

Tools for assessing emissions and urban air quality abatement studies

Harold Mc Innes, Hildegunn T. Blindheim Jablonska, Bodil Innset og Herdis Laupsa Norwegian Institute for Air Research (NILU) • www.nilu.no

AirQUIS is a system for air quality management developed by NILU.

The system has functionality for collection and statistical evaluation of data from monitoring stations, a module that provides a user-friendly way of treating emission data as well as models for calculating emissions, wind fields, dispersion and exposure. The integrated Geographical Information System (GIS) platform provides

easy access to the data and gives a user-friendly and understandable data presentation tool. New functionality has been implemented in AirQUIS in order to provide efficient ways for assessing emissions and studying air quality abatement.

Component 9. PM10 -	Region Included	Po	int Included	Total
uel Select / Deselect al				
6 - Annen gass (brenngass; raffi A 7 - LPG (fivtende gass; propan c	Project	Region ID	Consumption	Emission
13 - Marine brennstoff		3013616	0.000	0.38603
14 - Lette fyringsoljer	355 OSLO_2003_TUBM	3013616	0.000	0.44831
15 - Tungdestilat (spesialdestila 🔻	356 OSLO_2003_TUBM	3013701	0.000	0.65248
	357 OSLO_2003_TUBM 358 OSLO 2003 TUBM	3013702	0.000	2,90037
legions	359 OSLO 2003 TUBM	3013703	0.000	0.42053
	360 OSLO 2003 TUBM	3013705	0.000	0.92549
	361 OSLO_2003_TUBM	3013706	0.000	0.52545
	362 OSLO 2003 TUBM	3013707	0.000	1,12512
	363 OSLO 2003 TUBM	3013708	0.000	3 00422
	364 OSLO_2003_TUBM	3013709	0.000	0.15452
	365 OSLO 2003 TUBM	3013710	0.000	0.10799
	366 OSLO_2003_TUBM	3013711	0.000	0.43604
	367 OSLO 2003 TUBM	3013801	0.000	0.27572
	368 OSLO_2003_TUBM	3013802	0.000	0.29991
ource Sectors	369 OSLO 2003 TUBM	3013803	0.000	0.81483
0-Source Sectors *1621*	370 OSLO 2003 TUBM	3013804	0.000	0.64719
S000-Samlekategori "[6]"	371 OSLO_2003_TUBM	3013805	0.000	0.38533
3000-Mobile kilder *1361*	372 OSLO_2003_TUBM	3013806	0.000	1.09821
1000 Stasionær forbrenning '171'	373 OSLO_2003_TUBM	3013807	0.000	0.69144
2000-Prosessutslipp og fordampin	374 OSLO_2003_TUBM	3013808	0.000	1.76245
	375 OSLO_2003_TUBM	3013809	0.000	0.18635
	376 OSLO_2003_TUBM	3013810	0.000	1.27124
	377 OSLO_2003_TUBM	3013811	0.000	1.07322
	378 OSLO_2003_TUBM	3013812	0.000	1.70619
	379 OSLO_2003_TUBM	3013813	0.000	0.24441
	380 OSLO_2003_TUBM	3013814	0.000	0.10530
	381 OSLO_2003_TUBM	3013815	0.000	0.20401
	382 OSLO 2003 TUBM	3013901	0.000	0.14656 🔻

Figure 1: Total emission of PM_{10} from area sources and point sources in regions in Oslo (tons/year).

The Aggregation Functionality

The Aggregation Functionality gives the user a general view over emissions from area sources and point sources. The user may view consumption and emission data aggregated within geographical regions, source sectors, industrial plants, owners and stacks. Figure 1 shows the total emission of PM_{10} from point sources and area sources aggregated within geographical regions in Oslo.

The Abatement Functionality

The Abatement Functionality has been implemented in Air-QUIS in order to provide an efficient tool to study the impact of different measures on air quality. This functionality makes it possible to alter emissions from Taiyuan.

line sources, area sources and point sources at the same time. It is possible to carry out changes within selected areas for all sorts

of sources by using the GIS. For line sources the user may introduce changes on ADT, speed and vehicle distribution. Emission-, dispersion- and exposure calculations can be performed based on an abatement scenario. The Abatement Functionality has been used to study the impact of altered emissions from industry, domestic heating and traffic in Taiyuan (China) and some Norwegian cities.

The burning of coal in domestic boilers is a major source of SO₂ emission in Taiyuan. The Abatement Functionality was used to study the impact of burning briquettes instead of raw coal in Xiaodianqu, a part of Taiyauan. The change from raw coal to briquettes gave a 40 % reduction in the SO₂ emission. The abatement study was carried out by reducing the emission of SO₂ due to raw coal by 40 % in the specified area.

Figure 2 shows how Xiaodianqu is selected from the GIS in AirQUIS. Figure 3 shows the calculated average SO_2 concentration in Taiyuan in the period 07.02.2002 - 14.02.2002 with original emission sources, while Figure 4 shows the SO_2 concentration for the same period with abatement on raw coal in Xiaodianqu. The change of fuel for domestic boilers had a large

Figure 3: Average calculated SO_2 concentration in $\mu g/m^3$ in the period 07.02.2002 - 14.02.2002. Calculation is without abatement.

Figure 4: Average calculated SO_2 concentration in $\mu g/m^3$ in the period 07.02.2002 – 14.02.2002 with briquettes instead of raw coal in Xiaodianqu.

impact in this part of Taiyuan. Abatement studies were also performed on point sources, reducing emissions of SO_2 from these sources. This had a positive impact on the air quality, but the simulated difference was smaller than in the case of change of fuel for domestic boilers.

References

Mc Innes H., Jablonska H. T. B., Innset B. (2006) *Tools for emission assessment and abatement studies*. Norwegian Institute for Air Research, TR 01/2006

AirQUIS: www.nilu.no/airquis/

Within selected areas for all sorts for domes

Figure 2: Selection of polygon containing Xiaodianqu in Taiyuan.