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Figures 1-4:  
Results for grid cell 27

Introduction
The SIR (Sequential Importance 
Resampling) assimilation met-
hod (Van Leeuwen, 2003; 
Doucet, 2001) is tested on a 1D 
atmospheric advection-diffusion 
model with photochemistry. 
Simulated experiments, defining 
a true set of input parameters and 
resulting model concentrations, 
are performed to see if the method 
can handle both systematic (bias) 
and unsystematic (random) 
errors in the input data, and still 
be able to produce assimilated 
values close to the true state. 
The effect on the performance 
of using different observations 
likelihood functions, such as 
Gaussian or Lorentz (Student’s t) 
distributions, are also analysed.

Model description
The 1D model tested is:

where c is a space (x) and time 
(t) varying concentration vector 
(µg/m) containing the species 
NO

2
, NO and O

3
, u is the wind 

speed and k
x
 a turbulent eddy 

diffusivity coefficient. R denotes 
the non-linear fast reaction NO

2
-

NO-O
3 

photochemistry operator, 
and q represents emissions of 
the same three species. Boundary 
and initial conditions are given by 
c(x,t) = c

B
 for x = 0 and x = n x, 

and for t = 0, where c
B
 denotes a 

set of background concentrations 
of the three species. The physical 
domain [0, n x] is divided into 
n grid cells each with length  

x. For the tests performed here 
n = 50 and x = 1000 m. The 
equation is discretized and solved 
on an hourly basis using hourly 
input data of u, k

x
, q and c

B
, and 

separate operators for advection, 
diffusion and photochemistry 
(Bott, 1989; Slørdal et al, 2003).

Method description
The SIR-method generates an 
ensemble of possible model 
states {x(i), i = 1,…,N} by 
randomly drawing selected input 
parameters to the model. The 
ensemble represents a discrete 
approximation of the Bayesian 
(Box and Tiao, 1992) prior and 
posterior probability density 
functions (PDFs) of the true 
model state xt given the model 
forecasts and observations. The 
number N of ensemble members 
is kept constant at all time steps.

 The assimilated model state 
is calculated as:

where w
i
 = 1/N for i = 1,...,N 

represents the ensemble 

weights. Updated weights 
are calculated using a Gaussian 
or Lorentz shaped likelihood 
function based on available 
observations. In the resampling 
step, ensemble members that 
correspond well with the 
observations (high weights) will 
be kept and copied, while those 
that correspond poorly with the 
observations (low weights) will 
be removed. After the resampling 
step, all ensemble members again 
have weights 1/N.

 Eq. (2) represents a variance-
minimizing estimate of the true 
model state xt even for non-linear 
models with non-Gaussian error 
structures. The ensemble size N 
needed in practice depends on 
the model, the number of state 
variables, and the number and 
position of observations. A trial 
and error procedure must usually 
be exercised in order to find the 
optimal number of ensemble 
members.

Experimental set-up 
The model (1) is run for 2 weeks 
(336 hours). Realistic hourly 
values of wind speed (u) and 
temperature difference ( T

10m-2m
) 

is provided from a meteorological 
station close to Oslo, Norway. The 
station is placed in a relatively 
flat and homogenous area  
(z

0
 = 0.1 m). A meteorological 

preprocessor is used to calculate 
horisontal turbulence intensities 

v
 and diffusion coefficients k

x
 as 

0.1· x·
v
 (Slørdal et al., 2003). 

Expected values of emissions (q) 
and background concentrations 
(c

B
) are set equal to 10-3 , 9·10-3  

and 0 µg/m·s, and 10, 0 and 50 
µg/m respectively for each of the 
three species and constant for all 
hours.
 The model state vector x is 
defined as the concentration grid 
vector c. In order to create the 
initial ensemble and to update 
the ensemble from one time 
step to the next, actual input 
parameters u, k

x
, q and c

B
 to 

the model are drawn randomly 
using lognormal distributions. 
The hourly observed values are 
used as mean values in these 
distributions, and the standard 
deviations are assumed to be 
40% of these values. The values 
are set equal for all grid cells. 
 True values (·)t of the above 
parameters are defined using 
the expectance values and an 
assumed bias factor f

b
 = 1.2 

(20% bias) such that ut
 
= E(u) · f

b
,  

kt
 
= E(k

x
) · f

b
 and qt = E(q)/f

b
. The 

true background values are always 
assumed to be unbiased, i.e.,  
c

B
t = E(c

B
). Pseudo-observations 

of NO
2
 are assumed to be Gaussian 

or Lorentz-distributed around the 
true model concentrations using 
a standard deviation equal to 5% 
of the true value for each hour. 
We assume that there are no 
observations of NO or O

3
.

Results
Hourly concentrations of NO

2
 in 

grid cell 27 are shown in Figs. 
1-2. Only the tests performed 
with the Lorentz distribution are 
shown here. Generally it was 
found that this gave more stable 
and consistent improvements than 
by using Gaussian distributions. 

 The assimilated concen-
trations (red) lies consistently 
closer to the true concentrations 
(green) than the free run 
concentrations (blue), although 
the improvement varies with 
time. The yellow and orange 
curves represents resp. 2.5 
and 97.5 percentiles of the 
assimilated (posterior) concen-
tration distributions based 
on the ensemble members. 
Increasing the ensemble size N 
from 25 to 100 and the number 
of observations from 1 (cell 10) 
to 2 (cells 10 and 25) improves 
the results. Increasing N further 
does not lead to any great 
improvements, since the model 
error statistics seems to be well 
represented with 100 ensemble 
members. Increasing the number 
of observations leads to some 
improvements in the results, but 
moderately after two observations 
have been introduced. This is 
probably due to the 1D structure 
of the model, and the fact that the 
parameters are distributed equal 
for all grid cells. Most of the 
information about the true state 
seems to be contained in a few 
observations of NO

2
. 

 In Fig. 3, the probability 
of exceeding 100 ug/m (as an 
example), and in Fig. 4, the 
number of unique ensemble 
members, is shown as a function 
of time (hours) for the run with 
N = 25 and obs. of NO

2
 in cell 

10 only.

Conclusions
The SIR-method seems to work 
well on the 1D advection-diffusion 
model with photochemistry 
(1) reducing both bias and 
uncertainty if observations of 
NO

2
 are available. 

 Lorentz (Student-t) likelihood 
functions seems to give the best 
results. 

 For both ensemble sizes  
N = 25 and N = 100 there were no 
ensemble collapses (few unique 
ensemble members) during the 
test runs.

Ensemble size N = 25 and observations in grid cell 10

Ensemble size N = 25 and observations in grid cell 10

Ensemble size N = 25 and observations in grid cell 10

Ensemble size N = 100 and observations in grid cell 10 and 25
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