ozone episodes (4th highest MDA8), especially 

in outstanding years such as 2003 and 2006 (pronounced heat waves). Since the 

beginning of the 1990s, a clear downward trend in high ozone episodes was 

observed when considering the network as a whole. But some further 

reductions are desirable given that over recent years, none of the stations in the 

envelope constituted by the 25th and 75th percentiles reach the WHO ozone air 

quality guideline of 50 ppb, and only a few reach the European Directive long 

term objective of 60 ppb. Annual mean ozone was increasing during the first sub-

period but decreased slightly in the second sub-period, and appears largely driven 

by the trend in the hemispheric baseline ozone (see discussion in Section 1.2.2). 

 

Figure 2.1: Composite of annual mean ozone (black) and 4th highest MDA8 (red) ozone recorded at 55 

EMEP rural monitoring sites between 1990 and 2012. The thick line is the network-wide annual median and 

lower/higher bounds of the shaded areas are for the 25th and 75th percentiles.  Thin straight lines show the 

linear trend over the 1990-2001 and 2002-2012 periods and dashed lines indicate the WHO air quality 

guideline (50ppb) and the EU long term objective (60ppb). 

The aggregation of data from many stations into a single median trend for the 

region masks the variability across the network. To further examine this 

variability, Figure 2.2 provides the distribution of the percentage of the sites in the 

EMEP network with statistically significant/insignificant increase/decrease for the 

first and second sub-periods. Trends are considered statistically significant when 
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the p-value of their Mann-Kendall statistic is lower than 0.05 (See the Methods 

section in Annex A). Apart from the metrics presented in Figure 2.1 (annual mean 

and 4th highest  MDA8), some additional commonly-used ozone metrics (see 

Glossary) are provided in Figure 3: SOMO35 (used to assess health impacts; note 

however that its significance in terms of human health exposure trends should be 

considered with care since we focus here on rural sites), AOT40 (vegetation 

impacts), the number of days where MDA8 is above 50 ppb (WHO guideline) or 

60 ppb (corresponding to the 2008/50/EC long-term objective, it is also the target 

value which means that, at present, the long term objective should not be 

exceeded more than 25 days per year over three years), and annual MDA8 

maximum. 

For all ozone metrics, comparing the 1990s and the 2000s demonstrates a 

sharp reduction in the fraction of sites with an upward trend (Figure 2.2), so 

that in the 2000s there are virtually no sites where significant increases of any of 

the ozone metrics are observed (only one site for the annual mean). Consistent 

with this tendency, a greater percentage of stations within the network showed 

statistically significant decreases in the 2002-2012 sub-period compared to the 

1990-2001 sub-period. However, ozone trends remain statistically insignificant 

(p-value > 0.05) at the majority of sites (at 75 to 90% for the 1990-2001 period 

and 52 to 93% of the sites for 2002-2012 period, depending on the metric). This is 

partly due to the meteorological sensitivity of ozone that makes it variable from 

year to year, thereby challenging the detection of trends on the basis of 10-year 

periods. Because there were different trends in the 1990s and in the 2000s, using 

the whole 23-year period for trend detection only marginally improves the 

fraction of sites where a statistically significant trend is detected, with 50 to 76% 

of sites still showing statistically insignificant trends. 

There are also important differences amongst the metrics. Annual mean ozone 

exhibited the largest fraction of positive slopes in the 1990s, and in the 2000s it is 

the only metric for which statistically significant increases are found (although at 

just one site). Increases at 35 to 55% of the stations were also found for exposure 

metrics as well as exceedances of the WHO guideline in the 1990s, whereas a 

majority of decreases was already found during this earlier decade for highest 

ozone days (both in magnitude and number of exceedances of the EU long term 

objective). 
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Figure 2.2: Percentage of EMEP monitoring sites where statistically significant upward trends (dark red), 

insignificant upward trends (light red), insignificant downward trends (light blue) and significant downward 

trends (dark blue) were observed in the 1990s (top) and in the 2000s (bottom) for each ozone metric (O3 Avg: 

ozone annual mean, SOMO35 and AOT40, ndays MDA8>50 and 60ppb: number of days per year where the 

O3 MDA8 is above the 50ppb (WHO) or 60ppb (European) threshold, fourth highest MDA8 day and annual 

maximum of MDA8). 

The network-wide median of the annual relative trend for several metrics is shown 

in Table 2.1. The relative change (negative for a decrease) over a given period is 

computed from the Sen-Theil slope (in unit/yr) normalised with the concentration 

at the beginning of the period (See the Methods section in Annex A). As 

illustrated in the network-median time series given in Figure 2.1, annual mean 

ozone was increasing in the 1990s but over the 2002-2012 period, a 7.1% median 

decrease was observed over the network. The reduction of summertime ozone 

episodes (4th highest MDA8) is steady with a relative reduction of 11% and 

10% over 1990-2001 and 2002-2012 periods, respectively. The analysis of 

regulatory and exposure indicators is complementary to the analysis of 4th highest 

MDA8. These are based on threshold exceedances and designed to reflect impacts 

on human health (WHO, European targets and SOMO35) or on vegetation 

(AOT40). The number of days when the WHO guideline (50 ppb) or European 
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threshold (60 ppb) are exceeded is closely related to the 4th highest MDA8 metric. 

Compared to the 2000s, there were many more sites where the number of 

exceedances of the WHO guideline showed an upward annual trend in the 1990s 

(Figure 2.2).  In the 2000s, a statistically significant downward trend for the 

number of days where MDA8 was above 50 ppb is seen at less than half of the 

monitoring sites (Figure 2.2), and the network-wide median slope is not 

significantly negative (Table 2.1). The number of exceedances of the EU long 

term objective decreases steadily, with 41 and 61% median reductions over 

the 1990s and 2000s respectively, both being statistically significant over the 

network. The health impacts metric SOMO35 and the vegetation impacts metric 

AOT40 show larger decreases than the exceedance metrics over the second sub-

period. From 2002 to 2012, SOMO35 and AOT40 were reduced by 30 and 

37%, respectively. It should be noted that in the 1990s, positive slopes in 

SOMO35 and AOT40 were reported at a large fraction of sites (Figure 2.2) 

suggesting that these indicators were at least partly influenced by an unfavourable 

baseline trend as for annual mean ozone (see discussion in Section 2.2.2).  

Table 2.1: Network-wide median [95% Confidence Interval, CI] of the annual trend and total change 

(negative for a downward trend) for selected ozone metrics for each considered time periods. 

Ozone Metric Time period 
Median annual trend 

in, [unit/yr] and 95% CI 

Median relative change 
over the period [%] and 

95% CI 

Annual mean (ppb) 1990_2001 0.15[0.11,0.25] 5.8[4.6,11] 

 
2002_2012 -0.21[-0.3,-0.16] -7.1[-9.5,-4.5] 

 
1990_2012 0.06[0.009,0.07] 4.1[1.2,5.7] 

SOMO35 (ppb.days) 1990_2001 4.9[-16,26] 1.6[-0.41,35] 

 2002_2012 -79[-100,-67] -30[-39,-22] 

 1990_2012 -11[-21,-2.4] -8.3[-14,2.4] 

AOT40 (ppb.hours) 1990_2001 -88[-139,12] -16[-14,23] 

 2002_2012 -226[-309,-179] -37[-40,-14] 

 1990_2012 -98[-128,-62] -31[-47,19] 

Ndays MDA8 > 50ppb (days) 1990_2001 -0.41[-0.88,0.15] -10[-36,83] 

 
2002_2012 -2.9[-3.3,-2.2] -47[-84,59] 

 
1990_2012 -0.41[-0.73,-0.23] -22[-28,-9.5] 

Ndays MDA8 > 60ppb (days) 1990_2001 -0.63[-0.93,-0.42] -41[-49,-19] 

 2002_2012 -0.93[-1.5,-0.82] -61[-70,-45] 

 1990_2012 -0.4[-0.75,-0.37] -49[-58,-39] 

4th highest MDA8 (ppb) 1990_2001 -0.65[-1,-0.5] -11[-13,-6.7] 

 
2002_2012 -0.73[-0.92,-0.53] -10[-13,-7] 

 
1990_2012 -0.41[-0.62,-0.4] -12[-17,-11] 

Annual max. MDA8 (ppb) 1990_2001 -0.76[-1.3,-0.62] -11[-14,-7.6] 

 2002_2012 -0.65[-0.91,-0.38] -9[-11,-3.8] 

 1990_2012 -0.53[-0.75,-0.49] -14[-18,-12] 
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Because of the variety of meteorological conditions, emission sources, and 

therefore chemical regimes occurring throughout Europe, it is legitimate to 

inquire whether the trends shown in Table 1 are really representative of the whole 

European continent. As shown in the Method section in Annex A, the subset of 

stations available for the first sub-period is significantly smaller than for the 

second sub-period, and strongly biased to northern and central Europe. To 

establish the representativeness of the observed trends, Figure 2.3 compares the 

relative trends observed at EMEP and the EEA’s Air Quality e-reporting database 

(formerly known as AIRBASE) rural background stations for the summertime 

peaks for the second sub-period only (when both data sets are available). The 

AIRBASE database includes measurements that are operated by member 

countries to verify the compliance with the European air quality legislation, 

although not designed to assess trends of background ozone. They offer an 

interesting complement to the EMEP network because of their larger coverage 

(231 stations passing the completeness criteria over the 2002-2012 period instead 

of 109 for EMEP). The comparison of EMEP and AIRBASE maps of trends 

shows that there is no outstanding spatial pattern captured by the AIRBASE 

network that would be missed by the EMEP network. The AIRBASE network-

wide median rate of decrease for the 4th highest MDA8 is 12% (fairly close to the 

10% reduction for EMEP), and the fraction of sites with significant decreasing 

trends is also consistent with the EMEP estimate (14% and 15% for the 

AIRBASE and EMEP networks, respectively). It should be noted, however, that 

even when only the second period is considered (where there are more 

measurement records available), neither EMEP nor AIRBASE have good long-

term coverage over most of south-eastern Europe but Spain, so that we are not 

confident that trends are valid for these regions.  

 

 

Figure 2.3: Maps of relative trends over 2002-2012 (%/yr) of the 4th highest MDA8 recorded at EMEP (left) 

and AIRBASE (right) rural background (RB) sites over the 2002-2012 period. Stations where the trend is 

significant at the 0.05 level are displayed with a circle, elsewhere a diamond is used. 

Gains are also being made on ambient ozone levels in North America. In Canada 

annual 4th highest daily maximum 8-hour concentrations decreased by 15% 

between 1998 and 2012. Between 2003 and 2012, the percentage of Canadians 

living in communities where ambient concentrations of ground-level ozone 

exceeded the 2015 Canadian Ambient Air Quality Standard (CAAQS) for ozone5 

                                                 

5 CAAQS for ozone are 63 ppb in 2015 and 62 ppb in 2020. Additional information on the Canadian Ambient 
Air Quality Standards (CAAQS) can be found at http://www.ec.gc.ca/default.asp?lang=En&n=56D4043B-
1&news=A4B2C28A-2DFB-4BF4-8777-ADF29B4360BD 

http://www.ec.gc.ca/default.asp?lang=En&n=56D4043B-1&news=A4B2C28A-2DFB-4BF4-8777-ADF29B4360BD
http://www.ec.gc.ca/default.asp?lang=En&n=56D4043B-1&news=A4B2C28A-2DFB-4BF4-8777-ADF29B4360BD
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dropped from approximately 50% to 28%. In the United States, national averages 

of the 4th highest daily maximum 8-hour concentrations declined in the 1980’s, 

levelled off in the 1990’s, and showed a notable decline after 2002.  From 1990 to 

2014 these levels decreased 23%.     

 

2.2 Factors contributing to the ozone trend  

Ozone evolution must be put in perspective of the changes in (i) emissions of 

precursors, (ii) baseline ozone levels (long range transport, including stratosphere-

troposphere exchanges), and (iii) photochemical activity in relation to 

meteorological variability. In this section we discuss the conclusions that can be 

drawn about the importance of these factors, to the extent possible on the basis of 

an analysis of surface observations. 

 

2.2.1 Ozone precursors 

This section presents to what extent measurements of atmospheric concentrations 

of ozone precursors (NO2 and NMVOCs) can be used to confirm the magnitude of 

the change reported in emission inventories as detailed in Annex C. 

 

2.2.1.1 Concentrations of nitrogen oxides (NOx) 

The network-wide median of annual mean NO2 measured at EMEP and 

AIRBASE sites across Europe (separated by station type) is displayed in Figure 

2.4. NO2 is shown here as a proxy for NOx (NOx=NO+NO2), for which a limit 

value has been established under Air Quality Directive 2008/50/EC (EC, 2008). 

Furthermore, NO2 is measured at a greater number of European stations than total 

NOx. Note that there are about half as many EMEP stations passing the 

completion criteria for NO2 as for O3. Figure 2.4 shows that on average, important 

decreases in NO2 concentrations were observed over Europe since the beginning 

of the 1990s. Over the full 23-year period between 1990 and 2012, the average 

relative NO2 reduction based on the Sen-Theil slope is very consistent at 

EMEP (39%) and AIRBASE rural background (41%) sites. The relative 

reduction is 39% at urban sites, which is slightly smaller than the 51% decline in 

reported NOx emissions over EU between 1990 and 2012. 
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Figure 2.4: Median NO2 time series (µg/m3) at EMEP and AIRBASE stations (for urban, suburban and rural 

background sites) passing the completeness criteria. For each type of site, the number of stations in the 

composite is given in the legend. Adapted from (Colette et al., 2015). 

Figure 2.5 shows trends in anthropogenic NMHC (non-methane hydrocarbons), a 

major group of NMVOC species, at 12 EMEP sites in north-central Europe (in the 

UK, France, Germany, and Switzerland). An overview of NMVOC monitoring 

within the EMEP programme is provided in (Tørseth et al., 2012), and the 

selection of stations and treatment of NMHC data in this study is described in 

Chapter A.1.3. Although time series are too short or too interrupted to detect 

trends at many sites, the general picture is that the ambient concentrations of 

NMHCs have decreased since the mid 1990s, qualitatively consistent with the 

reported decrease in emissions. With the stringent data capture criteria used in this 

report, quantitative trends could only be computed at two stations. To increase the 

representativeness of the trend estimate, we computed the trends for a composite 

data set of all stations composed of the network median of annual mean values. 

Over the 2002-2012 period, a decrease of 40% is found, which is in line with the 

31% relative reduction of reported NMVOC emissions for the 2002-2012 period.   

In general, the summed NMHCs presented in Figure 2.5 have a relatively short 

atmospheric lifetime (about a few days in summer), which means that observed 

concentrations should reflect regional pollution sources: the influence of 

hemispheric baseline NMHCs should be minimal. This is in contrast to ozone, 

which, due to its longer atmospheric lifetime, is expected to be influenced by 

hemispheric baseline ozone at all EMEP sites, see discussion in Section 2.2.2. 
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Figure 2.5: Sum of commonly-measured NMHCs at selected EMEP stations in µgC/m3, shown as annual 

averages over time periods with available data. NMHCs included in the total are acetylene (ethyne), benzene, 

i-butane, n-butane, ethylene, hexane, i-pentane, n-pentane, propene, and toluene. For more information 

about the selection of NMHC data, see Section A.1.3. 

Trends in ambient NMVOC concentrations have also been addressed in several 

peer-reviewed publications. (Derwent et al., 2014) presented a detailed analysis of 

NMVOC trends at a large number of kerbside and urban monitoring stations in 

the U.K. (in addition to the two rural sites included in Figure 2.5), where they find 

large declines of NMVOCs. At urban sites, trends in NMVOC concentrations 

should be more easily detectable than at rural sites because of the proximity to 

emission sources and the relatively short atmospheric lifetime of most NMVOCs. 

However, it should be noted that analysis of trends at urban stations requires local 

knowledge of emissions sources in order to avoid misinterpreting a situation 

where an emission source has simply been moved from one place to another (e.g., 

due to a change in traffic patterns) as a decreasing trend. 

There are some exceptions to the pattern of observed declines of NMVOC 

concentrations, in particular for ethane and propane, which are not included in 

Figure 2.5. (Derwent et al., 2014) present evidence for some increases in propane 

and ethane concentrations at U.K. sites. (Tørseth et al., 2012) also report 

increasing trends in ethane and propane at two German sites (DE0002 and 

DE0008) and (Sauvage et al., 2009) report an increasing trend for ethane at the 

French rural site Donon (FR0008). Although the precise reason for this behaviour 

is unclear, it should be noted that ethane has a longer atmospheric lifetime than 

other NMHCs, which may require further mitigation actions at the hemispheric 

scale.  

The Pallas-Sodankylä station in Northern Finland is another case in which robust 

declines of NMVOC were not found. Over the 1994-2013 period, (Hellén et al., 

2015) report that acetylene (which is one of the NMVOCs that is the most closely 

connected to vehicle emissions) is the only NMVOC with a statistically 
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significant decreasing trend, although they did find small, statistically 

insignificant negative slopes for most alkanes and benzene. They conclude that 

the lack of trends at Pallas-Sodankylä is likely related to a significant influence 

from non-European emission sources.  

In addition to anthropogenic NMVOCs, the contribution of biogenic VOC 

(BVOC) to summertime ozone production is extremely important. BVOC 

emissions are controlled by land use, temperature and solar radiation. As BVOCs 

play a role as ozone precursor, the effect of reductions in anthropogenic 

NMVOCs on ozone production can be dampened at times and locations where 

BVOC emissions are high, namely in the summer and in highly vegetated regions 

(Peñuelas and Staudt, 2010). 

Despite the relative scarcity of long-term observations of NMVOC 

concentrations, the available evidence points to a significant decrease in 

NMVOC concentrations in the EMEP region (40% over the 2002-2012 

period). It is very likely that a major driver of the observed decreases was the 

European vehicle emission standards, which led to significant NMVOC emission 

reductions, but other factors related to gas extraction, refineries and handling 

could have contributed to increase some specific NMVOCs such as ethane and 

propane. 

 

2.2.2 Baseline ozone 

In addition to the influence of local emissions and chemistry, European ozone 

concentrations are also impacted by hemispheric-scale baseline ozone, where 

“baseline” ozone refers to concentrations in air masses that are not influenced by 

recently-emitted local anthropogenic emissions (Dentener, F. et al., 2010). For 

diagnosis of trends in baseline ozone, we rely on a handful of remote European 

measurement sites where long-term observations are available (Cooper et al., 

2014) (Figure 2.6), and contribute to both EMEP and GAW observation networks. 

These observations show a trend of increasing baseline ozone since the start of the 

records (in the 1950s and 1980s) until at least the mid-1990s. This is qualitatively 

consistent with upward ozone trends seen at other remote sites in the Northern 

Hemisphere (in North America, Japan and the Pacific) and with global increases 

in emissions of ozone precursors NOx and VOC until around 2000.  

Trends in hemispheric baseline ozone are influenced by several factors, including 

variability in transport of stratospheric ozone to the troposphere, natural 

variability in biogenic emissions, and anthropogenic emissions of ozone 

precursors. When interpreting trends in baseline ozone, it should also be kept in 

mind that emissions of ozone precursors have an influence on ozone 

concentrations far from the source regions – for instance North American 

emissions of NOx and VOC have an influence on European ozone concentrations 

(Dentener, F. et al., 2010). But the hemispheric baseline ozone is also influenced 

by precursor emissions from Europe so that Europe contributes to its own baseline 

ozone levels. 
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Figure 2.6: Surface ozone time series at six rural remote sites in Europe. Trend lines are fit through the 

yearly average ozone values using the linear least-square regression method through the full time series at 

each location, except for Jungfraujoch, Zugspitze, Arosa, and Hohenpeissenberg where the linear trends end 

in 2000. This figure is modified from the original that appeared in IPCC (2013) and taken from (Cooper et 

al., 2014) . 

Another important ozone precursor at the hemispheric scale is methane, which is 

long-lived and therefore distributed more uniformly that ozone across the globe. 

Global anthropogenic CH4 emissions, which have generally increased since 1950, 

were stable in the 1990s, but increased again in the 2000s, with current growth 

mainly taking place outside of Europe (Dentener, F. et al., 2010). Although global 

CH4 concentrations are complicated by strong inter-annual variability of natural 

sources and sinks, they show an underlying long-term trend consistent with the 

trend in anthropogenic emissions. Even if it is clear that the trend in hemispheric 

background ozone is not fully explained by trends in global CH4, modelling 

studies suggest that CH4 will have a large influence on hemispheric ozone 

concentrations under future prospective scenarios. 

 

2.2.3 Peak ozone concentrations 

European-wide emissions of ozone precursors NOx and VOCs have substantially 

decreased since 1990, and this led to a decrease in ambient levels of NO2 and 

VOC over the same time period (Figure 2.4 and Figure 2.5). Since peak ozone 

concentrations mainly result from local, "fresh" photochemistry, we are confident 

that the decrease in peak ozone and related metrics (e.g. SOMO35 and number of 

days above thresholds) at the most polluted European sites is due to the decrease 

in European precursor emissions.  

Looking further into the trends in peak ozone (represented by the 4th highest 

MDA8), Figure 2.7 shows the scatter plot between the rates of change over the 

1990-2012 period vs. the magnitude of ozone peaks at the beginning of the period 

(estimated with a linear fit of the time series to minimize the impact of interannual 

variability, see the Method section in Annex A). The largest negative trends 

were observed at the stations with the highest levels of peak ozone in the 
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beginning of the period. Those sites are typically located in the areas with high 

photochemical ozone production, where the impacts of precursor emission 

reductions are seen the most clearly. Sites where peak ozone levels were more 

moderate in the 1990s tend to show smaller, insignificant trends.  

 

 

Figure 2.7: Scatterplot of annual relative trend (%/year) in 4th highest MDA8 for the 1990-2012 time period, 

versus the values (in ppb) at the beginning of the time period for each EMEP station meeting the data capture 

criteria. Sites where the trend is statistically significant are plotted in red. 

 

2.2.4 Seasonal cycles 

Further insight into the phenomenology of European surface ozone can be 

provided by the evolution of the seasonal variability observed at EMEP sites. In 

Figure 2.8, we display the average monthly cycles in 5-year increments (3-year 

increment for 2010-2012) in order to dampen the effect of interannual variability. 

Monthly averages are given along with the monthly maxima in order to 

differentiate the evolution of baseline and peak values. Two features illustrated by 

these plots are especially pertinent. First, summertime ozone peaks have 

decreased substantially for the months of May to August. This decrease is 

largest in July and August leading to the shift of the seasonal maximum of 

daily maxima toward the earlier month of the year. Secondly, an increase in 

winter- and springtime mean ozone occurred, which is generally attributed to 

changes in baseline ozone (both intercontinental transport and stratosphere-

troposphere exchange) and also local effects such as the longer lifetime of ozone 

because of reduced availability of NO (reduced titration). 



 

EMEP/CCC-Report 1/2016 

22 

 

 

Figure 2.8: Monthly ozone cycles at EMEP sites with valid data over 1990-2012 for the monthly means (left) 

and monthly daily maxima (right) by groups of 5 years since 1990 (except for 2010-2012 where the average 

is over 3 years). 

 

2.3 Modelled ozone trends 

Diagnosing and understanding trends in ozone is complex due to its non-linear 

dependence on emissions, its regional nature, and its large interannual variability. 

Analysis of EMEP (and AIRBASE) long-term measurements shows that levels of 

European regional-scale ozone have been decreasing since at least the early 

2000s. Between 2002 and 2012, observations demonstrate that the health exposure 

metric SOMO35 has decreased by about 30%, and the vegetation exposure metric 

AOT40 has decreased by 37%. Beyond baseline changes, part of these decreases 

is related to the substantial reduction in European emissions of ozone precursors 

NOx and VOCs since the 1990s. European emission regulations entered into force 

in the 1990s, and strong decreases in NOx and VOCs emissions and 

concentrations have been observed since then.   

Quantitative attribution of the respective role of baseline and local emission 

changes can be performed by means of modelling experiments such as illustrated 

in Figure 2.9 that presents the EURODELTA 6-model ensemble mean for annual 

SOMO35. The chemical transport models involved in the ensemble are EMEP-

MSCW, Chimere, CMAQ, Lotos-Euros, MINNI, and WRF-Chem (See the 

Methods details in Section A.4). The model runs were performed using 1990 and 

2010 emissions, but the same 2010 meteorology was used to eliminate the effect 

of meteorological conditions. The relative change in SOMO35 attributed to the 

1990 vs. 2010 changes in precursors’ emission is of the order of 30%, which 

would explain most of the observed trend over the period (Section 2.1). However, 

further analysis is required to validate the model results against observations and 

also quantify the role of meteorological and emission variability as well as 

boundary conditions. 
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Figure 2.9: Modelled SOMO35 (ppb day) in the EURODELTA 6-model ensemble using 1990 (left) or 2010 

(right) emissions and 2010 meteorological year and boundary conditions. 
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3 Sulfur and nitrogen compounds and Particulate Matter  

Main authors: Christine F. Braban, Wenche Aas, Augustin Colette, Lindsay 

Banin, Martin Ferm, Alberto González Ortiz, Marco Pandolfi, Jean-Philippe 

Putaud, Gerald Spindler 

Contributors:  Mario Adani, Paul Almodovar, Eva Berton, Bertrand Bessagnet, 

Gino Briganti, Andrea Cappelletti, Kees Cuvelier, Massimo D'Isidoro, Hilde 

Fagerli, Clara Funk, Marta Garcia Vivanco, Richard Haeuber, Christoph Hueglin, 

Scott Jenkins, Jennifer Kerr, Jason Lynch, Astrid Manders, Kathleen Mar, 

Mihaela Mircea, Maria Teresa Pay, Dominique Pritula, Xavier Querol, Valentin 

Raffort, Ilze Reiss, Yelva Roustan, Kimber Scavo, Mark Theobald, Svetlana 

Tsyro, Ron I. Smith, Yuk Sim Tang, Addo van Pul, Sonja Vidic, Peter Wind.  

 

3.1 Overview of sulfur and nitrogen compounds and particulate matter 

trends 

This chapter is organized by key inorganic compounds affecting ecosystems 

through acidification and eutrophication, as well as health. The past trends of the 

oxidized forms of sulfur and nitrogen (SOx and NOx) are reviewed, as well as the 

reduced forms of nitrogen (NHx).  For a recent review of the main science and 

policy issues regarding nitrogen cycle, refer to (Fowler et al., 2015). Furthermore, 

we also consider the trends in measured total PM2.5 (finer than 2.5µm) and PM10 

(finer than 10µm), the pollutants detrimental to human health, to which inorganic 

aerosol particulate matter (hereafter PM) fraction contributes with a substantial 

part.  

In common to other sections of this report, the methodology used for the statistical 

analysis is presented in Annex A. A common dataset was selected by the 

Chemical Co-ordinating Centre of EMEP (follow-up of earlier analysis published 

in (Tørseth et al., 2012)), and supplemented by additional analyses provided by 

State Parties, the European Environment Agency through its European Topic 

Centre on Air Pollution and Climate Change Mitigation, as well as modelling 

results of the EURODELTA ensemble of regional chemistry-transport models.  

Sulfur and nitrogen compounds in the gas, particulate and precipitations phases, 

as well as the total particulate matter mass concentration, have overall declined 

over the EMEP region during the 1990-2012 period, with most of the 

improvement being achieved in the 1990s. The trends for each of the pollutant 

categories are summarised in Figure 3.1.  

The decrease of the deposition of sulfur and nitrogen compounds has led to a 

significant decrease of acidification (De Wit et al., 2015). For oxidised sulfur 

compounds significant negative trends were observed at more than 70% of 

the sites in the 1990s, and the decline was continuing at more than 50% of the 

sites over the 2002-2012 period. For oxidised nitrogen species, the negative 

trend is slightly lower, but still significant in the 1990s at the majority of sites for 

atmospheric concentrations (both gaseous and particulate species). However, for 

oxidised nitrogen in precipitation, the negative trend was only significant at 30 to 

35 % of the sites. 
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Figure 3.1: Percentage of EMEP monitoring sites where significant positive trends (dark red), insignificant 

positive trends (light red), insignificant negative trends (light blue) and significant negative trends (dark 

blue) were observed in the 1990s (top) and in the 2000s (bottom) for various eutrophying and acidifying 

compounds: gaseous sulfur dioxide (SO2), particulate sulfate (SO4
2-), sulfate in precipitations (nssSO4

2- 

(precip), i.e. sea-salt corrected), gaseous nitrogen dioxide (NO2), particulate nitrate and gaseous nitric acid 

(NO3
-+HNO3), nitrate in precipitations (NO3

- (precip)), gaseous ammonia and particulate ammonium 

(NH4
++NH3), and ammonium in precipitation (NH4

+ (precip)). The same diagnostics are also given for PM10 

and PM2.5 mass over the 2002-2012 time period. The number of sites for each compound is given in brackets. 
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For reduced nitrogen in air, there were significant negative trend between 

1990 and 2001 at the majority of sites though in the latter period such 

significant downward trends are only found at 20% of the sites. Similarly, the 

reduced nitrogen load in precipitation is decreasing at a lower pace in the 2000s 

compared to the 1990s. The magnitude of exceedances of critical load of nitrogen 

continues to be high and occurring over a wide European area making the slow 

rate of the reduction of emissions (and therefore of depositions) of nitrogen 

compounds of great concern (De Wit et al., 2015). Note that the 

representativeness of the conclusions is hampered by the limited spatial coverage 

of the available dataset. Measurement protocols allowing to separate out the gas 

phase and particulate phase oxidised and reduced nitrogen would be beneficial to 

document this feature. 

The trend in particulate matter mass (both PM10 and PM2.5) can only be assessed 

over the 2002-2012 time period, when the network became sufficiently dense. 

Overall negative trends are found; they are significant at 40% and 60% of 

the sites for PM10 and PM2.5, respectively. 

 

3.2 Oxidized Sulfur  

SO2 emission reductions started in the 1980s-1990s, therefore changes in 

concentrations will have occurred earlier than the 1990 start of this assessment. 

However, concentrations have continued to decrease over the 1990-2012 

monitoring period. The timing of concentrations decreases varies between 

countries according to national implementation of emission reduction strategies, 

but on average over the EMEP network (Figure 3.2), the decrease was larger in 

the early 1990s and levelled off since then. The quantitative trend assessment is 

based on Sen-Theil slopes, using an estimate for the beginning of the period to 

derive a relative change, and their significance is assessed with a Mann-Kendall 

test and a p-value of 0.05 (see the details in the Methods Section in Annex A). All 

31 sites passing completion criteria for the 1990-2012 time period show a 

significantly negative trend in SO2 air concentrations at an median rate (over the 

network) of -0.066 µgS m-³ yr-1 (confidence interval for 95% of the sites of [-0.13, 

-0.055] µgS m-³ yr-1), that is a median change for SO2 of -92% ([-97,-86]) since 

1990 (Table 3.1). However, when the data are considered for the two time periods 

1990-2001 and 2002-2012, the annual slopes are -0.13 and -0.027 µg S m-³ yr-1 

respectively, reflecting an 80% decrease in the first followed by a much slower 

48% decrease in the second period. This exponential shape of the decrease has 

been pointed out previously in both national and international assessments 

(Fowler et al., 2005;Fowler et al., 2007). 

As it is shown in Figure 3.2, the relative change of particulate sulfate (SO4
2-) 

air concentration and sulfate in precipitation is important, yet smaller than 

that of its main precursor gas SO2 (-65% and -73%, respectively vs. -92% for 

SO2 in 2012 compared to 1990). While the consistency is acceptable over the 

2002-2012 period (relative change of -39%, -48% and -48% for particulate 

sulfate, sulfate in precipitation and SO2), it is over the 1990-2001 time period that 

the evolution differs substantially: -52%, -49%, and -80% respectively. This 
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feature has been analysed by means of numerical modelling (Banzhaf et al., 

2015). This study shows that the reduced acidity of clouds initiated by SO2 

emission reduction favours sulfate formation, and therefore acts as a positive 

feedback to further enhance this SO2 sink. This mechanism contributes to the non-

linear evolution of SO2 concentration, and to the incremental efficiency of 

particulate sulfate formation resulting from a given change in SO2 emissions.  

 

Figure 3.2: Median time series across the EMEP network and 25th and 75th quantiles over 1990-2012 for 

annual mean concentrations of gaseous sulfur dioxide (SO2), particulate sulfate (SO4
2-), and sulfate 

concentration in precipitation excluding sea-salt (nssSO4
2-(precip)). The number of stations contributing to 

the median differ but, over time, a consistent set passing completion criteria is used for each compound. 

Table 3.1: Trend statistics for oxidized sulfur monitored in the EMEP network: gaseous sulfur dioxide (SO2), 

particulate sulfate (SO4
2-), and sulfate concentration in precipitation excluding sea-salt (nss SO4

2-). For three 

periods (1990-2001, 2002-2012, and 1990-2012), the following is shown: the number of stations, the median 

and 95% confidence interval over the network for the annual trend (in µgS m-³ yr-1 for air concentration and 

mgS L-1 yr-1 for precipitation chemistry) and the relative change over the relevant time period (in %). 

Compound Time 

period 

Number 

of 

stations 

Median annual trend in, 

[unit/yr] and 95% CI 

Median relative 

change over the 

period [%] and 

95% CI 

SO2 1990_2001 42 -0.13[-0.27,-0.12] -80[-82,-72] 

 2002_2012 52 -0.027[-0.054,-0.028] -48[-53,-38] 

 1990_2012 31 -0.066[-0.13,-0.055] -92[-97,-86] 

SO4
2- 1990_2001 36 -0.050[-0.072,-0.044] -52[-56,-46] 

 2002_2012 37 -0.024[-0.035,-0.019] -39[-42,-27] 

 1990_2012 21 -0.029[-0.043,-0.023] -65[-69,-56] 

nssSO4
2- 1990_2001 52 -0.029[-0.044,-0.027] -49[-50,-37] 

 2002_2012 68 -0.019[-0.035,-0.015] -48[-49,-39] 

 1990_2012 38 -0.026[-0.029,-0.019] -73[-73,-65] 
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The maps provided in Figure 3.3 show that the spatial variability of the changes in 

oxidized sulfur compounds over the 1990-2012 time period is not very large, 

except for slightly larger decreases over central Europe compared to Nordic 

countries. 

  

 

 

Figure 3.3: Maps of annual trends at EMEP sites over the 1990-2012 time period for gaseous sulfur dioxide 

(top left), particulate sulfate (top right) (in µgS m-3 yr-1) and sea-salt corrected sulfate concentration in 

precipitation (in mgS L-1 yr-1) (bottom right). Stations where the trend is significant at the 0.05 level are 

displayed with a circle, elsewhere a diamond is used. 

 

3.3 Oxidized Nitrogen  

The measurements of NO2 show that for the period 1990-2001 the fraction of 

sites where significant negative trends were observed was high (58%) but it 

slowed down and between 2002 and 2012 only 24% of the sites had a 

significant negative trend. A comparison of NO2 and NO trends was not 

attempted here, but it should be noted that in countries where the contribution to 

NOx emissions due to diesel motorisation increased, the downward NO2 trend is 

less evident at traffic sites compared to EMEP sites (Querol et al., 2014). Over the 

first part of the period (1990s), the median change in NO2 concentration reached -

28% (95% confidence interval: [-34,-19]) while the change in the 2000s was 

limited to -17% ([-20,18]) still the average evolution over the full 1990-2012 is 

substantial with -41% ([-47,-16]). 

Due to the impossibility in separating gas and particle phase for the inorganic 

nitrogen compounds using the EMEP recommended filter pack method, the sum 

of gas phase nitric acid (HNO3) and particulate nitrate (NO3
-(p)) has been assessed 

for trends. Some sites report the individual compound, as also recommended in 

the EMEP programme, but very few for the whole period. Larger changes in the 

1990s (24% median reduction) are found than in the 2000s (7.1% median 

reduction), to the extent that significantly negative trends for nitric acid and 
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particulate nitrate are only found at 9% of the sites over the 2002-2012 

period compared to 47% for the 1990-2001 period. Part of this difference can 

be directly related to the larger changes observed for NO2 in the 1990s. But the 

reduction of sulfur emissions also contributed to decrease particulate ammonium 

sulfate concentrations, leaving more ammonia available to form the semi-volatile 

particulate ammonium nitrate, which would contribute to slowing down the 

negative trends in particulate nitrate observed here. 

 

 

Figure 3.4: Median time series across the EMEP network and 25th and 75th quantiles over 1990-2012 for 

annual mean concentrations of gaseous nitrogen dioxide (NO2), particulate nitrate cumulated with gaseous 

nitric acid (NO3
-+HNO3), and nitrate concentration in precipitation (NO3

- (precip)). The number of stations 

contributing to the median differs but, over time, a consistent set passing completion criteria is used for each 

compound. 

Table 3.2: Trend statistics for oxidized nitrogen monitored in the EMEP network: gaseous nitrogen dioxide 

(NO2), particulate nitrate cumulated with gaseous nitric acid (NO3
-+HNO3), and nitrate concentration in 

precipitation (NO3
-precip). For three time periods (1990-2001, 2002-2012, and 1990-2012), the following is 

shown: the number of stations, the median and 95% confidence interval over the network for the annual trend 

(in µgN m-3 yr-1 for air concentration and mgN L-1 yr-1 for precipitation chemistry) and the relative change 

over the relevant time period (in %). 

Compound Time 

period 

Number 

of 

stations 

Median annual trend in, 

[unit/yr] and 95% CI 

Median relative 

change over the 

period [%] and 

95% CI 

NO2 1990_2001 31 -0.048[-0.11,-0.043] -28[-34,-19] 

 2002_2012 54 -0.029[-0.051,-0.012] -17[-20,18] 

 1990_2012 25 -0.041[-0.077,-0.031] -41[-47,-16] 

NO3
-+HNO3 1990_2001 17 -0.0071[-0.024,-0.0053] -24[-39,-9.8] 

 2002_2012 32 -0.0028[-0.0071,0.0042] -7.1[-12,18] 

 1990_2012 13 -0.0044[-0.012,-0.0027] -22[-34,-4.2] 

NO3
-(precip) 1990_2001 55 -0.0050[-0.0096,-0.0025] -19[-19,-2.6] 

 2002_2012 71 -0.0083[-0.011,-0.0058] -23[-26,-14] 

 1990_2012 41 -0.0075[-0.0083,-0.0053] -33[-35,-24] 
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The spatial variability of oxidised nitrogen changes is not very important (Figure 

3.5), with slightly larger trends for NO2 over Western Europe, while the nitrate 

load in precipitation decreased substantially more over Central Europe. For all 

compounds, it is over the Nordic countries that the trend is less pronounced. 

 

 

 

 

  

 

Figure 3.5: Maps of annual trends at EMEP sites over the 1990-2012 time period for gaseous nitrogen 

dioxide (top left), particulate nitrate cumulated with gaseous nitric acid (top right) (in µgN m-3 yr-1) and 

nitrate concentration in precipitation (in mgN L-1 yr-1) (bottom right). Stations where the trend is significant 

at the 0.05 level are displayed with a circle, elsewhere a diamond is used. 

 

3.4 Reduced Nitrogen  

As with oxidized N, the reduced N atmospheric components (ammonia gas: NH3, 

and particulate phase: NH4
+) are summed together for the EMEP reporting. The 

average trend is shown in Figure 3.6 and is not decreasing as much as the sulfur 

and oxidized nitrogen compounds. The change of reduced nitrogen in the air 

relative to the beginning of the time period reaches -40 % ([-47,-19]) in the 

1990s, with the majority of sites exhibiting a significantly negative trend. In 

contrast, such decreases are much more limited in the 2000s, the median of 

trends across the EMEP network is close to zero, and increases are found at 

several sites as shown by the positive upper bound of the confidence interval.  



31 

EMEP/CCC-Report 1/2016 

 

Figure 3.6: Median time series across the EMEP network and 25th and 75th quantiles over 1990-2012 for 

annual mean concentrations of particulate ammonium cumulated with gaseous ammonia (NH3+NH4
+), and 

ammonium concentration in precipitation (NH4
+(precip)). The number of stations contributing to the median 

differs but, over time, a consistent set passing completion criteria is used for each compound. 

Reduced nitrogen concentrations in precipitation follow a similar trend, with a 

relative change of -  30% ([-34,-11]) and -16% ([-17,16]) over the 1990-2001 and 

2002-2012 period, respectively. 

 

Table 3.3: Trend statistics for reduced nitrogen monitored in the EMEP network: particulate ammonium 

cumulated with gaseous ammonia (NH3+NH4
+), and ammonium concentration in precipitation 

(NH4
+(precip)). For three time periods (1990-2001, 2002-2012, and 1990-2012), the following is shown: the 

number of stations, the median and 95% confidence interval over the network for the annual trend (in 

µgN/m3/yr for air concentration and mgN/L/yr for precipitation chemistry) and the relative change over the 

relevant time period (in %). 

Compound Time 

period 

Number 

of 

stations 

Median annual trend in, 

[unit/yr] and 95% CI 

Median relative 

change over the 

period [%] and 95% 

CI 

NH3+NH4
+ 1990_2001 19 -0.029[-0.11,-0.03] -40[-47,-19] 

 
2002_2012 33 -0.010[-0.026,0.014] -14[-15,23] 

 
1990_2012 16 -0.024[-0.054,-0.014] -50[-59,-14] 

NH4
+(precip) 1990_2001 54 -0.012[-0.024,-0.011] -30[-34,-11] 

 
2002_2012 72 -0.0066[-0.0086,-0.0026] -16[-17,16] 

 
1990_2012 39 -0.0069[-0.012,-0.0055] -29[-36,-15] 

 

The annual trend for the whole period (1990-2012) at each EMEP station are 

displayed on the maps of Figure 3.7. They show that the largest downward trends 

of reduced nitrogen were observed over Central Europe, with slower evolution 

over the United Kingdom and Nordic countries. 
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Figure 3.7: Maps of annual trends at EMEP sites over the 1990-2012 time period for particulate ammonium 

cumulated with gaseous ammonia (left), and ammonium concentration in precipitation (in mgN L-1 yr-1) 

(right). Stations where the trend is significant at the 0.05 level are displayed with a circle, elsewhere a 

diamond is used. 

The dominant source of NH3 emissions is agriculture, and it should be noted that 

unlike NOx and SOx emissions, only a small decrease in NH3 emissions was 

recorded in Europe after the beginning of the 1990s, with only few countries 

decreasing their emissions significantly in the past decade (see the emission trend 

analysis in Annex C. As noted above, the decrease of sulfur emissions has caused 

the PM composition to shift from stable ammonium sulfate towards the semi-

volatile ammonium nitrate. Thus, as SO2 emissions decrease the correspondingly 

lower levels of SO4
2- (oxidised from SO2) do not balance NH4

+, shifting the 

chemical equilibrium to favouring formation of NH4NO3 (Martin, 2000), leading 

to change longer atmospheric lifetime of gas phase NH3. Finally, potentially 

warmer conditions favouring volatilisation of ammonium nitrate also lead to 

increased residence time of NH3 and HNO3. It is noted however that the inter-

annual variability of meteorology, land use and emissions, and the relatively short 

measurement time series, do not facilitate simple causal connections to be made. 

The currently used EMEP recommended measurement method (filter pack 

measurements) does not allow the separation of NH3 and NH4
+. From these 

considerations, any negative trends in particulate NH4
+ are likely to be masked by 

the changes in NH3 concentrations. However, the separate NH3 and NH4
+ are 

measured for some sites and reported allowing some comments to be made. Two 

examples are provided in Figure 3.8: (i) at the Swedish sites of Rörvik/Råö where 

the filter pack measurement indicate insignificant trends of NH3 concurrent with 

decreases of NH4
+ comparable to those of SO4

2- for the whole period, and (ii) at 

sites over the UK with no trend in NH3 concentrations in the average of 75 sites, 

and decreases of NH4
+ in PM2.5 over the period 1999-2012. 
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 12 sites up to 2004; 30 sites 
thereafter

 

Figure 3.8: Left: Variation of HNO3, SO2, NH3 and particulate nitrate, sulfate and ammonium at closely 

located Swedish sites Rörvik (up to 2001)/Råö (2001-present); Right: UK National Ammonia Monitoring 

Network6 (NAMN) annual mean NH3 for 75 sites (1998-2012; sites with short data runs excluded) and 

meteorological data; Lower panel: UK NAMN NH4
+ monthly mean in PM2.5 (2000-2014). 

 

3.5 Wet deposition trends in North America 

Figure 3.9 shows the United States–Canada spatial patterns of observed wet 

sulfate (sea salt–corrected) deposition for 1990, 2000 and 2012. Deposition 

contours are not shown in western and northern Canada, because Canadian 

experts judged that the locations of the contour lines were unacceptably uncertain 

due to the paucity of measurement sites in all of the western provinces and 

northern territories. To compensate for the lack of contours, wet deposition values 

in western Canada are shown as coloured circles at the locations of the federal/ 

provincial/ territorial measurement sites. 

Wet sulfate deposition is consistently highest in eastern North America around the 

lower Great Lakes, with a gradient following a southwest to northeast axis 

running from the confluence of the Mississippi and Ohio rivers through the lower 

Great Lakes. The patterns for 1990, 2000 and 2012 illustrate that wet sulfate 

deposition in both the eastern United States and eastern Canada have decreased in 

response to decreasing SO2 emissions. The wet sulfate deposition reductions are 

considered to be directly related to decreases in SO2 emissions in both the United 

States and Canada. 

The patterns of wet nitrate deposition show a similar southwest-to-northeast axis, 

but the area of highest nitrate deposition is slightly north of the region with the 

highest sulfate deposition. Major reductions in wet nitrate deposition occurred in 

the period between 2000 and 2012, when large NOx emission reductions occurred 

in the United States and, to a lesser degree, Canada.  

                                                 

6 http://uk-air.defra.gov.uk/networks/network-info?view=nh3 

http://uk-air.defra.gov.uk/networks/network-info?view=nh3
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Figure 3.9: 1990-2012 Annual wet sulphate and wet nitrate deposition in North America (Source: National 

Atmospheric Chemistry Database (NAtChem) Database (www.ec.gc.ca/natchem) and National Atmospheric 

Deposition Program (nadp.isws.illinois.edu), 2016) 
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3.6 Particulate matter 

3.6.1 PM10 and PM2.5 mass 

Measurements from 29 and 18 sites were used for PM10 and PM2.5 respectively for 

the assessment. In both cases, only data for the 2002-2012 time period could be 

used because of the low coverage before then. Significant negative trends were 

found at 38% and 55% of the sites, with a relative change over the decade of 

-29% ([-29,-19]) and - 31% ([-35,-25]) for PM10 and PM2.5, respectively.  

 

Figure 3.10: Median time series across the EMEP network and 25th and 75th quantiles over 2002-2012 for 

annual mean concentrations of PM10 and PM2.5. The number of stations contributing to the median differs 

but, over time, a consistent set passing completion criteria is used for each compound. 

 

Table 3.4: Trend statistics for particulate matter mass (PM10 and PM2.5). For the time period 2002-2012 the 

following is shown: the number of stations, the median and 95% confidence interval over the network for the 

annual trend (in µg/m3/yr) and the relative change over the relevant time period (in %). 

Compound Time period Number 

of 

stations 

Median annual trend in, 

[unit/yr] and 95% CI 

Median relative 

change over the 

period [%] and 

95% CI 

PM10 2002-2012 29 -0.35[-0.54,-0.32] -29[-29,-19] 

PM2.5 2002-2012 18 -0.29[-0.5,-0.23] -31[-35,-25] 

 

 

As far as PM10 is concerned, the analysis at EMEP sites can be supplemented by 

the denser European Air Quality data base (AIRBASE), collected and maintained 

by EEA. This database also covers urban areas and, apart from background 

stations, it also consists of sites close to traffic and industrial sources. The 

distribution of annual mean trends by location and site typology is given in Figure 

3.11. It shows that larger downward trends were observed close to the sources 

(traffic and industrial sites) compared with urban, suburban and rural background 

sites. 
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Figure 3.11: Probability density function of PM10 trends (µg m-3yr-1) for the 2002-2012 period by location 

and site typology. The number in brackets shows the number of sites in the distribution, (Colette et al., 2015). 

 

By season, the decrease is larger in summer for all background stations (urban, 

suburban and rural) compared with winter (see Figure 3.12, upper panel as an 

example of rural background). This feature could be induced by (i) changes in 

meteorological conditions by season or (ii) different trends for the various sources 

contributing to the PM mix (for instance: a compensation of the decrease in fossil 

fuel combustion related emissions by an increase of biomass use for residential 

heating in the recent past). This second argument is supported by the fact that 

such differences in the trend statistics are even found at traffic sites (also partly 

influenced by residential emissions) but not at industrial sites (see Figure 3.12, 

lower panel). 
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Figure 3.12: Distribution of PM10 trends over the 2002-2012 period for the four seasons and the annual 

trends in rural background stations (upper panel) and industrial sites (lower panel). The number in brackets 

shows the number of sites in the distributions. 

The particulate matter trends over the European part of the EMEP region can be 

put in perspective with the PM2.5 trends over North American. In the United States 

and Canada, ambient concentrations of PM2.5 have diminished significantly. More 

specifically, between 2000 and 2012 the national U.S. average annual and 24-hour 

concentrations of PM2.5 decreased by 33% and 37%, respectively. In Canada, the 

national averages of the annual and the 24-hour concentrations of PM2.5 decreased 

by 4% and 6.5%, respectively over this same period. However, between 2003 and 

2012, the percentage of Canadians living in communities where ambient 

concentrations of PM2.5 exceeded the 2015 Canadian Ambient Air Quality 

Standards (CAAQS7)  for PM2.5 dropped from approximately 40% to 11%. In 

2012, ambient concentrations reported at most monitoring sites in the United 

                                                 

7 The Canadian Ambient Air Quality Standards (CAAQS) for PM2.5 include annual levels of 10 µg/m3 in 2015 
and 8.8 µg/m3 in 2020; and 24-hour levels of 28 µg/m3 in 2015 and 27 µg/m3 in 2020. Additional 
information on the CAAQS can be found at http://www.ec.gc.ca/default.asp?lang=En&n=56D4043B-
1&news=A4B2C28A-2DFB-4BF4-8777-ADF29B4360BD 
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States along the Canadian border met the U.S. annual and 24-hour National 

Ambient Air Quality Standards for PM2.5 set in 20128. In Canada, data from the 

filter-based monitoring network indicate that average annual concentrations 

(2008–2010) met the 2015 CAAQS. 

 

3.6.2 Particulate matter composition 

Analysis of trends in PM composition can allow further understanding of the main 

driving factors and contributing sources. Whereas such analysis could be 

performed at more individual EMEP sites, only two case studies are presented 

here for illustration purposes. 

The first case study has been performed for Melpitz, Germany, where 

compositional analysis provides further useful information as to what is driving 

the total PM trends (Figure 3.13). The measurements in Melpitz are representative 

for a large area that is typical for East and North-East Germany where the 

influence of week-day activities (traffic, production, agriculture) can be felt. PM10 

mass concentration decreased in 1993-1999 for all seasons (with a higher relative 

decrease in winter) and remained approximately constant for the last 15 years, at 

about 22 µg m-³ (± 13%). Particulate sulfate concentration also decreased 

noticeably until the end of century, but much more moderately afterwards. 

Particulate nitrate remained more constant.  

The origin of air masses can be tracked using 96-hour back trajectories and 

clustered by season (Spindler et al., 2012;Spindler et al., 2013). The highest 

elemental carbon (EC) concentrations were found for winter-easterly air masses. 

The trends for the mean concentrations of total carbon (TC) in PM10, sum of 

elemental and organic carbon (EC+OC), in summers (May-October) and winters 

(November-April) differs for air-mass inflows from the West or the East. The 

mean concentration shows a negative trend for the three cases “Summer East”, 

“Winter West”, “Summer West” and remains more constant for the air mass 

inflow “Winter East”. This is attributed to the long-range transport of emissions 

from combustion processes, especially individual coal fired ovens.   

 

                                                 

8 The health-based U.S. National Ambient Air Quality Standards (NAAQS) for PM2.5 are an annual standard 
with a level of 12 µg/m3 and a 24-hour with a level of 35 µg/m3. Additional information on these standards 
can be found at https://www3.epa.gov/ttn/naaqs/standards/pm/s_pm_history.html. 
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Figure 3.13: Yearly means of particulate composition at Melpitz, Germany, within the years also the 

numbers of days for the yearly mean are given in the abscissa 

The second case study regards Montseny, Spain, located approximately 35km 

away from the Barcelona Metropolitan Area and representative of the typical 

regional background conditions in the Western Mediterranean Basin. To explore 

the effectiveness of the emission abatement strategies, the trend analysis of source 

contributions to ambient PM concentrations can be a useful tool. Source 

contributions are often obtained from receptor models such as the Positive Matrix 

Factorization (PMF; e.g. (Paatero and Tapper, 1994)) if chemically speciated 

particulate data are available. The Montseny station have provided such 

chemically speciated data for PM2.5 since 2002.  

 

Following the procedure described by (Querol et al., 2009), up to 60 different 

chemical species were determined from 24h quartz fiber filter analysis at this 

station. The annual data coverage from filters was around 30%. PMF analysis 

assigned 8 sources contributing to the PM2.5 mass at regional background level in 

the Western Mediterranean Basin during 2002 – 2012. Secondary aerosol sources 

such as ammonium sulfate ((NH4)2SO4) and ammonium nitrate (NH4NO3) 

contributed on average 3.7g/m3 (30%) and 1.2 g/m3 (10%), respectively, for 

the whole study period. Particulate organic matter source peaked in summer 

indicating mainly a biogenic origin but also including other secondary organics 

and contributed to 2.9 g/m3 (23%) of total PM2.5. Smaller components at this 

station include: primary emissions from heavy oil combustion sources (traced 

mainly by V, Ni and SO4
2-), which contributed 1.5 g/m3 (12%) from industries 

and shipping; industrial source (traced mainly by Pb, Cd, As, and Cr), which 

contributed 0.8 g/m3 (7%); aged marine source (traced by Na and Cl mainly but 

also enriched in nitrates) contributing 0.3 g/m3 (2 %),  mineral source (traced by 

typical crustal elements such as Al, Ca, Ti, Rb, Sr of both natural and 

anthropogenic origin (i.e. cement and concrete production)) contributing 1.0 

g/m3 (8%), and other combustion-related PM (traced by EC and K mainly) 

including road traffic and biomass burning and contributing 0.9 g/m3 (7%). 

The evolution of PM2.5 composition and sources at Montseny is diagnosed using 

the exponential decay model used in Chapter 4 and described in the Methods 

section of Annex B to compute the total reduction (TR; %) and average reduction 

per year (%) during the period 2002-2012 shown in Figure 3.14. The largest 
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statistically significant decline (68%) over the period is found for the industrial 

source that explained around 70%, 60% and 50% of the measured concentrations 

of Pb, Cd and As, respectively (which showed TR of about 65%, 75% and 60%, 

respectively, significant at the 0.05, 0.01 and 0.001 confidence level). NH4NO3 

and (NH4)2SO4 sources also exhibit statistically significant sharp declines. The 

(NH4)2SO4 source explained around 65% of the measured concentrations of SO4
2-, 

which showed a TR of 45% significant at the 0.05 confidence level. The 

(NH4)2SO4 source contribution showed TR and average reduction per year of 51% 

and 7%, respectively. The NH4NO3 source explained around 90% of the measured 

concentrations of NO3
- which showed TR of 50% significant at 0.05 confidence 

level. NH4NO3 source contribution showed TR and average reduction per year of 

53% and 7%, respectively. The combustion source was only ranking fourth in the 

total magnitude of decline (not statistically significant) over the 2002-2012 

period. The decreasing trends (not statistically significant) of fine mineral and 

organics source contributions were likely driven by the anthropogenic 

contributions to these sources. The reduction in the aged marine source was not 

statistically significant and likely due to the enrichment in nitrates. 
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Figure 3.14: Total reduction and average reduction per year (in %) of PM mass from the 8 sources, detected 

from PMF analysis, explaining the gravimetric PM2.5 mass measured in the period 2002 – 2012 at Montseny 

station (Spain). Green symbols highlight the statistically significance of the trends following the Mann-

Kendall test: *** (p-value < 0.001), ** (p-value < 0.01), * (p-value < 0.05). No star means no statistically 
significant trend at p<0.05 confidence level over the considered period. 

 

3.7 Modelled particulate matter trends 

The observed trends in sulfur and nitrogen compounds can be compared with the 

modelled change between 1990 and 2010. Figure 3.15 presents the results of the 

EURODELTA ensemble of six regional chemistry-transport models (EMEP-

MSCW, Chimere, CMAQ, Lotos-Euros, MINNI, and WRF-Chem) using 

respectively 1990 and 2010 emissions, but the same meteorological year and 

boundary conditions (2010), see details in Annex A.  

The modelled change of about 60% in particulate sulfate is well in line with the 

observed average reduction of 65%. For particulate nitrate, the modelled change is 

more variable in space but in the range of 20 to 30% reduction, which is again 

consistent with the observed 20% reduction. Increases appear clearly over ship 

tracks and oil rigs, where large SOx emission abatement occurred, favouring the 

formation of ammonium nitrate instead of ammonium sulfate. Note that although 
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shipping has become cleaner due to SOx emission abatement, the total shipping 
activity has increased resulting in more NOx emissions, which could also play a 
role in the increased nitrate formation. The modelled change in ammonium lies 

within 40 to 50%, which is close to the observed 38% reduction.  

 

 

 

 

 

Figure 3.15: Modelled relative change between 1990 and 2010 (%) obtained with the EURODELTA 6-model 

ensemble for sulfate (top left), nitrate (top right), and ammonium (bottom left). 

 

Figure 3.16 shows the results from EURODELTA model ensemble for the total 

PM mass, i.e. the mean concentrations in 1990 and 2010 and the changes between 

1990 and 2010 and between 2000 and 2010. Only the changes in the latter period 

can be compared with observed trends reported in Section 3.6.1.  

The model ensemble estimates a maximum reduction of 20%, which is slightly 

lower than the observed 29% reduction but still in the right order of magnitude. 

Over the 1990-2010 the model change is about 40%, which cannot be directly 

validated with observations. 
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Figure 3.16: Modelled PM10 (µg/m3) from the EURODELTA 6-model ensemble using 1990 (top left) or 2010 

(top right) emissions and relative change (%) between 2000 and 2010 (bottom left) and 1990 and 2010 

(bottom right). 
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4 Heavy Metals and Persistent Organic Pollutants 

Main Authors: Milan Vana, Ilia Ilyin, Victor Shatalov 

Contributors: Wenche Aas, Pernilla Bohlin-Nizzetto, Knut Breivik, Jana 

Boruvkova 

The analysis of long-term trends of heavy metals (HMs) and persistent organic 

pollutants (POPs) concentrations of the EMEP region has been performed for the 

period from 1990 (reference year) to 2012 on the basis of the methodology 

elaborated by MSC-E (see details on Methods in Annex B). This method is based 

on fitting exponential decays, and therefore the trend is expressed in terms of 

reduction rates that are, by convention, positive for a downward trend and 

negative for an upward trend. The following species were included in the analysis: 

lead (Pb), cadmium (Cd), mercury (Hg), benzo(a)pyrene (B[a]P) (as an indicator 

species of PAHs), PCDD/Fs (total toxicity), PCB-153 (as an indicator congener of 

PCBs), and HCB. 

Measurements of POPs and HMs were included in the EMEP monitoring 

programme in 1999 but earlier data are available for some compounds and some 

sites in the EMEP database (http://ebas.nilu.no). Detailed information about the 

sites, measurement methods and results for 2013 can be found in the 

EMEP/CCC’s annual data report on heavy metals and POPs (Aas and Bohlin-

Nizzetto, 2015). The EMEP monitoring programme for HMs and POPs aims for 

comparable and consistent monitoring data and recommended methods are 

described in the EMEP manual for sampling and analysis. It should however be 

noticed that comparing data across sites and compounds is a complicating factor 

when interpreting especially POP measurements, due to differences in sampling 

and analytical methodologies that might affect the comparability (Schlabach et al., 

2011;Melymuk et al., 2014). 

The analyses of long-term trends of POPs and HMs are performed using 

modelling results (Travnikov and Ilyin, 2005) and measurement data from the 

EMEP monitoring network. Due to the deficiency of monitoring data for 

sufficiently long-term periods as well as a limited spatial coverage of the POPs 

and HMs sites in Europe, the trend evaluation is based mainly on model 

calculations complemented by joint analysis of measurement data and calculation 

results at locations of monitoring sites. 

 

4.1 Heavy Metals 

4.1.1 HM deposition trends based on modelling results 

Trends of HM levels were analysed for the EMEP region and particular countries. 

The analysis of HM levels in the EMEP region and in particular countries is 

focused on modelled total deposition, as this parameter is used for the evaluation 

of negative effects (e.g., exceedances of critical loads) of heavy metals on the 

biota and human health (De Wit et al., 2015).  

The average annual time series and trends of total deposition over the EMEP 

region are given in Figure 4.1. Rates of deposition reduction of lead and mercury 
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were higher in the beginning and lower in the end of the two-decade period, but 

the reduction rate for mercury is smaller than that for lead.  The rate of cadmium 

annual decline remained constant.  
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Figure 4.1: Long-term changes of modelled total deposition flux and of the main component of its trend for 

lead (a), cadmium (b) and mercury (c). Dashed lines indicate 95% confidence interval. 

Table 4.1 summarizes the main quantitative characteristics of these long-term 

trends in the EMEP region for the full considered period (1990-2012) and for two 

sub-periods: 1990-2001 and 2002-2012. Lead was characterized by the highest, 

and mercury by the lowest magnitude of total reduction and average rate of 

reduction during all three periods. Deposition trends of all three metals were 

characterized by a seasonality of around 30-40%. Since emission data did not 

include information on seasonal variations of heavy metal releases to the 

atmosphere, the estimated seasonality is fully attributed to the effect of 

meteorological variability. 

Table 4.1: Main characteristics of the modelled long-term deposition trends and range of annual reduction 

rates within the period (in brackets) of lead, cadmium and mercury, 1990-2012 

Parameter Pb Cd Hg 

Total reduction (full period), % 78 53 23 

Total reduction (1990-2001), % 56 32 19 

Total reduction (2002-2012), % 50 30 5 

Average reduction (full period), % per year 6.4 (5.9 – 6.8) 3.2 (3.2 – 3.2) 1.2 (0.4 – 3.5) 

Average reduction (1990-2001), % per year 6.7 (6.5 – 6.8) 3.2 (3.2 – 3.2) 1.8 (0.8 – 3.5) 

Average reduction (2002-2012), % per year 6.2 (5.9 – 6.5) 3.2 (3.2 – 3.2) 0.5 (0.4 – 0.7) 

Seasonal variations, % 34 36 42 

 

For analysis of long-term pollution changes in the EMEP countries over the whole 

period (1990-2012) two groups of countries were singled out: EU28 and EECCA. 

The highest total reduction of modelled metal deposition was noted for EU28 

countries. On average, this decrease occurred to be more than 80% for lead, 

60% for cadmium and 35% for mercury (Figure 4.2). In the EECCA 

countries the decline of heavy metal pollution levels is smaller: total 

reduction for 1990-2012 amounted to 76% (lead), 49% (cadmium) and 19% 

(mercury). Both within EECCA and EU28 groups the variability of total 

reduction among countries is large. In some countries the total reduction of 

cadmium and mercury is even negative, which means that pollution levels tend to 

increase in long-term perspective. These countries are Armenia and Azerbaijan 

(Cd, Hg) and Georgia (Hg).  
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Figure 4.2: Total reduction of modelled lead, cadmium and mercury deposition in the EMEP region as a 

whole, in EU28 and in EECCA countries. Whiskers indicate range of the reductions among the countries. 

Negative values stand for an increase. 

In addition, it is important to note that the rate of pollution reduction differs in 

time. In the beginning of the period (1990-2001) the reduction rate is the highest, 

while at the end (2002-2012) the rate is the lowest, and, in some countries, even 

negative. These countries are Cyprus, Armenia, Azerbaijan (Cd, Hg), Georgia, 

Italy and Finland (Hg) where there is a concern, if the current trend is maintained, 

that HM pollution levels may increase in the future. 

Another important parameter describing long-term evolution of pollution levels is 

seasonality. In particular countries seasonality ranged from 8% to 95% for the 

considered metals (Figure 4.3). On average it amounted to 30-40%. Seasonality 

for mercury was somewhat lower than that for lead and cadmium, mostly due to 

long (about a year) atmospheric life time of mercury. 
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Figure 4.3: Modelled seasonality of lead, cadmium and mercury deposition averaged among the EMEP 

countries. Whiskers indicate seasonality range between particular countries. 
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4.1.2 Factors contributing to the heavy metals trends 

Long-term trends of pollution levels depend on a number of factors including 

changes of anthropogenic and secondary emission data, long-term climatic trends, 

changes of land-use, etc. According to the modelling results, the main factors 

affecting the changes in the EMEP region from 1990 to 2012 seem to be 

anthropogenic and secondary emissions. Besides, changes of pollution levels 

within each country were also caused by an evolution in the respective 

contribution of national and foreign sources. 

The reduction of anthropogenic emission of lead and cadmium for the period 

1990- 2012 resulted in a decline of calculated deposition from anthropogenic 

sources of up to 90% and 64%, respectively (Figure 4.4). However, the total 

deposition reduction to the EMEP region was smaller (Figure 4.1 and Table 4.1). 

The reason for this was a significant contribution of secondary sources to 

pollution levels in the EMEP region, whose reduction was smaller: around 50% 

for lead and cadmium.  

The situation for mercury differed from that for lead and cadmium. The relatively 

low (23%) reduction of mercury deposition in the EMEP region was caused by 

two factors. The first factor is intercontinental transport: contribution of non-

EMEP sources (both anthropogenic and secondary) ranged from about 65% to 

about 80% over the considered period (Figure 4.4). However, in absolute terms 

their contribution remained almost the same for the whole period, because global 

emissions of mercury had not changed much. The second factor is speciation of 

mercury emissions. A major part of the mercury was emitted as long-living 

elemental form (around 70% for anthropogenic sources and 100% for secondary 

sources), most of which was transported outside the EMEP region. 
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Figure 4.4: Modelled deposition fluxes of lead (a), cadmium (b) and mercury (c) caused by anthropogenic 

and secondary sources within EMEP region and by non-EMEP sources 

4.1.3 Comparison of modelled and observed HM levels 

Model results on long-term time series of heavy metal pollution levels were 

available for each grid cell of the EMEP domain. For those grid cells where 

monitoring stations were located, an analysis of trends could be done jointly on 

the basis of both modelled and measured values (Figure 4.5, Figure 4.6, Figure 

4.7). There were 19 EMEP stations measuring lead and cadmium and 8 stations 

measuring mercury with long time series. The selected stations were located 

mostly in the central and the northern parts of Europe. Trends in the other parts of 

the EMEP region were characterized entirely by the modelling. As seen from 

Figure 4.5, Figure 4.6 and Figure 4.7 according to the model the highest mean 

reduction rate of heavy metal pollution levels took place in the central and 
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western parts of Europe, whereas in its eastern part and in the Central Asia the 

rate of reduction is smaller. Nevertheless, marked reduction rate is also noted in 

some countries in the eastern part of Europe, e.g., in Belarus, Latvia, Lithuania, 

Estonia (air concentrations of Pb) or in Ukraine (concentrations and wet 

deposition of Pb, Cd and Hg). Some increase of Hg wet deposition was noted for 

the north of Scandinavia (which is confirmed by available long-term 

measurements) and for the Mediterranean region.  

  

Figure 4.5: Average reduction rate of modelled (field) and observed (circles) Pb concentrations in air (left) 

and wet deposition fluxes (right) for the period from 1990 to 2012 

  

Figure 4.6: Average reduction rate of modelled (field) and observed (circles) Cd concentrations in air (left) 

and wet deposition fluxes (right) for the period from 1990 to 2012 

  

Figure 4.7: Average reduction rate of modelled (field) and observed (circles) Hg concentrations in air (left) 

and wet deposition fluxes (right) for the period from 1990 to 2012 
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On average for the period from 1990 to 2012, the mean annual reduction rate of 

observed and modelled concentrations and wet deposition are given in Figure 4.8. 

For lead it amounted to about 7 to 9%. For cadmium the reduction rate of 

modelled levels was around 4%, and that of observed levels was about 5 to 8%. 

Somewhat higher reduction rate of observed compared to modelled levels was 

caused by underestimation of high observed values in the beginning of the 

considered period. Reduction rate of modelled and measured mercury air 

concentrations was low (less than 0.5% per year). Reduction rate of observed 

mercury wet deposition was higher (about 3% per year) than that of modelled 

levels. However, the range of reductions of observed mercury deposition was 

quite high and fully overlapped the range for modelled values. 
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Figure 4.8: Mean annual reduction rates for modelled and observed air concentrations and wet deposition 

fluxes of lead (left), cadmium (middle) and mercury (right) over selected monitoring stations. Whiskers mean 

range of average reduction rates among stations. 

 

4.2 Persistent Organic Pollutants 

4.2.1 POP trends based on modelling results 

Calculated trends of average air concentrations in the EMEP region for the period 

from 1990 to 2012 for selected POPs are shown in Figure 4.9. To describe the 

general tendencies in changes of air concentrations, trends of annual averages (not 

taking into account seasonal variations) are considered. Reduction rates refer to 

the main trend component. Dashed lines indicate 95% confidence interval. 
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Figure 4.9: Trends of modelled annual mean air concentrations of (a) B[a]P, (b) PCDD/Fs, (c) PCB-153 

and (d) HCB in the EMEP region for the period from 1990 to 2012. Negative reduction denotes increase of 

air concentrations. Dashed lines indicate 95% confidence interval. 

The maximum reduction for the selected POPs occurred in the beginning of the 

period, whereas at the end of the period (in 2012), the reduction rate diminished or 

even was replaced by growth. The largest reduction is obtained for HCB (over 

90%), and the smallest for B[a]P (about 30%). In 2012 an increase of B[a]P 

pollution was obtained, and for PCDD/Fs the concentrations reached a 

stationary level, with a reduction of only about 0.8%. It is noted that the 

growth of B[a]P air concentrations in the EMEP region from 2005 to 2012 

occurred to be statistically significant at the 90% confidence level. 

Similar trends can also be seen in temporal variations of B[a]P deposition fluxes 

to various ecosystems which is important for the evaluation of harmful effects of 

POPs pollution. As shown in Figure 4.10, the reduction of B[a]P deposition to 

deciduous forests and arable lands is estimated to about 25% for the period 1990 – 

2012. However, the general trend started to increase from 2005. The main 

characteristics of the long-term trends in the EMEP region for the full period 

(1990-2012) and for the two parts: 1990-2001 and 2002-2012 for the considered 

POPs are summarized in Table 4.2. 
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Figure 4.10: Trends of modelled B[a]P deposition to deciduous forest and arable lands within the EMEP 

region. 

 

Table 4.2: Main characteristics of modelled long-term deposition trends of selected POPs, 1990-2012, the 

range of annual reduction rates within the period is indicated in brackets. 

Parameter 

 

B[a]P PCDD/Fs PCB-153 HCB 

Total reduction (full period), % 28 50 80 93 

Total reduction (1990-2001), % 32 36 46 76 

Total reduction (2002-2012), % -6 19 58 68 

Average reduction (full period), 

% per year 

1.5  

(–1.4 – 5.7)* 

3.1  

(0.8 – 4.4) 

6.7  

(0.8 – 10.4) 

11.6 

 (10.8 – 14.8) 

Average reduction (1990-2001), 

% per year 

3.4  

(1.23 – 5.7) 

4.0  

(3.4 – 4.4) 

5.4  

(0.8 – 9.3) 

12.3 

 (11.0 – 14.8) 

Average reduction (2002-2012), 

% per year 

– 0.6 

 (–1.4 – 0.7) 

2.0 

 (0.8 – 3.3) 

8.4  

(3.7 – 10.4) 

10.8  

(10.8 – 11.0) 

 

The seasonal variability of the concentrations for some POPs is an important 

characteristic in the evaluation of long-term trends. In particular, the intra-annual 

variations of PAH concentrations can reach an order of magnitude that needs to be 

considered in the trend analysis. The approach developed for the analysis of 

trends takes into account seasonal variations of pollution and provides 

approximation of changes on the level of monthly mean air concentrations. As an 

example, the results of the analysis of long-term trends in seasonal variations of 

B[a]P air concentrations in the EMEP region are shown in Figure 4.11. Due to the 

substantial seasonal variability, B[a]P air concentration in the cold period of year 

can exceed several times the annual average value. 
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Figure 4.11: Trend of modelled monthly mean B[a]P air concentrations in the EMEP region for the period 

from 1990 to 2012. 

Along with the changes of POP pollution in the EMEP region as a whole the 

analysis of trends was performed also for individual EMEP countries. For 

illustration purposes, the results of the trend analysis for B[a]P air concentrations 

in particular EMEP countries are given in Figure 4.12. It was found that the 

growth of concentrations in the end of the period (2012) is characteristic for most 

EMEP countries. In particularly, such increases take place in 90% of the EECCA 

countries and in 80% of the EU28 countries. 
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Figure 4.12: Average annual reduction rates of modelled B[a]P air concentrations for the period from 1990 

to 2012 and reduction rates in 2012 for three groups of countries: the EECCA, the EU28, and other EMEP 

countries. Negative values denote growth of pollution. Whiskers indicate variations between countries. 

The trends of B[a]P pollution in the EMEP countries are further illustrated for 

instance in Germany (Figure 4.13). Along with large total reduction (68%), an 

increase of contamination in Germany in the end of the period (from 2005) is 

found, reaching 5% in the last year 2012. It should be noted that the growth of the 

general trend of B[a]P air concentrations from 2005 to 2012 is statistically 

significant.  

For comparison purposes, the calculated trend of B[a]P emissions in Germany is 

also shown in Figure 4.13. It is seen that the trend of air concentrations is 

consistent with that of emission totals (on the level of annual averages). 

Differences in values of reduction parameters for modelled air concentrations and 

emissions are attributed to transboundary transport. 
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Figure 4.13: Trends of modelled annual mean air concentrations (a) and emissions (b) in Germany for the 

period from 1990 to 2012. Reduction rates refer to general trend. Negative reduction denotes increase of air 

concentrations. 

POP concentrations in the air in the EMEP region varies significantly across the 

territories of the countries. According to modelling results, in spite of generally 

low annual mean B[a]P air concentrations over the major part of the countries 

there are areas where EU target value for B[a]P (1 ng/m3 as defined in the 

Directive 2008/50 EC), is exceeded. The number of people living in these areas in 

particular EMEP countries is shown in Figure 4.14. 
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Figure 4.14: Number of people living in regions where B[a]P air concentrations exceed EU target value of 1 

ng/m3 in EMEP countries in 2012 according to modelling results. 

As shown above in Figure 4.11, the seasonal variations in the entire EMEP region 

can change the main component by as much as 100%. However, seasonality 

varies strongly between countries (from 45% of the main component for Spain to 

over 150% for Turkmenistan). Nevertheless, seasonal variations of air 

concentrations are important in all EMEP countries. 

 

4.2.2 Comparison of modelled and observed POP levels  

Model simulations provide information on changes of pollution levels for the 

whole EMEP region. In the particular grid cells of modelling domain where the 

long-term measurements of POP concentrations were carried out, it was possible 

to perform combined analysis of trends in the pollution levels (Figure 4.15). It 
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should be taken into account that measurement data describe pollution levels at 

particular locations whereas model calculations provide values averaged over the 

50×50 km grid cells. As follows from the figure, the highest mean reduction of 

modelled B[a]P levels in the EMEP region for 1990-2012 took place in the 

central, western and north-western parts of Europe. In a number of countries, 

located mainly in eastern, south-eastern and northern parts of Europe and in 

Central Asia a long-term growth of B[a]P concentrations occurred. 

 

Figure 4.15: Average reduction rate of modelled (field) and observed (circles) B[a]P concentrations in air 

for the period from 1990 to 2012 

Measurements of B[a]P, PCB-153 and HCB air concentrations for a sufficiently 

long period of time were available for the following EMEP monitoring sites: CZ3 

(Kosetice), FI96 (Pallas), IS91 (Storhofdi), NO42 (Zeppelin), NO99 (Lista) 

SE2/14 (Rörvik/Råö) and SE12 (Aspvreten). It should be noted that these sites are 

located mainly in the north-west of the EMEP domain. Since the time periods of 

measurements performed at the selected sites are different, average annual 

reduction rates are used to evaluate the decline of pollution levels. 

Comparison of estimates of trends for B[a]P, HCB and PCB-153, performed on 

the basis of model data and measurements, shows that model predictions generally 

capture the observed long-term tendencies in changes of pollution levels. The 

main findings obtained from the comparison are summarized in Figure 4.16. 
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Figure 4.16: Average annual reduction of air concentration according to modeling results and measurements 

for PCB-153 (left), BaP (middle, for the period 2004-2012) and HCB (for the period 1990-2012 and the year 

2012). The whiskers indicate the variation of the parameter between site locations 

For PCB-153, the analysis was carried out for six sites, namely, CZ3, FI96, IS91, 

NO42, SE2/SE14, and SE12. The average annual reduction rate of PCB-153 is 
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about 8%. Recalculation of reduction from observed annual average to the period 

from 1990 to 2012 results in overall decline about 85% that is in agreement with 

modelling results (Figure 4.9). The analysis of both measured and modelled data 

shows that seasonal variations can change pollution levels of PCB-153 by about 

60%.  

The majority of long-term measurements of B[a]P air concentrations in the EMEP 

countries were carried out during the recent decade. Analysis of modelled and 

measured time-series of B[a]P air concentrations indicates reasonable agreement 

between their reduction rates. According to the modelling results and available 

measurements, the average annual reduction rate of B[a]P concentrations in 

period 2004-2012 is about 2% per year. Recalculation of reduction from observed 

annual average to the period from 1990 to 2012 results in a total reduction of 

about 30%. 

For HCB, sufficiently long time series of measured air concentrations were 

available for the following EMEP monitoring sites: CZ3, NO42, NO99 and IS91. 

Similar to PCB-153, the average annual reduction of HCB is high (9% – 10% per 

year). The analysis of temporal variations of HCB air concentrations for the two 

remote sites, NO42 and IS91, indicates larger differences in estimates of trends. 

The reason for the differences is due to the fact that the levels of pollution at these 

sites are likely influenced by the emission sources outside the EMEP domain. 

Thus, a refinement of the description of global scale HCB emissions and their 

temporal changes in various regions of the world is required. 

Regular measurements of air concentrations of dioxins and furans at the EMEP 

monitoring sites are not currently performed. At the same time, it is possible to 

use available long-term measurements of PCDD/F air concentrations in the EMEP 

countries reported in literature for the analysis of long-term changes of pollution. 

A number of studies provided results of long-term measurements of air 

concentrations of dioxins and furans. A significant decrease of PCDD/F air 

concentrations (about 70%) was observed in Spain in the period 1994-2004 (Abad 

et al., 2007). Monitoring of PCDD/F air concentrations in the UK at urban and 

rural sites indicated a sharp decline in early 1990s and a smaller decline 

subsequently (Katsoyiannis et al., 2010). A pronounced decrease of PCDD/F air 

concentrations and deposition (about a factor of 5) was also observed in Germany 

from 1988-1992 to 2005 (Bruckmann et al., 2013), which has almost levelled off 

since 2005. In general, results of model simulations are in line with available 

measurements and demonstrate similar declines of PCDD/F pollution in the EU 

countries from 1990 to 2012 (about 80%). 

 

4.2.3 Integrated monitoring of POPs 

In addition to data on atmospheric monitoring of pollution levels, measurement 

data in other environmental compartments are important for better understanding 

of the behaviour of POPs in the environment. For other matrices (needles, moss, 

wet deposition, surface water and soil) only data from Košetice EMEP station 

(CZ03) are available. Needles, moss, surface water and soil data are measured 

annually, which eliminates the possibility of using of the bi-exponential curve, 
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which is based on the intra-annual variations. For these matrices, only the Mann-

Kendall trend test was computed. 

In the case of wet deposition, the data is of different quality, allowing to 

interpolate by the bi-exponential curve for benzo[a]pyrene and γ-HCH, with a 

relatively low share of values under quantification limit, but not for other 

parameters, where the share of left censored values is higher than 50%. As well as 

in the case of passive air sampling, there is an apparent decrease of PCB 153 in all 

matrices and less significant decrease of γ-HCH and p,p’-DDE. In the case of 

benzo[a]pyrene, the significance is rather low. There is a lack of convincing data 

for HCB. The results of the trend analysis for other matrices are listed in Table 

4.3. 
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Table 4.3: results of POPs trends identification at Košetice EMEP site for matrices other than air 

concentrations 
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Needles ↓  ↑  ↑  ↓  ↑  

Moss ↓  ↑  ↓  ↓  ↑  

Surface water ↑  ↓  ↓    ↓  

Wet deposition ↓ ↓ ↓ ↕   ↓  ↓  

Soil ↓  ↑  ↑  ↓  ↓  

 

↓ insignificant decrease 

↑ insignificant increase 

↔ constant trend 

↓ significant decrease 

↑ significant increase 

 

↑ increase (significance is not known) 

↓ decrease (significance is not known) 

↕ non-monotonic trend 
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Appendix A  
 

Methods - Main Pollutants 
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A Methods – Main Pollutants 

The present section provides the practicalities of the trend assessment for ozone, 

nitrogen dioxide, particulate matter, secondary inorganic aerosol, and sulfur and 

nitrogen concentration in precipitation. All the data, as well as trend diagnostics, 

are available on the TFMM wiki website9.  

 

A.1 Selection of monitoring sites 

A.1.1 Selection of monitoring sites for ozone 

The EMEP database EBAS (ebas.nilu.no) was the basis for the monitoring data 

used in this assessment. The data were extracted from the database during the 

period April-October 2015. The surface monitoring network within EMEP has 

changed substantially during the period studied here, 1990-2012, both with 

respect to the number of stations and with respect to the geographical coverage. 

The latter could be even more important than the former since it may introduce a 

possible bias to the overall analyses. For instance, for ozone in the first part of the 

period the monitoring sites were concentrated in certain parts of Europe like 

Germany, Switzerland, UK and Scandinavia whereas southern and eastern Europe 

were poorly covered. Gradually, the network has been extended to these regions 

as well. Still, by 2012 the monitoring network is very limited in SE-Europe.  

For each of the three periods 1990-2001, 2002-2012 and 1990-2012 the sites were 

selected based on the criteria that i) the data capture should be at least 75 % for a 

specific year to be counted and ii) the number of these counted years should be at 

least 75 % of the total number of years in the period. Thus, for the period 2002-

2012, the station should have at least 9 years with 75 % data capture. Depending 

on the compounds and metric, the annual data capture was evaluated on the basis 

of the available monitoring temporal frequency. Note that only the sites located 

below 1000m of altitude are included in Chapter 2. 

For illustration purposes, the locations of the selected sites for ozone for the three 

periods are shown in Figure A.1 (where 53 sites are used for calculation of trend 

in summertime peaks and 55 for the annual mean). As mentioned above, there is a 

strong bias to central and Northern Europe for the 1990-2001 and 1990-2012 

periods. 

                                                 

9 https://wiki.met.no/emep/emep-experts/tfmmtrendstations 
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Figure A.1: Location of selected ozone monitoring sites for the periods 1990-2001 (left), 2002-2012 (middle) 

and 1990-2012 (right). 

Table A.1: List of EMEP stations passing the completion criteria for annual mean ozone and corresponding 

period covered: X: 1990-2012, a: 1990-2001, b: 2002-2012. It should be noted that several sites provide 

valuable information albeit over a shorter time period and therefore do not appear on this list. 

Station code period Station code period Station code period 

AT0002 abX ES0009 b LT0015 b 

AT0005 bX ES0010 b LV0010 b 

AT0030 bX ES0011 b NL0009 abX 

AT0032 abX ES0012 b NL0010 abX 

AT0034 abX ES0013 b NO0001 abX 

AT0037 abX ES0014 b NO0015 abX 

AT0038 abX ES0016 b NO0039 abX 

AT0040 abX FI0009 abX NO0042 abX 

AT0041 abX FI0017 abX NO0043 abX 

AT0042 abX FI0022 abX NO0052 b 

AT0043 abX FI0037 b NO0056 b 

AT0044 abX FI0096 b PL0002 b 

AT0045 abX FR0008 b PL0003 b 

AT0046 abX FR0009 b PL0004 b 

AT0047 abX FR0010 b PL0005 b 

AT0048 b FR0013 b SE0011 abX 

BE0001 bX FR0014 b SE0012 abX 

BE0032 abX FR0015 b SE0013 abX 

BE0035 bX FR0016 b SE0014 b 

BG0053 b FR0017 b SE0032 abX 

CH0001 abX GB0002 abX SE0035 abX 

CH0002 abX GB0006 abX SE0039 b 

CH0003 abX GB0013 abX SI0008 b 

CH0004 abX GB0014 abX SI0031 bX 

CH0005 abX GB0015 abX SI0032 abX 

CY0002 b GB0031 abX SI0033 bX 



61 

EMEP/CCC-Report 1/2016 

Station code period Station code period Station code period 

CZ0001 bX GB0033 abX SK0002 b 

CZ0003 bX GB0035 b SK0004 bX 

DE0001 abX GB0036 abX SK0006 b 

DE0002 abX GB0037 bX SK0007 b 

DE0003 abX GB0038 abX 
  

DE0007 abX GB0039 abX 
  

DE0008 abX GB0045 b 
  

DE0009 abX GB0049 b 
  

DK0005 b GB0050 b 
  

DK0031 abX HU0002 bX 
  

EE0009 b IE0001 b 
  

EE0011 b IE0031 abX 
  

ES0007 b IT0001 b 
  

ES0008 b IT0004 abX 
  

 

A.1.2 Selection of monitoring sites for acidifying and eutrophying compounds 

The list of sites selected for the trend analysis of sulfur and nitrogen in the gas 

phase, particulate matter and precipitation is given in Table A.2. Particulate sulfate 

was not sea salt corrected because of the lack of long term measurements of sea 

salt ions in aerosol. There was an exception for the Irish site (IE0001) that has 

significant sea salt influence. However, sea salt corrected sulfate is only available 

for 2005-2012, so that for the years between 1990-2004, the sea salt contribution 

was subtracted from the total sulfate measured based on the average sea salt 

sulfate contribution for the period between 2005-2012. 

Table A.2: List of EMEP stations passing the completion criteria for the constituents addressed in Chapter 3 

(nss SO4
2- (precip): sea-salt corrected sulfate in precipitation, SO4

2-: particulate sulfate, SO2: sulfur dioxide, 

NO2: nitrogen dioxide, NO3
-(precip): nitrate in precipitation, HNO3+NO3

-: nitric acid plus particulate 

nitrate, NH4
+ (precip): ammonium in precipitation, NH4

++NH3: ammonia plus particulate ammonium. 

Symbols indicate a satisfactory coverage for: (X): the 1990-2012 period, (a): the 1990-2001 period, (b): the 

2002-2012 period. It should be noted that several sites provide valuable information albeit over a shorter 

time period and therefore do not appear on this list. 

Code Station name nssSO4
2-

(precip) 
SO4

2 SO2 NO2 NO3
-
 

(precip) 
HNO3+ 
NO3

- 
NH4

+
 

(precip) 
NH3+ 
NH4

+ 

AT0002R Illmitz a   Xb b a   a   

AT0004R St. Koloman a       a   a   

AT0005R Vorhegg     Xb b         

BE0001R Offagne       b         

BE0003R Brugge         a   a   

BE0011R Moerkerke       X         

BE0013R Houtem       X         

BE0014R Koksijde         b   b   

BE0032R Eupen       X         

CH0002R Payerne X X X X X   X   
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Code Station name nssSO4
2-

(precip) 
SO4

2 SO2 NO2 NO3
-
 

(precip) 
HNO3+ 
NO3

- 
NH4

+
 

(precip) 
NH3+ 
NH4

+ 

CH0003R Tänikon b     b         

CH0004R Chaumont       b b   b   

CH0005R Rigi b   b b b b b b 

CZ0001R Svratouch X Xab X   X b X b 

CZ0003R Kosetice X Xab X X X b X X 

DE0001R Westerland X   X X X   X   

DE0002R Waldhof X   X X X   X   

DE0003R Schauinsland X     X X   X   

DE0004R Deuselbach X     a X   X   

DE0005R Brotjacklriegel X     a Xb   Xb   

DE0007R Neuglobsow Xb   X b Xb   Xb   

DE0008R Schmücke b     b     X   

DE0009R Zingst b     b b   b   

DE0044R Melpitz b       b   b   

DK0003R Tange   X X     X   X 

DK0005R Keldsnor X   a   X a b a 

DK0008R Anholt b X X   X X X X 

DK0022R 
Sepstrup 
Sande b       b   b   

DK0031R Ulborg           a     

EE0009R Lahemaa b     b X   Xb   

EE0011R Vilsandi b     b b   b   

ES0001R 
San Pablo de 
los Montes a       a   a   

ES0003R Roquetas a       a   a   

ES0004R Logroño a a a   a a a a 

ES0007R Víznar b b b b b b b b 

ES0008R Niembro b b b b b b b b 

ES0009R Campisabalos b   b b b b b b 

ES0010R 
Cabo de 
Creus   b b b   b   b 

ES0011R Barcarrota b b b b   b b b 

ES0012R Zarra b b b b b b b b 

ES0013R Penausende   b b b   b b b 

ES0014R Els Torms   b b b   b   b 

ES0016R O Saviñao b b b b b b b b 

FI0004(37)R Ähtäri (I and II) X X X b X X X X 

FI0009R Utö a X X   a X a X 

FI0017R Virolahti II X X X b X X X X 

FI0022R Oulanka X X X a X X X X 

FI0036R 
Pallas 
(Matorova)   b b   b b b b 

FI0053R Hailuoto II         b   b   
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Code Station name nssSO4
2-

(precip) 
SO4

2 SO2 NO2 NO3
-
 

(precip) 
HNO3+ 
NO3

- 
NH4

+
 

(precip) 
NH3+ 
NH4

+ 

FR0003R La Crouzille a a     a   a   

FR0005R La Hague             a   

FR0008R Donon X a     X   X   

FR0009R Revin X       X   X   

FR0010R Morvan X a a   X   X   

FR0012R Iraty a a     a   a   

FR0013R 
Peyrusse 
Vieille b b     b   b   

FR0014R Montandon b       b   b   

FR0015R La Tardière b       b   b   

FR0016R Le Casset b       b   b   

FR0090R Porspoder         b   b   

GB0002R Eskdalemuir X a a   X a X a 

GB0006R Lough Navar X a a   X   X   

GB0007R 
Barcombe 
Mills   a a           

GB0013R Yarner Wood X a a   X   X   

GB0014R High Muffles X a     Xb X X X 

GB0015R 
Strath Vaich 
Dam X a     X   X   

GB0016R Glen Dye   a a           

GB0036R Harwell     b           

GB0037R 
Ladybower 
Res.     X X         

GB0038R 
Lullington 
Heath     b X         

GB0043R Narberth       b         

GB0045R Wicken Fen     b b         

GB0050R St. Osyth       b         

HR0002R Puntijarka Xa   b   X   X   

HR0004R Zavizan Xa       X   X   

HU0002R K-puszta b b     X X Xa X 

IE0001R 
Valentia 
Observatory Xa X X X X   X   

IE0002R Turlough Hill a           a   

IS0002R Irafoss X               

IS0090R Reykjavik b       b   b   

IS0091R Storhofdi         b   b   

IT0001R Montelibretti b b b b b b b b 

IT0004R Ispra X a X Xa X   X   

LT0015R Preila X X X X X b X X 

LV0010R Rucava X a X X X   X   

NL0009R Kollumerwaard b b X X     b   

NL0010R Vredepeel   b a X         
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Code Station name nssSO4
2-

(precip) 
SO4

2 SO2 NO2 NO3
-
 

(precip) 
HNO3+ 
NO3

- 
NH4

+
 

(precip) 
NH3+ 
NH4

+ 

NL0091R De Zilk       b b   b b 

NO0001(2)R 
Birkenes (I 
and II) X X X X X X X X 

NO0008R Skreådalen a     a a a a a 

NO0015R Tustervatn X X X X X       

NO0039R Kårvatn X X X X X X X X 

NO0041R Osen a a   a a       

NO0042G 
Zeppelin 
mountain   X X           

NO0099R Lista         a       

PL0002R Jarczew X X X X X X X b 

PL0003R Sniezka X X X X X b X X 

PL0004R Leba b b b b b b b b 

PL0005R Diabla Gora b b b b b b b b 

PT0001R Braganca a       a   a   

PT0003R 
Viana do 
Castelo a       a   a   

PT0004R Monte Velho a       a   a   

RS0005R Kamenicki vis X       X   X   

RU0001R Janiskoski X a a   X   X   

RU0013R Pinega X       X   X   

RU0018R Danki b b b   b       

SE0002(14)R Rörvik (Råö) X X X X X X X X 

SE0005R Bredkälen a X X X   b a X 

SE0008R Hoburgen   a a a         

SE0011R Vavihill X X X X X X X X 

SE0012R Aspvreten a       a   a   

SI0008R Iskrba b b b   b b b b 

SK0004R Stará Lesná b       b   b   

SK0006R Starina b   b b b b b   

SK0007R Topolniky b       b   b   

 

Finally, to complement the analysis, the monitoring stations from the EEA´s Air 

Quality Database (http://www.eea.europa.eu/data-and-maps/data/aqereporting, 

former AIRBASE) were also considered (for further details, see Colette et. al., 

2015). 

A.1.3 Selection of monitoring sites for NMHC  

EMEP stations were chosen for inclusion in the analysis of NMHC concentrations 

based on the availability of multi-year measurement records for a suite of 

commonly measured NMHCs: acetylene (ethyne), benzene, i-butane, n-butane, 

ethylene, hexane, i-pentane, n-pentane, propene, and toluene. An annual data 

capture criterion of 75% (based on the regular sampling frequency for each type 

http://www.eea.europa.eu/data-and-maps/data/aqereporting
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of measurement) was applied for each individual species at each station. 

Arithmetic annual means were calculated for each species at each station and 

year. In cases where one or more species was missing for a given year at a given 

station, no sum is calculated (i.e., a data point for that station and year will be 

missing from Figure 2.5). With the exception of stations GB48 (Auchencorth 

Moss), GB36 (Harwell), and DE54 (Zugspitze), all NMHC data was extracted 

from the EBAS database. In the case of DE54, monitoring data not available in 

EBAS was provided by a national expert. In the case of GB48 and GB36, 

additional data flagged as missing in EBAS were provided by a national expert. A 

more detailed treatment of VOC trends in the UK, including at the GB48 and 

GB36 sites, can be found in (Derwent et al., 2014). 

A.2 Metrics 

For nitrogen dioxide, particulate matter, secondary inorganic aerosol, and wet 

sulfur and nitrogen concentration in precipitation, annual averages were computed 

on the basis of the highest available temporal resolution. Diagnostics were also 

computed for each season.  

For ozone, more elaborate metrics must be considered, the following were 

selected for the analysis (following acronyms in Figure 3):  

 O3 Avg: annual mean  

 MDA8: the daily maximum of 8-hr running mean hourly ozone 

 SOMO35: the sum of MDA8 levels over 35 ppb (70 μg/m3) accumulated 

over one year. A measure of accumulated annual ozone concentrations 

used as an indicator of human health risks. 

 ndays Max>60ppb: number of days with MDA8 exceeding 60 ppb 

 annual max: annual maximum of the MDA8 

 3-months AOT40 (May-July): AOT is the accumulated hourly ozone 

above the level of 40 ppb (80 μg/m3), a measure of cumulative annual 

ozone concentrations that is used as indicator of risks to vegetation. 

Certain remarks to these metrics should be noted: The daily max running 8 h 

averages were allocated to the day the 8 h period ended, as stated in the EU air 

quality directive 2008/50/EC. The AOT40s were only calculated when the data 

capture (based on hourly data) was at least 75 % for the requested period (month 

or 3-months). Furthermore, a UN-ECE approach was used for selecting the hours 

of the day for the AOT calculations, implying that only the hours with a global 

radiation > 50 W/m2 based on zenith angle and a climatological relationship 

between zenith angle and radiation assuming clear sky conditions were 

considered. The AOT values were also normalised by the inverse of the data 

capture, i.e.: 

AOT = AOTmeasured /(fractional data capture) 

All calculations were based on hourly ozone data in ppb whereas EBAS presently 

stores these data in a proxy µg/m3 unit (in which 1 ppb  = 2 proxy µg/m3).  
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It should be noted that the selection of sites could differ depending on the metrics. 

For a three-months AOT40 based on the months May-July, the 75 % data capture 

requirement was applied to these months. Thus, a site could be rejected if the data 

capture in this three-months period was less than 75 % although it was above 75 

% for the whole year.  

A focus on the 4th highest MDA8 day is given in the main text. It represents 

approximately the annual 99th percentile when the data coverage is complete. 

Alternative higher percentiles of MDA8 can be found in the literature, it should be 

noted however that the 95th percentile is considered too low because it is 

approximately the 18th highest day, it can therefore include several non-episode 

days and be influenced by the background. Using the annual maximum (100th 

percentile) is not a good statistical practice either, because of the imperfect 

statistical distribution of high ozone episode days. But it should be noted that for 

the trend analysis presented here, very similar results were found when using the 

98th, 99th and 100th percentiles. 

 

A.3 Trend calculations 

The trend calculations were based on the Mann Kendall (MK) method for 

identifying significant trends combined with the Sen’s slope method for 

estimating slopes and confidence intervals. These simple and straight-forward 

methods were programmed and run in IDL based on the documentation given by 

(Gilbert, 1987). Comparisons with other existing MK software (e.g. Makesens in 

Excel or R) showed a very good agreement between the results from these 

programs.  

The essence of the MK method is that the signs of all forward differences in a 

time series are counted and then the probability of having that amount of negative 

or positive differences is computed. A high fraction of positive differences implies 

a high probability of a positive trend and vice versa. The main advantages of the 

MK method are that (i) it doesn’t require normally distributed data, (ii) it is not 

affected by outliers (which often is a problem for atmospheric monitoring data), 

and (iii) it removes the effect of temporal auto-correlation in the data. It should be 

said, though, that for long-term aggregated quantities like annual means etc., the 

reasons for using a MK method instead of a standard linear regression is not that 

strong since the aggregated quantities will normally be less influenced by outliers 

than single (hourly) data points, and also less auto-correlated.  

The Sen’s slope method is commonly used in conjunction with the MK method. If 

the MK statistics indicates the presence of a significant trend, the Sen method is 

used to compute the slope and the confidence intervals. The essence of this 

method is simply that the estimated (Sen’s) slope is set equal to the median of the 

slopes when looking at all forward differences in the time series. The Sen method 

also provides the coefficients (y0 and a) in a linear equation:  

y  = y0 + a(t-t0),   

where y is the estimated value, t is the time, t0 is the start time of the time series 

and a the slope (positive for an increasing trend). 
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In the calculations applied in this assessment a significance level of p=0.05 was 

used, i.e. corresponding to a 95 % probability of a significant upward or 

downward trend. The relative trends were also estimated, given in a %/year unit. 

The relative trends were computed based on the estimated value at the start (t=t0) 

as reference, i.e.:  

 Rel. trend (in %/year) = 100 a/y0   

refering to the equation above. Using the estimated value at the start allows using 

a reference that is less sensitive to inter-annual variability than the actual observed 

value at t0. To assess the relative change over a given time span, the relative 

annual trend over the period is simply multiplied by the number of years during 

that period minus one. 

A.4 Model results 

The model outputs of the EURODELTA multi-model exercise were also included 

in relevant sections of the Assessment. It builds upon previous iteration of the 

CITYDELTA and EURODELTA exercises in support of past TFMM activities 

(Thunis et al., 2007;Bessagnet et al., 2014;Cuvelier et al., 2007). 

The EURODELTA phase was initiated late 2014, it involves 6 regional 

Chemistry-Transport Models (CTM) in addition to EMEP-MSCW (Chimere, 

CMAQ, LOTOS-EUROS, MINNI, Polair3D, WRF-Chem), although only 6 

models (all but Polair 3D) had delivered all required data to be included in the 

present report. A synthetic presentation of most participating models can be found 

in (Bessagnet et al., 2016) 

The exercise consists in performing an air quality hindcast over Europe over the 

1990-2010 period at regional-scale resolution (25km). The setup is quite 

constrained with prescribed identical anthropogenic emissions and boundary 

conditions. A common meteorological driver is also used by most CTMs. The full 

21-yr hindcast is supplemented by a number of sensitivity experiment designed to 

isolate the contribution of (i) European emission changes, (ii) boundary 

conditions, (iii) meteorology.  

Further details are available on the TFMM wiki: https://wiki.met.no/emep/emep-

experts/tfmmtrendeurodelta, and will be published when the analysis progresses. 

For the quickviews in the present report, the multi-model ensemble is a simple 6-

model average at each grid point. One of the model uses a slightly smaller 

modelling domain, hence the undefined values in the south-east corner of the 

region.  
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B Methods – Heavy Metals and POPs 

B.1 Selection of monitoring sites 

For HMs, the EMEP database includes data from the early 1970s for a few sites, 

although most of the time series start in the 1990s. The targeted HMs within the 

EMEP protocol are Cd, Pb and Hg. These are also the HMs for which most EMEP 

measurement data are available.  

Table B.1: Long-term data on HMs in air and precipitation at EMEP sites showing the starting year. 

Site (code) Air Precipitation 

Cd Pb Hg Cd Pb Hg 

Svratouch (CZ01) 1988 1988 - 1994 1994 - 

Kosetice (CZ03) 1988 1988 2007 1994 1994 - 

Westerland (DE01) 1987 1987 - 1990 1989 - 

Waldhof (DE02) 1987 1987 2009 2002 2002 2002 

Schauinsland (DE03) 1987 1987 - 2004 2004 2007 

Neuglobsow (DE07) 1987 1987 - 2005 2005 - 

Schmücke (DE08) 1987 1987 - 2004 2004 - 

Zingst (DE09) 1990 1990 - 1996 1995 - 

Anholt (DK08) 2010 2010 - 1999 1999 - 

Niembro (ES08) 2004 2004 - 2004 2004 2008 

Campisabalos (ES09) 2001* 2003 - 2004 2009 - 

Virolahti II (FI17) 2008 2007 - 1995 1995 - 

Pallas (FI36) 1996 1996 1996 1996 1996 1996 

Peyrusse Vieille (FR13) 2003 2003 - 2003 2003 - 

Storhofdi (IS91) * 1995 1995 1998 2002 2002 - 

Rucava (LV10) 1994 1994 - 1993 1993 2007 

De Zilk (NL09) 1994 1990 - 1990 1990 - 

Birkenes (NO01/02/99) 1991 1991 1999 1973 1973 1990 

Zeppelin (NO42) 1994 1993 1994 - - - 

Diabla Gora (PL05) 2005 2005 2004 1992* 1992* - 

       

Bredkalen (SE05) 2009 2009 2009 1987* 1987 1998* 

Råöo/Rörvik (SE02/14) 2002 2002 1979 2010 1987 1989 

CHOPOK (SK02) 1987 1987 - 2000 2000 - 

Stara lesna (sk04) 1988 1988  2000 2000  

*Not continuous sampling 

For POPs, the length of the monitoring data sets varies between sites and type of 

POP compound (Table B.2). The number of EMEP POPs monitoring sites has 

increased from 7 in 1999 to 30 in 2013. Long-term data series for POPs in the air 

starting from the 1990s are only available from Zeppelin and Birkenes in Norway, 

Pallas in Finland, Aspvreten and Råö in Sweden, Storhofdi in Iceland, and 

Kosetice in Czech Republic while long-term data of POPs in precipitations are 

also available from Westerland and Zingst in Germany. The following section 
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provides a trend analysis for benzo(a)pyrene (B[a]P) as a representative of 

polycyclic aromatic hydrocarbons (PAHs), PCB-153 as a representative of 

polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB) and the 

polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) using a 

combination of modelling and measurements.  

Table B.2: Long-term data on POPs in air and precipitation at EMEP sites showing the starting year. 

Site Air Precipitation 

(code) PCBs HCB HCHs DDTs CHLs PAHs PCBs HCB DDTs HCHs PAHs 

            

Kosetice 
(CZ03) 

2002 2006 1999 1999  1999 2003  2003 2006 2003 

Westerland 
(DE01) 

      1996 1996 1996 1996 1996 

Zingst (DE09)       1999 1999 1999 1999 1999 

Pallas (FI36) 1996  1996 1996  1996 1996   1996 1996 

Storhofdi 
(IS91) * 1995 1995 1995 1995 1995  1995 1995 1995 1995  

Zeppelin 
(NO42) 

1998 1993 1993 1994 1993 1994      

Birkenes 
(NO02/99) 

2004 1991 1991 2010 2010 2009 2004 1991  1991  

Aspvreten 
(SE12) 

1995  1995 1995  1995 1996   1995 1995 

Råö/Rörvik 
(SE02/14) 

1994  1994 1996  1994 1995   1995 1995 

* Stopped measuring POPs after 2012 

 

B.2 Trend calculations 

In order to account for the specificity of heavy metals and POPs phenomenology 

in the atmosphere, the statistical analysis used to assess trends differs from that of 

the main pollutants presented in Annex A. The present section prepared by MSC-

East in support to the TFMM introduces the relevant approaches.  

Typical measurement data on air quality for a sufficiently long period (1990 – 

2010) is exemplified in Figure B.1, where air concentrations of B[a]P and lead at 

EMEP sites CZ3 and DE7, respectively, are shown. 

B[a]P concentrations at CZ3 site
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Pb concentrations at DE7 site
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Figure B.1: Air concentrations of B[a]P and lead at EMEP sites CZ3 and DE7, 1990 – 2010, monthly means 
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It is seen that the dynamics of air concentrations can be decomposed to the 

following three components. First, there is a general decrease of air concentrations 

during the considered period (main component). Second, air concentrations are 

subject to strong seasonal variations (seasonal component). Finally, these two 

tendencies are perturbed by variations not described by the two above components 

(residues). 

 

B.3 Decomposition of time series 

The above mentioned decomposition is illustrated in Figure B.2 by the time series 

of air concentrations in Germany (monthly means) from 1990 to 2010. 

B[a]P concentrations in Germany
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Seasonal component
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Residue component
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Figure B.2: Decomposition of time series (B[a]P concentrations in Germany for the period from 1990 to 

2010). 

In fact, the approach is based on the combination of exponential trends with 

standard description of periodic time series (Anderson, 1994). 

 

Analytically, the decomposition is described by the following formulas: 

 C = Cmain + Cseas + Cres,  (1) 

where for each time t 

 Cmain,t = a1 · exp(- t / τ1) + a2 · exp(- t / τ2) (2) 

is the main component ; 

 Cseas,t = a1 · exp(- t / τ1) · (b1,1 · cos(2π · t – φ1,1) + b1,2 · cos(4π · t – φ1,2) 

+ ...) 

  + a2 · exp(- t / τ2) · (b2,1 · cos(2π · t – φ2,1) + b2,2 · cos(4π · t – 

φ2,2) + ...) (3) 

is the seasonal component; and 

 Cres,t = Ct – Cmain,t – Cseas,t (4) 
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Are the residues. Here a, b are coefficients, τ are characteristic times, and φ are 

phase shifts. All these parameters are calculated by the least square method. 

 Quantification of trend 

Below parameters describing the above components are described. 

Main component. This component is characterized by the following parameters 

(which are positive for a decline) Figure B.3: 

total reduction: 

 Rtot = (Cbeg – Cend) / Cbeg = 1 – Cend / Cbeg, (5) 

maximum and minimum annual reductions 

 Rmax = max Ri, Rmin = min Ri,  (6) 

where Ri are annual reductions for year i: Ri = ΔCi / Ci = 1 – Ci+1 / Ci, and 

average annual reduction (geometric mean of annual reductions over all years): 

 Rav = 1 – (Πi Ci/Ci–1)1/(N–1) = 1 – (Cend / Cbeg)
1/(N–1) (7) 

 

 

Figure B.3: Characterization of the main component 

Seasonal component. It can be found that the amplitude of the seasonal 

component follows the values of the main component (Figure B.4):  
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(b)  

Seasonal component, normalized
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Figure B.4: Characterization of the seasonal component 

Therefore, it is reasonable to normalize values of this component by values of the 

main component obtaining the relative contribution of the seasonal component to 

the trend values (Figure B.4). The amplitudes of the normalized seasonal 

component for each year can be calculated as 

 Ai = (max(Cseas, i / Cmain, i) – min(Cseas, i / Cmain, i)) / 2, (8) 
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where max and min are taken within the year i. Average of these amplitudes over 

all years of the considered period can characterize the change of trend of the main 

component due to seasonal variations, so that the parameter quantifying seasonal 

variations will be: 

seasonal variation fraction 

 Fseas = <Ai>,  (9) 

where <…> stands for average value taken over all years of the considered period. 

Threshold A t value of 10% is proposed for determination whether seasonal 

component is essential. 

One more important characteristic of seasonal variations is the shift of the 

maximum value of contamination with respect to the beginning of the year. This 

shift varies from year to year, and for its characterization the following parameter 

can be used: 

phase shift 

 S = <Si>,  (10) 

where Si are shifts (in months) within the year i (see Figure B.5). Maximum of the 

trend values is searched using its analytical expression (see formulas (2) and (3)). 
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Figure B.5: Definition of phase shift 

Residues. Similar to theseasonal component, the values of the residues also follow 

the values of the main component and they should be normalized in a similar way 

(Figure B.6):  

(a) 
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(b) 

Random component, normalized
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Figure B.6: Characterization of residues 

So, the parameter characterizing the residues can be defined as 

 Fres =  σ(Cres,i / Cmain,i)  (11) 
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where σ stands for standard deviation over the considered period. 

Full list of parameters for quantification of trends is presented in Table B.3: 

 

Table B.3: List of parameters for trend quantification 

Main component 

Total reduction over the period Rtot formula (5) 

Maximum annual reduction Rmax 
formula (6) 

Minimum annual reduction Rmin 

Average annual reduction Rav formula (7) 

Seasonal 

component 

Relative contribution of seasonality 

Fseas 

formula (9) 

Shift of maximum contamination S formula (10) 

Residual 

component 

Relative contribution of residues Fres formula (11) 

 

The example of trend evaluation (monthly averages of B[a]P concentrations in 

Germany in the period from 1990 to 2010) are given in Table B.4: 

 

Table B.4: Trend evaluation (monthly averages of B[a]P concentrations in Germany in the period from 1990 

to 2010) 

Considered series Main component Seasonality Residues 

Rtot Rav Rmax Rmin Fseas S Fres 

B[a]P concentrations in 

Germany, 1990 – 2010 
70% 5% 14% –7% 75% 11.97 28% 

 

The results show that the total reduction of air concentrations over Germany 

within the considered period is about 70% with an annual average of 5% per year. 

In the beginning of the period the annual reduction was 14%, but in the last year 

of the period air concentrations increased by 7%. Air contamination in Germany 

is subject to strong seasonal variations (around 75% of the main component). 

Maximum value of contamination takes place mainly in December. The fraction 

of contamination not explained by the constructed trend is about 30% of main 

component. 

Note. The same approach can be used for trend evaluation at the level of annual 

averages. In this case all parameters from Table B.3, except for parameters for 

seasonal variations, can be applied. 
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Appendix C  
 

Trends in air pollutant emissions 

 

 



 

EMEP/CCC-Report 1/2016 

78 

 



79 

EMEP/CCC-Report 1/2016 

 

C Trends in air pollutant emissions 

C.1 Emission trends of photo-oxidant, acidifying and eutrophying 

pollutants precursors and particulate matter 

This annex, contributed by CEIP (EMEP Centre on Emission Inventories and 

Projections), summarises information on trends and socio-economic drivers of 

acidifying pollutants and particulate matter (PM) emissions in the EMEP region. 

 

C.1.1 Emission data used in EMEP models 

Emissions used in the models are based on data reported by the Parties under the 

LRTAP Convention (UNECE, 2014), gap-filled with expert estimates.10 About 40 

to 48 Parties regularly report emissions data to EMEP11, however, the quality of 

submitted data differs quite significantly across countries. The uncertainty of the 

reported data (national totals, sectoral data) is considered relatively high 

particularly for the EMEP East region: the completeness of the reported data has 

not turned out satisfactory for all pollutants nor sectors. Before emissions can be 

gridded for use in the models (Fagerli, H. et al., 2015), missing data are gap-filled 

with expert estimates.  

 

C.1.2 Contribution of individual SNAP sectors to total EMEP emissions 

The share of the individual sectors typically does not change significantly over the 

years. Figure C.1 shows the contribution of each sector to the total emissions of 

individual air pollutants (NOX, NMVOC, SOX, NH3, CO and PM2.5) in 2013. 

                                                 

10  For detailed information on gap-filling, see EEA & CEIP technical inventory review report, Annex C: 
http://www.ceip.at/review_proces_intro/review_reports. 

11  For details, see http://www.ceip.at/status_reporting/2015_submissions. 

http://www.ceip.at/review_proces_intro/review_reports/
http://www.ceip.at/status_reporting/2015_submissions
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Figure C.1: SNAP sector contribution to national total emissions, EMEP extended area (2013) 

The combustion of fossil fuels is responsible for a substantial part of all 

emissions. 58% of NOX emissions are produced by the transport sector (S7 and 

S8), while 21% of NOX come from large power plants (S1). The main source of 

SOX emissions are large-point sources from combustion in energy and 

transformation industries (56%) although in 2013 this share decreased by 4 

percentage points compared to 2012. CO emissions originate primarily from road 

transport (34%) and residential heating (27%). The main sources (up to 62%) of 

primary PM emissions are various combustion processes (S1, S2, S7 and S8) but 

also production processes (S4), which contribute between 13% and 20%, as well 

as agriculture (S10) with a share of 8%. NMVOC sources are distributed more 

evenly among the sectors such as solvent use (30%), road transport (20%), 

extraction of fossil fuels (12%) as well as non-industrial combustion plants (10%). 

Ammonia arises mainly from agricultural activities (S10), more than 85% across 

all years. 
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C.1.3 Emission trends of NOX, NMVOC, SOX, NH3, CO, and PM2.5 

 

 

Figure C.2: Emission trends in the EMEP area, 1990-2013 

Source: EMEP/CEIP data, 1990-2013 

For all air pollutants, overall emissions trended downwards between 1990 and 

2013 for the EMEP West and EMEP East regions combined (see Figure C.2). 

This general decline is primarily due to emission reductions in EMEP West in the 

early 1990s. Both East and West regions registered steep declines in all pollutants; 

since the mid-1990s however, emissions in EMEP East have stagnated or even 

increased, while in EMEP West for most pollutants emissions continued to 

decline considerably. 

 

C.1.4 Socioeconomic drivers 

One reason for this divergence in trends is the continuous improvement in 

technologies employed in the industry, transport and residential sectors in the 

EMEP West region following the implementation of various energy- and 
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pollution-related EU directives into national law. This also led to substantial 

increases in energy efficiency in the EU - especially in the formerly communist 

new member states, which caught up strongly - but also in the UK and Germany. 

For example, in Romania, output (GDP) per unit of energy input (kg of oil 

equivalent) rose by 150% between 1990 and 2012, according to data from the 

World Development Indicators (see Panel A in Figure C.3 below). 

 

PANEL A 

 

PANEL B 

 

Figure C.3: Energy efficiency developments in EMEP East and West, 1990-2013. Source: World Bank World 

Development Indicators, http://data.worldbank.org, accessed February 2016. Note: Energy efficiency defined 

as GDP per unit of energy input, where GDP is measured in constant 2011 US-Dollars at purchasing power 

parities (PPP $). 

The overall downward trend in EMEP West for all six pollutants reflects substantial 

emission reductions in large industrial economies like Germany, the UK, France, Italy 

and Spain. Especially in the first two, SOX emissions from burning fossil fuels in the 

energy and manufacturing industries fell dramatically, among others because of a 

regulation-induced decline in the sulfur content of mineral oils and a reduction in the use 

of coal. Similarly, NOX and CO emissions in the transport sector declined substantially 

due to fleet renewal as well as improvements in combustion processes and abatement 

techniques in vehicles such as the catalytic converter. However, it is noteworthy that 

emissions of these pollutants especially in Poland either increased over the period (NOX, 

SOX) or remained stable (CO). Poland is a large economy with considerable coal 

resources, and its energy efficiency improvements between 1990 and 2013 were 

comparatively low (see Panel A of Figure C.3). The small dents in emissions of NOX, 

SOX and CO between 2008 and 2009 are related to the drop in production and transport 

activity resulting from the financial crisis. 

A second reason for the divergence in trends between EMEP East and West is the 

economic recovery in the East region following the collapse of the Soviet Union 

and the initial years of economic turmoil in the early 1990s. From 1990 to 1995, 

all EMEP East countries registered negative annual rates of GDP growth on 

average, as the economic system changed from a planned to a market economy. In 

the five years that followed, some countries still experienced crises (notably 

Russia in 1998), but the production and transport infrastructure was improved and 

the region returned to strong growth in the early 2000s. GDP growth in 

Azerbaijan, Armenia, Kazakhstan and Turkmenistan was even close to or above 

10% for several years between 2000 and 2010. 

http://data.worldbank.org/
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As a result of the economic recovery, emissions in EMEP East began to stabilise 

or even increase slightly between 1995 and 2000. The increases were small 

despite the recovery because energy efficiency also improved with the 

replacement of outdated Soviet-era infrastructure (see Panel B of Figure C.3). 

Note however that energy efficiency in the two countries that drive the main 

trends in the EMEP East region, Russia and Ukraine, is among the lowest and also 

improved only slightly over the period. Particularly emissions of NOX, SOX and 

CO resulting from fuel combustion in manufacturing industries and from 

production processes increased. On the other hand, NOX emissions in the energy 

industry and in transport as well as CO emissions in transport declined or 

remained stable, as did emissions in the residential sector. This sectoral 

heterogeneity explains why emissions from all pollutants are fairly stable overall 

from the mid-1990s onwards. In addition, improved mitigation technology in 

industry and transport as well as rising energy efficiency appear to have 

counterbalanced the growth in emissions from economic development, which led 

to higher industrial production and greater car use. 

 

C.1.5 Emission trends in the energy and industry sectors 

SOX and NOX emissions in the energy sector have been regulated in the EU-28 

member states with diverse legislation such as the IPPC directive (Switch to best 

available technologies) as well as national action plans in order to reduce 

emissions to be in compliance with the NEC Directive. 

In the EU-28 energy and transformation sector (S1), NOX emissions declined 

because of measures such as the introduction of combustion modification 

technologies (e.g. the use of low-NOX burners), implementation of flue gas 

abatement techniques (e.g. NOX scrubbers, selective catalytic reduction (SCR) 

and non-selective catalytic reduction (SNCR) techniques), and fuel switches from 

coal to gas. SOX emissions in this sector fell due to measures like switching from 

high-sulfur solid and liquid fuels to low-sulfur fuels (e.g. natural gas) and the 

installation of flue gas desulfurisation abatement technology in existing power 

plants. The PM2.5 emissions were reduced mostly as a consequence of installing 

secondary abatement technologies such as electrostatic precipitators and wet 

scrubbers. Other countries like Albania, Bosnia and Herzegovina, Iceland, 

Macedonia, Montenegro, Norway, Serbia and Switzerland do not show a 

significant reduction between 1990 and 2013. 
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Figure C.4: NOX, SOX and PM2.5 emission trends in the energy and transformation industries. Source: 

EMEP/CEIP data, 1990-2013 

 

The countries that dominate emissions of NOX, SOX and PM2.5 from the energy 

sector (S1) in the EMEP East region are the Russian federation, Ukraine and 

Belarus. Together, they contributed 65% of total EMEP East emissions in 2013. 

The decrease of emissions in the early 1990s is due to a decrease of electricity 

production from thermal power plants, triggered by the socioeconomic changes of 

the period. Although electricity production from thermal power plants in the 

Russian federation reached the same level in 2013 as in 1990, NOX and SOX 

emissions were reduced following a switch to coal with low sulfur content and the 

installation of primary abatement technologies such as low-NOx burners in 

existing power plants. The switch to low-sulfur coal has also reduced PM2.5 

emissions. While the countries within the EMEP East and West regions reduced 

their PM2.5 emissions, the overall trend is dominated by the “Rest of the Russian 

Federation”, which shows a substantial increase. NOX, SOX and PM2.5 emissions 

emissions in Turkey increased because of the installation of new coal and gas 

power plants since 1990. 

NOX emissions from non-industrial combustion plants (S2) do not show a 

significant decrease for the EMEP West region. The main reasons for the 

emission reduction are the switch from coal and high-sulfur fuels to natural gas 

and district heating and improved boiler technologies, induced by legislated lower 

emission limits. SOX emissions decreased considerably because of a switch from 

coal to other fuels and because of a legal limit on the sulfur content of liquid fuels. 

PM2.5 emission trends vary among the EU-28 member states. Italy and Romania 



85 

EMEP/CCC-Report 1/2016 

registered a rather strong increase because of increased use of biomass, while 

France reports a significant reduction due to a switch from coal to natural gas and 

a switch to more efficient biomass boilers. 

In the early 1990s, emissions in EMEP East followed the declining fuel use (coal, 

oil) in this sector (S2) due to the socioeconomic changes in this region. Since 

2000, emissions trends have been quite stable, and it appears that the change to 

modern low-emission boilers is not taking place very widely. 

 

 

 

 

Figure C.5: NOX, SOX, NMVOC and PM2.5 emission trends in non-industrial combustion plants. 

Source: EMEP/CEIP data, 1990-2013 

NOX and SOX emissions declined substantially in the industrial production sector 

(S3 and S4). SOX emissions fell mainly because of the limitation of sulfur in 

residual fuel oils and a switch to coal with lower sulfur content. NOX emissions 

decreased due to installation of primary and secondary abatement technologies. 

The decreasing trend of PM2.5 emission results from the increased implementation 

of flue gas cleaning within production industries since the year 2000. 
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Figure C.6: NOx, SOx and PM2.5 emission trends in manufacturing industries (S3+S4). Source: EMEP/CEIP 

data, 1990-2013 

 

C.1.6 Emission trends in road transport (S7) 

Transport sector (S7) contributes significantly to emissions of NOx, NMVOC, CO 

and partly PM2.5 (Figure C.1). The trends in the transport time series data result 

from the general growth in mobility demand and consumption on the one hand, 

and from the introduction of advanced technologies limiting emissions in modern 

vehicles (e.g. catalytic converters) and the ongoing economic crisis on the other 

hand. The NMVOC trends are also influenced by the expansion of the two-

wheeler fleet.  

NOx emissions in EMEP West decreased by 22% between 1990 and 2000 and by 

an additional 42% in the period 2000 to 2013. CO emissions declined by 47% 

between 1990 and 2000 and by 72% in the period 2000 to 2013. NMVOC 

emissions fell by 48% between 1990 and 2000 and by an additional 72% in the 

period 2000 to 2013. In EMEP East, the emission trends of NOx, NMVOC and 

CO between 1990 and 2000 are comparable to EMEP West. However, the 

reduction between 2000 and 2013 is limited, and in a number of countries 

emissions even increased. SOX emissions from road transport (S7) have been 

reduced by more than 90% since 1990 and do not contribute significantly to 

overall SOx emissions in the EMEP area. 
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Figure C.7: NOX, NMVOC, CO and PM2.5 emission trends in road transport (S7). Source: EMEP/CEIP 

data, 1990-2013 

 

C.1.7 Emission trends in agriculture (S10) 

Agriculture is the main source of NH3, contributing more than 90% of overall 

emissions. Emissions mainly occur during the housing of animals, storage and 

application of animal manures. Application of inorganic N-fertilizers is also a 

relevant source of ammonia emissions, especially when using urea. Between 1990 

and 2013, emissions decreased by 25% in the EMEP West region and by 39% in 

EMEP East. The main drivers are declining animal numbers, especially at the 

beginning of the 1990s. Thus, emissions declined the most between 1990 and 

2000 (-18% for EMEP West and -50% for EMEP East). After 2000, the decrease 

in the EU-28 lost pace, and emissions even tended to increase in EMEP East and 

Turkey. Improved management practices in the whole nitrogen cycle (livestock 

feeding strategies, measures in the areas of housing, storage and application 

techniques) supported the declining trend in the EMEP West region. 

With a share of 3% in 2013, agriculture is only a minor source of total reported 

NOX emissions. The main activity resulting in NOX emissions is the application of 

organic and inorganic N-fertilizers; a minor source is the field burning of 

agricultural residues. At present estimates are highly uncertain. Reported 

emissions are incomplete and heavily differ between countries. In the EMEP West 

region, a reduced application of fertilizers is responsible for decreasing of NOX 

emissions between 1990 and 2013 (-20%). Most of the decrease (-15%) occurred 

in the 1990s, while a smaller decrease could be achieved over the 2000s (-6% 

from 2000 to 2013). In EMEP East, the trend (+15% from 1990 to 2013) partly 
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follows GDP trends observing reductions in the 1990s (-32%) and a continuous 

increase of emissions over the 2000s (+69% from 2000 to 2013). 
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Figure C.8: NOX, NMVOC, NH3 and PM2.5 emission trends in agriculture (S10). Source: EMEP/CEIP 

data, 1990-2013 

Around 9% of NMVOC emissions come from agriculture. The main source of 

NMVOC is manure management; minor sources are the field burning of 

agricultural residues and the cultivation of agricultural crops. Emissions are 

highly variable and uncertain. Reported emissions are incomplete and differ 

between countries as manure management is a new source to be reported for 

NMVOC. In EMEP West, emissions declined by 32% between 1990 and 2013, 

mainly attributable to decreasing livestock numbers in the 1990s. From 1990 to 

2000, emissions fell by 25%. Looking at the entire period 1990 to 2013, the 

EMEP East region registered an increase of NMVOC emission of 3%. While 

emissions decreased by 13% between 1990 and 2000, they increased by 18% from 

2000 to 2013. 

Animal husbandry and to a smaller extent field burning activities and agricultural 

crop operations are the relevant sources of PM2.5 emissions in agriculture, 

covering 5% of total PM2.5 emissions in EMEP West and 15% of the total in 

EMEP East. Emission trends in EMEP West (-31% from 2000 to 2013) 

predominantly reflect declining livestock numbers. In EMEP East (+3% from 

2000 to 2013), they partly follow the GDP trend. 

The contribution of agriculture to SOX and CO emissions is rather limited.  The 

main source of both is the field burning of agricultural residues. Until the 1990s, 

stubble burning was a widespread agricultural practice. Improvements such as 

ploughing the stubble back into the ground and legal restrictions resulted in 

decreased emissions in EMEP West from 1990-2013 (-37% for SOX and -49% for 
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CO). All of the decrease in EMEP East occurred in the 1990s (-18% for SOX and -

20% for CO), while during the 2000s, emissions trended upwards (+30% for SOX 

and +35% for CO). 
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C.2 Heavy Metals emissions 

This Chapter, prepared by MSC-E, provide the Heavy Metals and POPs emission 

data used in the model simulation of trends supporting the present report. 

Heavy metal emissions are presented in Figure C.9. Total anthropogenic 

emissions of lead, cadmium and mercury were 43631 tonnes, 500 tonnes and 402 

tonnes, respectively in 1990. In 2012 emissions of HMs amounted to 3895 tonnes 

for Pb, 182 tonnes for Cd and 164 tonnes for Hg. 
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Figure C.9: Temporal changes of lead (a), cadmium (b), and mercury (c) anthropogenic emissions in the 

EU28, EECCA, and other EMEP countries from 1990 to 2012 

Emissions of HMs have considerably decreased in the EMEP region over the last 

two decades. Lead emissions have dropped by 90% since 1990, whereas 

emissions of cadmium and mercury have decreased approximately by 60%. Maps 

of spatial distribution of emissions of heavy metals are given in Figure C.10. 
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(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

 

(e) 

 

 

(f) 

 

Figure C.10: Spatial distribution of anthropogenic emissions over the EMEP domain for lead in 1990 (a) and 

2012 (b), cadmium in 1990 (c) and 2012 (d), and mercury in 1990 (e) and 2012 (f) 

The most noticeable HM emission reduction was in the EU28 countries. Lead, 

cadmium and mercury emissions declined by 93%, 69%, and 60% respectively. 

A slight decrease of emissions is observed in the EECCA countries for cadmium 

and mercury (about 15%). At the same time, for lead the reduction of emissions in 

the EECCA countries is very close to the EU28 countries. 

The other EMEP countries are characterized by almost the same dynamics of 

changes as in the EU28 countries. 
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Pollution levels in the EMEP region can be significantly affected by mercury 

emissions from distant global sources. In order to take into account this effect 

global inventories of mercury anthropogenic emissions to the atmosphere are used 

in modeling (Pacyna and Pacyna, 2002;Pacyna et al., 2006;Pacyna et al., 

2009;AMAP/UNEP, 2008, 2013;Ilyin et al., 2015).The spatial distribution of 

mercury on a global scale is given in Figure C.10.  

 

C.3 Emission data of POPs used for model assessment 

Emission data of persistent organic pollutants used for model assessment of trends 

are presented in Figure C.11. Total anthropogenic emissions of 4 PAHs, 

PCDD/Fs, HCB and PCB-153 were 2487 tonnes, 14.8 kg TEQ, 6.1 tonnes and 9.6 

tonnes, respectively in 1990. In 2012 emission of POPs amounted to 1517 tonnes 

for 4 PAHs, 5.7 kg TEQ for PCDD/Fs, 0.95 tonnes for HCB and 1.5 tonnes for 

PCB-153. 
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Figure C.11: Temporal changes of 4 PAHs (a), PCDD/Fs (b), HCB (c), and PCB-153 (d) emissions in the 

EU28, EECCA, and other EMEP countries from 1990 to 2012 

According to officially reported data and expert estimates anthropogenic 

emissions of POPs in the EMEP countries have decreased from 1990 to 2012 by 

84% for HCB and PCB-153, by 61% for PCDD/Fs, and by 39% for PAHs. Maps 

of spatial distribution of emissions of POPs are given in Figure C.12. 

(a) (b) 
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(c) 

 

(d) 

 

(e) 

 

(f)  

 

(g) 

 

(h) 

 

Figure C.12: Spatial distribution of emissions in the EMEP countries with resolution 50x50 km2 for the sum 

of 4 PAHs in 1990 (a) and  in 2013 (b), PCDD/F in 1990 (c) and in 2013 (d),HCB in 1990 (e) and 2013 (f), 

PCB-153 in 1990 (g) and 2013 (h) 
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Changes of POP emissions in the EMEP region during the considered period were 

inhomogeneous. Substantially different rates of changes can be seen in the EU28, 

EECCA, and the other EMEP countries. The most significant decline of POP 

emissions took place in the EU28 countries. Particularly, emissions of HCB, PCB-

153, PCDD/Fs, and PAHs dropped by 96%, 86%, 83%, and 50% respectively. 

Marked change of anthropogenic HCB emissions from 1998 to 1999 was 

conditioned by sharp decrease of releases reported by the UK.  

The lowest decrease of emissions is seen in the EECCA countries for PCDD/Fs, 

PAHs, and HCB. In particular, it varies from about 10% for PCDD/Fs to almost 

no decrease for PAHs and HCB. At the same time, for PCB-153 the decline of 

emissions in the EECCA countries is almost similar to the EU28 countries 

according to the available expert estimates. The other EMEP countries are 

characterized by moderate changes. 

Pollution by POPs is formed by different sources including anthropogenic 

emissions of the EMEP countries, distant emissions outside of the EMEP domain, 

and secondary emissions both within the EMEP region and beyond its boundaries. 

Model evaluation of HCB pollution was performed on the basis of officially 

reported emissions of the EMEP countries and experimental dataset of global 

HCB emissions, which described contemporary levels of HCB releases as well as 

historical emissions for the period from 1945 to 2013 (Shatalov et al., 2010). 

Model simulations of PCB-153 were carried out on the basis of expert estimates 

of global PCB emissions (Breivik et al., 2007). Emissions used for modelling of 

PCDD/Fs are based on experimental emission scenarios constructed on the basis 

of official data and data of the UNEP SC inventory.  
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D Glossary 

ACTRIS: Aerosol, Clouds, and Trace gases Research InfraStructure Network. 

AOT40: Accumulated ozone exposure over 40ppb 

CCC: Chemical Coordinating Centre 

CEIP: Centre for Emission Inventories and Projections 

CH4: Methane 

CIAM: Centre for Integrated Assessment Modelling 

CLRTAP: Convention on Long-range Transboundary Air Pollution  

EEA: European Environment Agency 

EECCA: Eastern Europe, Caucasus and Central Asia 

EMEP: Cooperative Programme for Monitoring and Evaluation of the Long-range 

Transmission of Air Pollutants in Europe 

EU28: The 28 Member State of the European Union 

GAW: Global Atmosphere Watch 

HCB: Hexachlorobenzene 

MDA8: maximum daily 8-hours mean ozone 

MSC-W: Meteorological Synthesizing Centre-West 

MSC-E: Meteorological Synthesizing Centre-East 

NMVOCs: non-methane volatile organic compounds 

NO2, NOx, NO3
-: nitrogen dioxide, nitrogen oxides, nitrate 

NH3, NH4
+: ammonia, ammonium 

O3: Ozone 

OECD: Organisation for Economic Co-operation and Development 

PAH: Polycyclic aromatic hydrocarbon 

PCB: polychlorinated biphenyl 

PCCD: Polychlorinated dibenzodioxins 

ppb: part per billion 

PM, PM10, PM2.5: Particulate Matter, finer than 10 and 2.5 µm aerodynamic 

diameter, respectively 

POP: Persistent Organic Pollutants 

SO2, SOx, SO4
2-: sulfur dioxide, sulfur oxides, sulfate 

SOMO35: Sum of ozone means (MDA8) over 35ppb 

TFMM: Task Force on Measurements and Modelling 

WGE: Working Group on Effects 

WHO: World Health Organisation 

WMO: World Meteorological Organisation 
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