Fant 9888 publikasjoner. Viser side 235 av 396:
2007
2017
The historical (1835–2020) dry deposition of major air pollutants (SO2, NOx, O3 and PM2.5) in the urban background in Oslo, Norway, in a situation that could represent the building facades, was approximated from reported fuel combustion, emission factors, air concentrations since 1960, and dry deposition velocities. The annual accumulated dry deposition (and thus not considering the removal processes) of the pollutants, together, was found to have varied from about 2.3 to 27 g m−2, with the maximum in the 1960s caused by high SO2 emissions from the combustion of fuel oils, and with 1.6 kg m−2 having deposited over all the years. The deposition of PM2.5 was found to have dominated from 1835, have increased to a maximum in 1875 and then slowly decreased. The SO2 deposition decreased to a low value around 1990. The NOx deposition was also at its highest in the 1960s to about 1970, it became the largest from the 1980s, and then showed a clear decrease from about 2010. The O3 deposition was lower in the years of the maximum total and NOx deposition. The dry deposition of O3 and NOx were found to be about similar in 2020, more than two times that of PM2.5 and more than four times that of SO2. The trends of the NOx emissions were found to reflect the relative (1975) and absolute (∼2000) turning points of the environmental Kuznets curves (EKC) that has been suggested for Norway, whereas the trend of the SO2 emissions seems to have “shortcut” this development by the strong regulations in the emissions from 1970 that lead to near simultaneous relative and absolute reductions. The gradual decrease of the PM2.5 emissions from about 1945 seems to correspond with the decrease in combustion energy intensity in the economy as wood was substituted with more energy efficient fuels and then with the continued reduction in the wood burning.
Elsevier
2021
2016
2014
2018
2018
High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage
In the modern “omics” era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography–HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
2024
High-resolution ground-based GPS measurements show inter-campaign bias in ICESat elevation data. NILU F
2010
2011
High-Resolution Emissions from Wood Burning in Norway—The Effect of Cabin Emissions
Emissions from wood burning for heating in secondary homes or cabins is an important part in the development of high-resolution emissions in specific areas. Norway is used as case study as 20% of the national wood consumption for heating occurs in cabins. Our study first shows a method to estimate emissions from cabins based on traffic data to derive cabin occupancy, which combined with heating need allows for the spatial and temporal distribution of emissions. The combination of residential (RWC) and cabin wood combustion (CWC) emissions shows large spatial and temporal differences, and a temporally “cabin population” can in areas be orders of magnitude larger than the registered population. While RWC emissions have been steadily reduced, CWC have kept relatively constant or even increased, which results in an increase in the cabin share to total heating emissions up to 25–35%. When comparing with regional emission inventories, our study shows that the gradient between rural and urban areas is not well-represented in regional inventories, which resembles a population-based distribution and does not allocate emissions in cabin municipalities. CWC emissions may become an increasing environmental concern as higher densification trends in mountain areas are observed.
MDPI
2022
2011
1980
2017
2012
Non-target screening (NTS) including suspect screening with high resolution mass spectrometry has already shown its feasibility in detecting and identifying emerging contaminants, which subsequently triggered exposure mitigating measures. NTS has a large potential for tasks such as effective evaluation of regulations for safe marketing of substances and products, prioritization of substances for monitoring programmes and assessment of environmental quality. To achieve this, a further development of NTS methodology is required, including: (i) harmonized protocols and quality requirements, (ii) infrastructures for efficient data management, data evaluation and data sharing and (iii) sufficient resources and appropriately trained personnel in the research and regulatory communities in Europe. Recommendations for achieving these three requirements are outlined in the following discussion paper. In particular, in order to facilitate compound identification it is recommended that the relevant information for interpretation of mass spectra, as well as about the compounds usage and production tonnages, should be made accessible to the scientific community (via open-access databases). For many purposes, NTS should be implemented in combination with effect-based methods to focus on toxic chemicals.
Springer
2019