Perfluorooctane sulfonate (PFOS) and related compounds in a Norwegian arctic marine food chain

Marianne Haukås^{1,2}, Geir W. Gabrielsen¹, Haakon Hop¹, Bjørn Gulliksen², Urs Berger³ ¹Norwegian Polar Institute, N-9296 Tromsø, Norway ²Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway ³Norwegian Institute for Air Research, N-9296 Tromsø, Norway

Introduction

- Per- and polyfluorinated alkyl substances (PFAS) are a group of anthropogenic chemicals, some of which have been manufactured for more than 50 years. These organic surfactants are used as stain repelling agents
- PFAS are widely distributed over the northern hemisphere, including the Arctic (Giesy & Kannan 2001, Martin et al. 2004)
- The most pervasive fluoroorganic reported in both

Ice amphipod (Gammarus wilkitzkii). Photo: Bjørn Gulliksen/University of Tromsø.

Materials and Methods

Sampling

All organisms were collected in the Barents Sea marginal ice zone during summer 2004 (Figure 1). Samples were obtained from whole ice amphipods and livers of seabirds and polar cod.

Figure 1: Study area with the sampling location marked as a sauare.

Chemical analyses

PFAS analysis

- Extraction was performed applying a screening method (Berger & Haukås 2005)
- Extracts were analyzed for perflorinated sulfonates (4), carboxylates (8), perfluorooctane sulfonamide (PFOSA), and 6:2 fluorotelomer sulfonate (6:2 FTS)

Lipid soluble POP analysis

Extracts were analyzed for PCBs (13), DDTs (5) and PBDEs (10)

Data treatment

- Trophic level and magnification calculations
- Trophic levels (TL) based on the ratio of stable nitrogen isotopes ($\delta 1^5$ N)
- Biomagnification factors (BMFs) based on predatorprey concentrations

Statistical analyses

- ANOVA and Tukey's HSD tests for differences between species and sexes
- Linear regression model and generalized additive model to determine the influence of trophic level on POP concentrations
- The Shapiro-Wilks' W test for normality

Figure 2: Relationship between concentrations of perfluorooctane sulfonate (PFOS) and trophic level. The trendline follows predicted values of a generalized additive model.

humans and wildlife is perfluorooctanesulfonate (PFOS)

- Studies from the Canadian Arctic indicate biomagnification of PFOS in aquatic food chains (Martin et al. 2004, Tomy et al. 2004)
- The present study is the first comprehensive survey of perflouroorganic contamination in a Norwegian Arctic marine food web
- Key species investigated: ice amphipod (Gammarus wilkitzkii), polar cod (Boreogadus saida), black

Polar cod (Boreogadus saida). Photo: Bjørn Gulliksen/University of Tromsø.

ΣPFA

- Principal component analysis investigating POP pat-
- Redundancy analysis relating POP concentrations to trophic level

Kovacs & C. Lydersen/Norwegian Polar Institute

guillemot (Cepphus grylle) and glaucous gull (Larus

The main objective of this study was to assess whether

PFAS show similar bioaccumulative behaviour as lipid

soluble POPs in Arctic marine food chains, particu-

larly emphasizing the potential for biomagnification.

hyperboreus)

Objective

Glaucous gull (Larus hyperboreus). Photo: Hallvard Strøm/Norwegian Polar Institute.

and PBDEs in the liver samples could be explained by trophic level (Figure 4). The four contaminant groups and trophic level were significantly positively correlated.

1.3

PC 1 (70.2 %) -1.3

Results

• Significant amounts of per- and polyfluorinated compounds were found in ice amphipods, fish and seabirds from the Barents Sea food web

each axis is given in brackets.

- PFOS displayed the highest concentration among the fluoroorganic compounds, and was the only PFAS detected in all four species. Mean concentrations (ng g-1 ww) of PFOS increased in the order polar cod liver (2.02) < whole ice amphipod (3.85)< black guillemot liver (13.5) < glaucous gull liver (65.8)
- 6:2 Fluorotelomer sulfonate (6:2 FTS), perfluorohexane sulfonate (PFHxS), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDcA) were detected in at least two of the investigated species
- No correlation was found between PFOS concentrations and trophic level within species. Nevertheless, a significant nonlinear relationship was established when the entire food chain was analyzed (Figure 2)
- BMFs showed values >1 for PFHxS, PFOS, PFNA and **SPFAS** in the majority of predator-prey relationships
- ΣPFAS, concentrations showed no or minor correlation with SPCB1₃, SDDT₅ and SPBDE₁₀ within individuals of polar cod, black guillemot and glaucous gull (Figure 3). However, concentrations of the lipid soluble compounds were positively correlated with each other
- Redundancy analysis showed that 67% of the total variance in concentrations of PFAS, PCBs, DDTs

Conclusions

- The significant nonlinear relationship showing an increase in liver wet weight concentrations of PFOS with trophic level suggests that PFOS has potential for biomagnification in species of the Norwegian Arctic marine food chain
- Liver based magnification factors displayed value >1 PFHxS, PFOS, PFNA and ΣPFAS, imply that there is a trophic transfer of these persistent com-
- pounds ◆ The significant redundancy analysis indicates that the degree of trophic transfer of PFAS is comparable to that of PCBs, DDTs and PBDEs
- Quantification of bioaccumulation and biomagnification of PFAS is based on models and standards developed for lipid soluble compounds and might thus lead to biased results. The quantification approach to accumulation and trophic transfer of PFAS should therefore be assessed in further studies.

Acknowledgements

Thanks to Even Jørgensen, Hans Wolkers, Dorte Herzke, Helèn Therese Kalfjøs and Nigel Gilles Yoccoz for practical, chemical and statistical help. This study received financial support from the Norwegian Research Council, the European Union (PERFORCE project NEST), the Norwegian Polar Institute and the Amundsen Centre at the University of Tromsø.

References

Berger U, Haukås M, 2005. J Chrom A 1081: 210-217 Giesy JP, Kannan K, 2001. Environ Sci Technol 35: 1339-1342

Martin JW et al. 2004. Environ Sci Technol 38: 373-380 Tomy GT et al. 2004. Environ Sci Technol 38: 6475-6481

terns within species