Fant 835 publikasjoner. Viser side 1 av 35:
2025
Reliable quantification of polychlorinated alkanes (PCAs) remains a major challenge, hindering environmental research across diverse matrices. Each sample can contain over 500 homologue groups, collectively producing >1000 m/z ratios that require interference checks. High-resolution mass spectrometry methods vary in ionization signals and data formats and require specialized algorithms for quantification. CPxplorer streamlines data processing through the integration of three modules: (1) CPions generates target ion sets and isotopic thresholds for compound identification into the next module; (2) Skyline performs instrument-independent data integration, interference evaluation, and homologue profiling; and (3) CPquant deconvolves homologues and reports concentrations using reference standards and homologue profiles from Skyline. Evaluation of the workflow with NIST-SRM-2585 dust and ERM-CE100 fish tissue material yielded comparable results across raw data formats from different instruments. Further applications of CPxplorer across diverse matrices, including indoor dust, organic films, silicone wrist bands, and food samples, demonstrated the usefulness in biological and environmental monitoring. Compared to existing tools limited to qualitative detection, CPxplorer enables quantitative outputs, reduces processing time, and expands functionality to PCA-like substances (e.g., BCAs) and PCA degradation products (e.g., OH-PCAs). CPxplorer reduces learning barriers, empowers users to quantify PCAs across various analytical instruments, and contributes to generating comparable results in the field.
2025
Tidal Amplification in the Lower Thermosphere During the 2003 October–November Solar Storms
Abstract Using the National Center for Atmospheric Research's vertically extended version of the Whole Atmosphere Community Climate Model nudged with reanalyses, we examine the impact of the 2003 Halloween solar storms on atmospheric tides and planetary waves in the lower thermosphere (LT). One of the largest solar flares and fastest coronal mass ejections on record occurred on 30 October, resulting in significant energy transfer via Joule heating and auroral particle precipitation in the Earth's higher latitude thermosphere. In the simulation, that occurrence creates large zonally asymmetric heating perturbations, amplifying the diurnal migrating tide (DW1), semidiurnal migrating tide (SW2), as well as non‐migrating westward and eastward tides between 120 and 200 km. Large‐amplitude bursts of DW1 in the Northern Hemisphere and non‐migrating westward tides in the Southern Hemisphere lead to westward wave forcings, which strengthen the thermospheric wind. Planetary waves are also amplified, but their forcing is much weaker than the forcing exerted by tides in the LT. Non‐migrating tides are generated by nonlinear interactions between tides, or between tides and quasi‐stationary planetary waves, and in situ processes in the LT linked to Joule heating and auroral particle precipitation. The induced disruptions of the thermospheric mean meridional circulation reinforce the Spring thermospheric branch in the Southern Hemisphere at high latitudes and oppose the Fall branch in the Northern Hemisphere. Our examination could be relevant to understand the dynamical impact of recent geomagnetic storms that occurred in May 2024 and October 2024.
2025
The role of the tropical carbon balance in determining the large atmospheric CO2 growth rate in 2023
Abstract. The global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records began in 1958, comparable to values recorded during previous major El Niño events. We do not fully understand this anomalous growth rate, although a recent study highlighted the role of boreal North American forest fires. We use a Bayesian inverse method to interpret global-scale atmospheric CO2 data from NASA's Orbiting Carbon Observatory (OCO-2). The resulting a posteriori CO2 flux estimates reveal that from 2022 to 2023, the biggest changes in CO2 fluxes of net biosphere exchange (NBE) – for which positive values denote a flux to the atmosphere – were over the land tropics. We find that the largest NBE increase is over eastern Brazil, with small increases over southern Africa and Southeast Asia. We also find significant increases over southeastern Australia, Alaska, and western Russia. A large NBE increase over boreal North America, due to fires, is driven by our a priori inventory, informed by independent data. The largest NBE reductions are over western Europe, the USA, and central Canada. Our NBE estimates are consistent with gross primary production estimates inferred from satellite observations of solar-induced fluorescence and from satellite observations of vegetation greenness. We find that warmer temperatures in 2023 explain most of the NBE change over eastern Brazil, with hydrological changes more important elsewhere across the tropics. Our results suggest that the ongoing environmental degradation of the Amazon is now playing a substantial role in increasing the global atmospheric CO2 growth rate.
2025
Satellite instruments for measuring atmospheric column mixing ratios have improved significantly over the past couple of decades, with increases in pixel resolution and accuracy. As a result, satellite observations are being increasingly used in atmospheric inversions to improve estimates of emissions of greenhouse gases (GHGs), particularly CO2 and CH4, and to constrain regional and national emission budgets. However, in order to make use of the increasing resolution in inversions, the atmospheric transport models used need to be able to represent the observations at these finer resolutions. Here, we present a new and computationally efficient methodology to model satellite column average mixing ratios with a Lagrangian particle dispersion model (LPDM) and calculate the Jacobian matrices describing the relationship between surface fluxes of GHGs and atmospheric column average mixing ratios, as needed in inversions. The development will enable a more accurate representation of satellite observations (especially high-resolution ones) via the use of LPDMs and, thus, help improve the accuracy of emission estimates obtained by atmospheric inversions. We present a case study using this methodology in the FLEXPART (FLEXible PARTicle dispersion model) LPDM and the FLEXINVERT inversion framework to estimate CH4 fluxes over Siberia using column average mixing ratios of CH4 (XCH4) from the TROPOMI (TROPOspheric Monitoring Instrument) instrument aboard the Sentinel-5P satellite. The results of the inversion using TROPOMI XCH4 are evaluated against results using ground-based observations.
2025
Nitrogen dioxide (NO2) is a well-known air pollutant, mostly elevated by car traffic in cities. To date, small, reliable, cost-efficient multipollutant sensors with sufficient power and accuracy for community-based atmospheric studies are still lacking. The HAPADS (highly accurate and autonomous programmable platforms for providing air pollution data services) platforms, developed and tested in real conditions, can be a possible approach to solving this issue. The developed HAPADS platforms are equipped with three different NO2 sensors (7E4-NO2–5, SGX-7NO2, MICS-2711 MOS) and a combined ambient air temperature, humidity, and pressure sensor (BME280). The platforms were tested during the driving test, which was conducted across various roads, including highways, expressways, and national and regional routes, as well as major cities and the countryside, to analyse the environmental conditions as much as possible (Poland, 2024). The correlation coefficient r was more than 0.8, and RMSE (root mean squared error) was in the 3.3–4.3 μg/m3 range during the calibration process. The results obtained during the driving tests showed R2 of 0.9–1.0, which proves the ability of HAPADS platforms to work in the hard environmental conditions (including high rain and snow, as well as sun and a wide range of temperatures and humidity).
2026
Removal Processes of the Stratospheric SO2 Volcanic Plume From the 2015 Calbuco Eruption
Abstract We analyze the volcanic plume from the April 2015 Calbuco eruption over a 35‐day period using simulations from Meso‐NH, a non‐hydrostatic mesoscale atmospheric model. A dedicated parameterization of the deep injection of the plume into the stratosphere ensures a realistic representation when compared to Infrared Atmospheric Sounding Interferometer satellite observations. During the first 12 hr of the eruption, on 22 April 2015, SO 2 mixing ratio reached 29 ppmv between 15 and 18 km for the first eruption pulse, and 38 ppmv between 12 and 16 km for the second. Most SO 2 was injected directly into the stratosphere, with a stratospheric load reaching 308 ktS (kilotons of atomic sulfur, i.e. 616 kilotons of SO 2 ) after the eruption. After 1 month, both stratospheric and tropospheric SO 2 loads returned to near‐background levels. During analysis, the chemical conversion of SO 2 into H 2 SO 4 removed a part of SO 2 from the stratosphere. During the long‐range advection, the co‐location between the subtropical jet stream and the Calbuco plume led to three significant stratospheric intrusions on 24, 26 and 28 April 2015. These events transferred stratospheric SO 2 into the troposphere, SO 2 mixing ratios in the upper troposphere reaching 15 ppmv, 26 and 15 ppbv, respectively. SO 2 is gradually oxidized into H 2 SO 4 , with up to 5 ktS of gaseous H 2 SO 4 in the stratosphere on 30 April, but dynamical processes dominate the SO 2 atmospheric budget over chemical transformations. This study demonstrates that stratospheric intrusions can play a critical role in the removal of volcanic material from the stratosphere following a major eruption.
2025
Human biomonitoring (HBM) provides an integrated chemical exposures assessment considering all routes and sources of exposure. The accurate interpretation and comparability of biomarkers of exposure and effect depend on harmonized, quality-assured sampling, processing, and analysis. Currently, the lack of broadly accepted guidance on minimum information required for collecting and reporting HBM data, hinders comparability between studies. Furthermore, it prevents HBM from reaching its full potential as a reliable approach for assessing and managing the risks of human exposure to chemicals.
The European Chapter of the International Society of Exposure Science HBM Working Group (ISES Europe HBM working group) has established a global human biomonitoring community network (HBM Global Network) to develop a guidance to define the minimum information to be collected and reported in HBM, called the “Minimum Information Requirements for Human Biomonitoring (MIR-HBM)”. This work builds on previous efforts to harmonize HBM worldwide.
The MIR-HBM guidance covers all phases of HBM from the design phase to the effective communication of results. By carefully defining MIR for all phases, researchers and health professionals can make their HBM studies and programs are robust, reproducible, and meaningful. Acceptance and implementation of MIR-HBM Guidelines in both the general population and occupational fields would improve the interpretability and regulatory utility of HBM data. While implementation challenges remain—such as varying local capacities, and ethical and legal differences at the national levels, this initiative represents an important step toward harmonizing HBM practice and supports an ongoing dialogue among policymakers, legal experts, and scientists to effectively address these challenges. Leveraging the data and insights from HBM, policymakers can develop more effective strategies to protect public health and ensure safer working environments.
2025
Tire particles can enter the marine environment e.g. through direct discharge of road runoff, sewage systems or riverine inputs. Their fate in marine waters remains largely unknown, though the deep sea could be a final sink as for other marine litter. To simulate these conditions, we investigated in laboratory-controlled conditions the effects of high-hydrostatic pressure [20 MPa] vs atmospheric pressure [0.1 MPa] on the leaching of 17 organic compounds from cryo-milled tire tread particles (μm sized) and crumb rubber particles (mm sized) into natural seawater. We monitored the abundance of heterotrophic prokaryotes in the leachates over the 14 day exposure period under biotic conditions. Abiotic controls were employed to delineate the influence of prokaryotes on the fate of leached chemicals. Our results showed leaching of dissolved organic carbon and target chemicals under all experimental conditions, with higher concentrations of certain target chemicals under high-hydrostatic pressure conditions (e.g., 1,3-diphenylguanidine [DPG]: max. 703 (20 MPa) vs 119 μg/L (0.1 MPa) from cryo-milled tire tread particles under biotic conditions). Under abiotic conditions leaching was weaker for DPG and other chemicals, with contrasting trends for chemicals prone to biotransformation. In crumb rubber leachates chemical concentrations increased with time, but showed no significant differences between biotic/abiotic or high-hydrostatic/atmospheric pressure conditions. Prokaryotic abundance increased in all samples containing tire particles compared to seawater controls, indicating the use of the rubber and/or leached chemicals as an energy source.
2025
Divergent impacts of climate interventions on China’s north-south water divide
Abstract Solar radiation modification-based climate interventions may cause uneven regional hydrological changes while mitigating warming. Here, we investigate the effects of climate interventions on China’s North Drought-South Flood pattern using the Norwegian Earth System Model supplemented by volcanic data. Our results indicate that equatorial stratospheric aerosol injection could mitigate the north-south water divide by reducing inter-hemispheric and equator-to-North-pole temperature gradients, thereby modifying atmospheric circulation and the East Asian monsoon to increase precipitation and surface runoff in northern China while reducing them in the south, compared to the high emissions scenario. This mechanism is supported by observed precipitation changes following the Mount Pinatubo volcanic eruption. In contrast, marine cloud brightening may intensify southern flood risks, while cirrus cloud thinning and moderate emissions reduction might exacerbate northern droughts. Our findings reveal distinct regional hydroclimatic impacts of different climate interventions, highlighting potential synergies and trade-offs between their global intervention efficacy and regional water security.
2025
Analysis of source regions and transport pathways of sub-micron aerosol components in Europe
It is important to study aerosols and their origins, as they pose various negative health and environmental impacts. In this study, we combined year-long datasets from 15 different countries with Trajectory Statistical Methods (TSMs) for the first time at this comprehensive scale. We found possible source regions and seasonal variations of various particulate matter (PM) components in Europe, including total organic aerosol (OA), biomass burning OA (BBOA), oxygenated OA (OOA), ammonium (NH4), nitrate (NO3), and sulphate (SO4). We found that for all of the studied components, Eastern Europe was among the highest contributors. For NO3, other important source regions were Northern France and the Benelux, while for SO4 there were significant contributions from the Mediterranean region. We also compared our measurement-based model with simulated concentrations of an atmospheric chemistry transport model (CAMx). We observed a satisfactory agreement in regions where we had sufficient coverage with air pollution monitoring stations. The main deviations for OA were found around the Po Valley, where CAMx consistently estimated higher concentrations, while the TSM analysis did not highlight it as a hotspot because long-term monitoring datasets in this region are lacking. CAMx also underestimated the concentrations around Poland, mainly from residential burning. Our results provide opportunities to refine European emission inventories and deliver valuable information on long-range transported air pollutants. This work suggests that policies mitigating air pollution in Eastern Europe and the Benelux could help improve overall air quality in entire Europe more efficiently.
2025
Towards a remote-sensing-driven model of isoprene emissions from Alpine tundra
Abstract This study investigates isoprene emissions in a high-latitude Alpine tundra ecosystem, focusing on using near-field remote sensing of surface temperatures, the photochemical reflectance index (PRI) and normalized difference vegetation index (NDVI), and meteorological measurements to model these emissions. Isoprene is a key biogenic volatile organic compound (BVOC) emitted by select plants, which can impact atmospheric chemistry and climate. Increased temperatures, particularly in high latitudes, may enhance isoprene emissions due to extended growing seasons and heightened plant stress. The research was conducted in Finse, Norway, where isoprene and CO 2 fluxes were measured with eddy covariance alongside spectral and meteorological data, and surface temperature. A random forest (RF) model was developed to predict isoprene fluxes, considering the variable importance of different environmental factors. The results showed that surface temperature and CO 2 flux were consistently important predictors, across three differential temporal data aggregations (hourly, daily, weekly), while the PRI demonstrated low predictive power, possibly due to the heterogeneous vegetation and variable light conditions. The NDVI was more effective than anticipated, likely linked to phenological changes in vegetation. Model performance varied with temporal resolution, with weekly data achieving the highest predictive accuracy ( R 2 up to 0.76). The RF model accurately reflected seasonal emission patterns but underestimated short-term peaks, suggesting the potential to combine machine learning with process-based modelling. This research highlights the promise of proxy data from remote sensing for scaling BVOC emission models to regional levels, essential for understanding climate impacts in Arctic ecosystems.
2025
The winter of 2023/24 exhibited remarkable stratospheric dynamics with multiple sudden stratospheric warmings (SSWs). Based on the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) polar-cap-averaged 10 hPa zonal wind, three major SSWs are identified. Two of the three SSWs were short-lived, lasting under 7 d. In this study, we give an overview of the three SSWs that occurred in the winter of 2023/24 and focus on the impact of tropospheric forcing on their duration. Blocking high-pressure systems are shown to modulate wave activity flux into the stratosphere through interactions with tropospheric planetary waves, depending on their location. The rapid termination of the first SSW (14–19 January 2024) is linked to a developing high-pressure system over the North Pacific. The second SSW (16–22 February 2024) terminated quickly due to more contributing factors, one of which was a high-pressure system that developed over the Far East. The third SSW (3–28 March 2024) was a long-duration canonical event extending to levels below 100 hPa. In contrast to the two short-lived SSWs in the winter of 2023/24, tropospheric forcing was sustained around the SSW onset in March 2024, allowing a long event to develop. We also note that conditions for these SSWs were particularly favorable due to external factors, including an easterly Quasi-Biennial Oscillation (QBO), the presence of El Niño conditions of the El Niño–Southern Oscillation (ENSO) cycle, and the proximity to the solar maximum.
2025
2025
Abstract This study introduces a community-focused eCoach recommendation system aimed at enhancing physical activity by leveraging demographic data, wearable sensor inputs, and machine learning algorithms to generate both individual and community-based activity recommendations using advice-based collaborative filtering. Existing eCoaching systems largely focus on personalized feedback without incorporating social reinforcement or group-level motivation, creating a gap in leveraging community influence for sustained health behaviors. Our system combines real-time activity tracking through wearable sensors and advice-based collaborative filtering to deliver adaptive recommendations. We collected data from 31 participants (16 using MOX2-5 sensors and 15 from a public Fitbit-based dataset), targeting daily activity levels to generate actionable guidance. Through decision tree classification and SHAP-based interpretability, we achieved a model accuracy of 99.8%, with F1, precision, recall, and MCC metrics confirming robustness across both balanced and imbalanced datasets. Ethical considerations, including privacy, bias mitigation, and informed consent, were integral to our design and implementation. Limitations include potential biases due to sample size and data imbalances, suggesting the need for future validation on independent datasets. This system demonstrates the potential to integrate with real-world healthcare initiatives, offering trust, transparency, and user engagement opportunities to meet public health objectives.
2025
2021
Estimating surface NO2 concentrations over Europe using Sentinel-5P TROPOMI
Satellite observations from instruments such as the TROPOspheric Monitoring Instrument (TROPOMI) show significant potential for monitoring the spatiotemporal variability of NO2, however they typically provide vertically integrated measurements over the tropospheric column. In this study, we introduce a machine learning approach entitled ‘S-MESH’ (Satellite and ML-based Estimation of Surface air quality at High resolution) that allows for estimating daily surface NO2 concentrations over Europe at 1 km spatial resolution based on eXtreme gradient boost (XGBoost) model using primarily observation-based datasets over the period 2019–2021. Spatiotemporal datasets used by the model include TROPOMI NO2 tropospheric vertical column density, night light radiance from the Visible Infrared Imaging Radiometer Suite (VIIRS), Normalized Difference Vegetation Index from the Moderate Resolution Imaging Spectroradiometer (MODIS), observations of air quality monitoring stations from the European Environment Agency database and modeled meteorological parameters such as planetary boundary layer height, wind velocity, temperature. The overall model evaluation shows a mean absolute error of 7.77 μg/m3, a median bias of 0.6 μg/m3 and a Spearman rank correlation of 0.66. The model performance is found to be influenced by NO2 concentration levels, with the most reliable predictions at concentration levels of 10–40 μg/m3 with a bias of
2024
Biomass burning emission analysis based on MODIS
We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication of smoke source–strength, (2) identify regions where the common emission dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss rate from each model. The results point to a need for increased numbers of available BB cases for study in some regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates and of detailed particle microphysical and optical properties; this would both better constrain models and help distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional efforts at constraining aerosol source strength and other model attributes with multi-platform observations.
2025
A global assemblage of regional prescribed burn records — GlobalRx
Abstract Prescribed burning (RxB) is a land management tool used widely for reducing wildfire hazard, restoring biodiversity, and managing natural resources. However, RxB can only be carried out safely and effectively under certain seasonal or weather conditions. Under climate change, shifts in the frequency and timing of these weather conditions are expected but analyses of climate change impacts have been restricted to select few regions partly due to a paucity of RxB records at global scale. Here, we introduce GlobalRx, a dataset including 204,517 RxB records from 1979–2023, covering 16 countries and 209 terrestrial ecoregions. For each record, we add a comprehensive suite of meteorological variables that are regularly used in RxB prescriptions by fire management agencies, such as temperature, humidity, and wind speed. We also characterise the environmental setting of each RxB, such as land cover and protected area status. GlobalRx enables the bioclimatic range of conditions suitable for RxB to be defined regionally, thus unlocking new potential to study shifting opportunities for RxB planning and implementation under future climate.
2025
A worldwide aerosol phenomenology: Elemental and organic carbon in PM2.5 and PM10
Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) concentrations in the inhalable (PM10) and fine (PM2.5) size fractions are measured worldwide, albeit with different analytical methods. These measurements from many researchers were collected and analyzed for Africa, America, Asia, and Europe for 2012–2019. EC/PM, OC/PM, and OC/EC ratios were examined based on region, site type, and season to infer potential sources and impacts. These analyses demonstrate that carbonaceous materials are important PM constituents throughout the world. Mean EC/PM ratios were lowest in PM10 in Sahelian Africa and Europe (∼0.01), highest (>0.07) in PM2.5 at urban sites in North America, South America, and Japan. Mean OC/PM ratios were lowest in PM10 in the Sahel (∼0.06) and in PM2.5 in China and Thailand (0.10), and highest in central and eastern Europe (∼0.3) and North America (∼0.4). OC/EC ratios were elevated in western and northern Europe, and at regional background sites in North America. EC/PM increased with PM10 in Thailand, while OC/PM increased with higher PM mass in Thailand, India, and North America, highlighting the specific contribution of carbonaceous aerosols to PM pollution in these regions. At European and North American background sites, OC/EC ratios increased with PM mass. Higher OC/EC ratios in dry periods indicate influence of wildfires, prescribed burns, and secondary aerosol formation. Elevated wintertime EC/PM ratios coincide with residential heating in temperate climate zones.
2025
Abstract In this study, we evaluated the genomic stability of oral mucosal epithelial cells (OMECs) cultured in complex media (COM) and xenobiotic-free media (XF) to assess their potential clinical application for limbal stem cell deficiency (LSCD) treatments. OMECs serve as a promising autologous cell source for bilateral LSCD treatment, offering an alternative to limbal epithelial cells (LECs). However, genomic integrity is crucial to ensure the long-term success of transplanted cells. We performed micronucleus (MNi) tests and comet assays to compare DNA damage in OMECs cultured in both media types. The results indicated no significant differences in cell morphology, viability, or size between the two conditions. The MNi frequency was similar, with 5.67 and 6.17 MNi per 1,000 cells in COM and XF conditions, respectively. Comet assay results showed low levels of strand breaks (SBs) and oxidized DNA lesions in both media, with XF showing a slightly lower, albeit statistically insignificant, percentage of tail DNA for net Fpg-sensitive sites. Our findings suggest that OMECs can be effectively cultivated in either COM or XF media without inducing significant DNA damage, supporting the potential use of XF media in clinical settings to reduce contamination risks. This study underscores the importance of genomic stability in cultured cells for ocular surface transplantation, contributing valuable insights into optimizing culture conditions for safer and more effective clinical applications.
2025
Modelling Arctic lower-tropospheric ozone: processes controlling seasonal variations
Abstract. Previous assessments on modelling Arctic tropospheric ozone (O3) have shown that most atmospheric models continue to experience difficulties in simulating tropospheric O3 in the Arctic, particularly in capturing the seasonal variations at coastal sites, primarily attributed to the lack of representation of surface bromine chemistry in the Arctic. In this study, two independent chemical transport models (CTMs), DEHM (Danish Eulerian Hemispheric Model) and GEM-MACH (Global Environmental Multi-scale – Modelling Air quality and Chemistry), were used to simulate Arctic lower-tropospheric O3 for the year 2015 at considerably higher horizontal resolutions (25 and 15 km, respectively) than the large-scale models in the previous assessments. Both models include bromine chemistry but with different mechanistic representations of bromine sources from snow- and ice-covered polar regions: a blowing-snow bromine source mechanism in DEHM and a snowpack bromine source mechanism in GEM-MACH. Model results were compared with a suite of observations in the Arctic, including hourly observations from surface sites and mobile platforms (buoys and ships) and ozonesonde profiles, to evaluate models' ability to simulate Arctic lower-tropospheric O3, particularly in capturing the seasonal variations and the key processes controlling these variations. Both models are found to behave quite similarly outside the spring period and are able to capture the observed overall surface O3 seasonal cycle and synoptic-scale variabilities, as well as the O3 vertical profiles in the Arctic. GEM-MACH (with the snowpack bromine source mechanism) was able to simulate most of the observed springtime ozone depletion events (ODEs) at the coastal and buoy sites well, while DEHM (with the blowing-snow bromine source mechanism) simulated much fewer ODEs. The present study demonstrates that the springtime O3 depletion process plays a central role in driving the surface O3 seasonal cycle in central Arctic, and that the bromine-mediated ODEs, while occurring most notably within the lowest few hundred metres of air above the Arctic Ocean, can induce a 5 %–7 % of loss in the total pan-Arctic tropospheric O3 burden during springtime. The model simulations also showed an overall enhancement in the pan-Arctic O3 concentration due to northern boreal wildfire emissions in summer 2015; the enhancement is more significant at higher altitudes. Higher O3 excess ratios (ΔO3/ΔCO) found aloft compared to near the surface indicate greater photochemical O3 production efficiency at higher altitudes in fire-impacted air masses. The model simulations further indicated an enhancement in NOy in the Arctic due to wildfires; a large portion of NOy produced from the wildfire emissions is found in the form of PAN that is transported to the Arctic, particularly at higher altitudes, potentially contributing to O3 production there.
2025
2025
The Opinion of the Scientific Committee on Health, Environmental and Emerging Risks advises the European Commission on whether the uses of titanium dioxide in toys and toy materials can be considered to be safe in light of the identified exposure, and the classification of titanium dioxide as carcinogenic category 2 after inhalation. Four toy products including casting kits, chalk, powder paints and white colour pencils containing various amounts of TiO2 as colouring agent were evaluated for inhalation risks. For the oral route, childrens’ lip gloss/lipstick, finger paint and white colour pencils were evaluated.
When it can be demonstrated with high certainty that no ultrafine fraction is present in pigmentary TiO2 preparations used in toys and toy materials, safe use with no or negligible risk for all products considered is indicated based on the exposure estimations of this Opinion. However, if an ultrafine fraction is assumed to be present, safe use is not indicated, except for white colour pencils.
2024