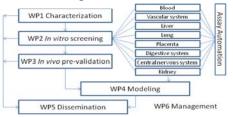


EU 7th Framework Programme Health-2007-1.3-4 Project no. 201335 **Duration 3.5 years** April 2008 - Oct 2011

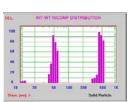

NILU: Lise Marie Fjellsbø, Maria Dusinska; IOM: Lang Tran; CHUV: Lucienne Juillerat; UP7: Francelyne Marano, Sonja Boland; UBHT: Margaret Saunders; JRC: Maurice Whelan; DEMOKRITOS: Christos Housiadas; SMU: Katarina Volkovova, Jana Tulinska, Katarina Sebekova, UCPH: Lisbeth E. Knudsen; ADVANCELL: José V. Castell, Maya Vilà, Lourdes Gombau; UNIVE: Giulio Pojana, Antonio Marcomini

Overall Aim

Develop alternative testing strategies and high-throughput toxicity testing protocols using in vitro and in silico methods essential for the risk assessment of nanoparticles (NP) used in medical diagnostics

Project structure

Nanoparticles


NanoTEST aims to investigate NPs used in medical diagnostics, and will focus on:

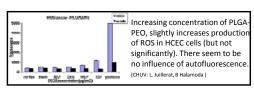
- Iron oxide and rare earth oxide (REO): Paramagnetic metal oxides used as contrast medium
- PGLA-PEO: Polymeric material as therapeutic device
- Quantum Dot (QD): Semiconductor used for medical imaging
- Metal fullerene: Fullerenes with enhanced contrast activity
- Titanium dioxide: Metal oxide as benchmark

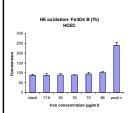
To be able to compare results, all participants will use same batch of each NP

Objectives and Preliminary Results

Characterization

Size distribution of 3% nano magnetite in DMEM + 10% FBS, measured by dynamic light scattering (DLS).




TEM image of nano magnetite.

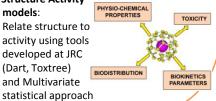
- Synthesize and to procure selected NPs according to the project beneficiary requirements
- Determine physio-chemical properties
- Determine interaction with culture media components, size distributions in stock solution/dispersion and after their addition to culture media
- Develop dispersion protocols
- Develop specific analytical protocols for determination of the NP's uptake and distribution in tissues

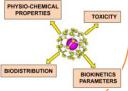
In vitro screening

- Investigate primary cells and cell lines from eight representative organs, which might be affected when exposed to intravenous-, inhalation and oral exposure of NPs.
- Four cross cutting topics: Oxidative stress, Inflammation/Immunotoxicity, Genotoxicity and Barrier transport
- Several assays will be performed to get general overview, and 3 NPs will be selected to investigate in more detail their cellular effect.

Measurement of dihydroethidium (HE) oxidation when exposing HCEC cells to Fe₃O₄ NP. No significant increase in oxidation with increasing concentration when measuring fluorescence with a multi well plate

In vivo validation


- Validate the findings of the alternative in vitro assessment of the toxicological profile of the selected NPs
- Assessment of acute toxicity according to OECD guidelines



- 8-10 animals (male rats) per group
- Target organs are heart/aorta, lung, brain, blood, spleen, bone-marrow, liver and kidney
- Single exposure with sacrifice after 1, 2, 3 and 4 weeks

In silico models

- Physiologically based pharmacokinetics (PBPK): Describe the biodistribution of NPs, and calculations of deposition in the respiratory and cardiovascular system
- Structure Activity models: Relate structure to activity using tools developed at JRC (Dart, Toxtree) and Multivariate

Outcome

- In vitro and in vivo toxicity assessment
- Common database, NapiraHUB
- Standardization and validation of assays
- High throughput assays and Assay Automation
- Set of assays for hazard evaluation of NP with standard operating procedures
- PBPK and structure activity models for toxicity prediction

Contact

For more information, please contact project coordinator Maria Dusinska, mdu@nilu.no or Lise Fjellsbø, lbf@nilu.no

NanoTEST website: www.nanotest-fp7.eu