Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2486 publikasjoner. Viser side 1 av 249:

Publikasjon  
År  
Kategori

A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials

Jeliazkova, Nina; Longhin, Eleonora Marta; El Yamani, Naouale; Rundén-Pran, Elise; Moschini, Elisa; Serchi, Tommaso; Vrček, Ivana Vinković; Burgum, Michael J.; Doak, Shareen H.; Cimpan, Mihaela Roxana; Rios-Mondragon, Ivan; Cimpan, Emil; Battistelli, Chiara L.; Bossa, Cecilia; Tsekovska, Rositsa; Drobne, Damjana; Novak, Sara; Repar, Neža; Ammar, Ammar; Nymark, Penny; Di Battista, Veronica; Sosnowska, Anita; Puzyn, Tomasz; Kochev, Nikolay; Iliev, Luchesar; Jeliazkov, Vedrin; Reilly, Katie; Lynch, Iseult; Martine, Bakker; Delpivo, Camilla; Sánchez Jiménez, Araceli; Fonseca, Ana Sofia; Manier, Nicolas; Fernandez-Cruz, María Luisa; Rashid, Shahzad; Willighagen, Egon L.; Apostolova, Margarita D; Dusinska, Maria

2024

Emission ensemble approach to improve the development of multi-scale emission inventories

Thunis, Philippe; Kuenen, Jeroen; Pisoni, Enrico; Bessagnet, Bertrand; Banja, Manjola; Gawuc, Lech; Szymankiewicz, Karol; Guizardi, Diego; Crippa, Monica; Lopez-Aparicio, Susana; Guevara, Marc; de Meij, Alexander; Schindlbacher, Sabine; Clappier, Alain

Many studies have shown that emission inventories are one of the inputs with the most critical influences on the results of air quality modelling. Comparing emission inventories among themselves is, therefore, essential to build confidence in emission estimates. In this work, we extend the approach of Thunis et al. (2022) to compare emission inventories by building a benchmark that serves as a reference for comparisons. This benchmark is an ensemble that is based on three state-of-the-art EU-wide inventories: CAMS-REG, EMEP and EDGAR. The ensemble-based methodology screens differences between inventories and the ensemble. It excludes differences that are not relevant and identifies among the remaining ones those that need special attention. We applied the ensemble-based screening to both an EU-wide and a local (Poland) inventory.

The EU-wide analysis highlighted a large number of inconsistencies. While the origin of some differences between EDGAR and the ensemble can be identified, their magnitude remains to be explained. These differences mostly occur for SO2 (sulfur oxides), PM (particulate matter) and NMVOC (non-methane volatile organic carbon) for the industrial and residential sectors and reach a factor of 10 in some instances. Spatial inconsistencies mostly occur for the industry and other sectors.

At the local scale, inconsistencies relate mostly to differences in country sectorial shares that result from different sectors/activities being accounted for in the two types of inventories. This is explained by the fact that some emission sources are omitted in the local inventory due to a lack of appropriate geographically allocated activity data. We identified sectors and pollutants for which discussion between local and EU-wide emission compilers would be needed in order to reduce the magnitude of the observed differences (e.g. in the residential and industrial sectors).

The ensemble-based screening proved to be a useful approach to spot inconsistencies by reducing the number of necessary inventory comparisons. With the progressive resolution of inconsistencies and associated inventory improvements, the ensemble will improve. In this sense, we see the ensemble as a useful tool to motivate the community around a single common benchmark and monitor progress towards the improvement of regionally and locally developed emission inventories.

2024

Understanding individual heat exposure through interdisciplinary research on thermoception

Serrano, Paloma Yáñez; Bieńkowska, Zofia; Boni, Zofia; Chwałczyk, Franciszek; Hassani, Amirhossein

Extreme heat events are more frequent and more intense globally due to climate change. The urban environment is an additional factor enhancing the effects of heat. Adults above 65 years old are especially at risk due to their poorer health, physiology and socio-economic situation. Yet, there is limited knowledge about their experiences of summer heat, their actual heat exposure and how they negotiate their thermal comfort through different adaptation practices. In conventional research on heat exposure and thermal comfort, very little attention is given to individual behaviour and subjective experiences. To understand how older adults feel the heat in the city we study their thermoception, which we conceptualise as an embodied knowledge about bodily sensations, thermal environments and adjustments to heat. This article stems from interdisciplinary research conducted in Warsaw and Madrid in the summers of 2021–2022. We combine and juxtapose data from ethnographic research and from physical measurements of temperature gathered in people’s homes, to show on a microscale how we can study and understand the diversity in individual heat exposure more holistically. We demonstrate that to understand the consequences of heat for vulnerable populations it is crucial to study thermoception, the subjective experiences of heat, in addition to analysing their thermal environments. With the use of a unique methodology, this article shows how similar weather conditions are experienced differently by people from the same cities, depending on the materiality of their dwellings, availability of cooling devices, as well as everyday habits and their individual bodies. We discuss the social, material and temporal adjustments participants made to deal with heat, to showcase their agency in affecting their individual heat exposure. The article emphasises the role of social sciences and qualitative methods in research on individual heat exposure and argues for the co-production of knowledge on the topic.

Palgrave Macmillan

2024

A Machine Learning Approach to Retrieving Aerosol Optical Depth Using Solar Radiation Measurements

Logothetis, Stavros-Andreas; Salamalikis, Vasileios; Kazantzidis, Andreas

Aerosol optical depth (AOD) constitutes a key parameter of aerosols, providing vital information for quantifying the aerosol burden and air quality at global and regional levels. This study demonstrates a machine learning strategy for retrieving AOD under cloud-free conditions based on the synergy of machine learning algorithms (MLAs) and ground-based solar irradiance data. The performance of the proposed methodology was investigated by applying different components of solar irradiance. In particular, the use of direct instead of global irradiance as a model feature led to better performance. The MLA-based AODs were compared to reference AERONET retrievals, which encompassed RMSE values between 0.01 and 0.15, regardless of the underlying climate and aerosol environments. Among the MLAs, artificial neural networks outperformed the other algorithms in terms of RMSE at 54% of the measurement sites. The overall performance of MLA-based AODs against AERONET revealed a high coefficient of determination (R2 = 0.97), MAE of 0.01, and RMSE of 0.02. Compared to satellite (MODIS) and reanalysis (MERRA-2 and CAMSRA) data, the MLA-AOD retrievals revealed the highest accuracy at all stations. The ML-AOD retrievals have the potential to expand and complement the AOD information in non-existing timeframes when solar irradiances are available.

MDPI

2024

Estimating stratospheric polar vortex strength using ambient ocean-generated infrasound and stochastics-based machine learning

Vorobeva, Ekaterina; Eggen, Mari Dahl; Midtfjord, Alise Danielle; Benth, Fred Espen; Hupe, Patrick; Brissaud, Quentin; Orsolini, Yvan Joseph Georges Emile G.; Näsholm, Sven Peter

There are sparse opportunities for direct measurement of upper stratospheric winds, yet improving their representation in subseasonal-to-seasonal prediction models can have significant benefits. There is solid evidence from previous research that global atmospheric infrasound waves are sensitive to stratospheric dynamics. However, there is a lack of results providing a direct mapping between infrasound recordings and polar-cap upper stratospheric winds. The global International Monitoring System (IMS), which monitors compliance with the Comprehensive Nuclear-Test-Ban Treaty, includes ground-based stations that can be used to characterize the infrasound soundscape continuously. In this study, multi-station IMS infrasound data were utilized along with a machine-learning supported stochastic model, Delay-SDE-net, to demonstrate how a near-real-time estimate of the polar-cap averaged zonal wind at 1-hPa pressure level can be found from infrasound data. The infrasound was filtered to a temporal low-frequency regime dominated by microbaroms, which are ambient-noise infrasonic waves continuously radiated into the atmosphere from nonlinear interaction between counter-propagating ocean surface waves. Delay-SDE-net was trained on 5 years (2014–2018) of infrasound data from three stations and the ERA5 reanalysis 1-hPa polar-cap averaged zonal wind. Using infrasound in 2019–2020 for validation, we demonstrate a prediction of the polar-cap averaged zonal wind, with an error standard deviation of around 12 m·s compared with ERA5. These findings highlight the potential of using infrasound data for near-real-time measurements of upper stratospheric dynamics. A long-term goal is to improve high-top atmospheric model accuracy, which can have significant implications for weather and climate prediction.

John Wiley & Sons

2024

Life starts with plastic: High occurrence of plastic pieces in fledglings of northern fulmars

Collard, France; Benjaminsen, Stine Charlotte; Herzke, Dorte; Husabø, Eirin; Sagerup, Kjetil; Tulatz, Felix; Gabrielsen, Geir W.

Elsevier

2024

Effect of Long-Range Transported Fire Aerosols on Cloud Condensation Nuclei Concentrations and Cloud Properties at High Latitudes

Kommula, Snehitha M.; Buchholz, Angela; Gramlich, Yvette; Mielonen, Tero; Hao, L.; Pullinen, Iida; Vettikkat, Lejish; Ylisirniö, A.; Joutsensaari, J.; Schobesberger, Siegfried; Tiitta, P; Leskinen, Ari; Heslin-Rees, Dominic; Haslett, S. L.; Siegel, Karolina; Lunder, Chris Rene; Zieger, Paul; Krejci, Radovan; Romakkaniemi, Sami; Mohr, C.; Virtanen, Annele

Active vegetation fires in south-eastern (SE) Europe resulted in a notable increase in the number concentration of aerosols and cloud condensation nuclei (CCN) particles at two high latitude locations—the SMEAR IV station in Kuopio, Finland, and the Zeppelin Observatory in Svalbard, high Arctic. During the fire episode aerosol hygroscopicity κ slightly increased at SMEAR IV and at the Zeppelin Observatory κ decreased. Despite increased κ in high CCN conditions at SMEAR IV, the aerosol activation diameter increased due to the decreased supersaturation with an increase in aerosol loading. In addition, at SMEAR IV during the fire episode, in situ measured cloud droplet number concentration (CDNC) increased by a factor of ∼7 as compared to non-fire periods which was in good agreement with the satellite observations (MODIS, Terra). Results from this study show the importance of SE European fires for cloud properties and radiative forcing in high latitudes.

American Geophysical Union (AGU)

2024

Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing

Serafini, Melania Maria; Sepheri, Sara; Midali, Miriam; Stinckens, Marth; Biesiekierska, Marta; Wolniakowska, Anna; Gatzios, Alexandra; Rundén-Pran, Elise; Reszka, Edyta; Marinovich, Marina; Vanhaecke, Tamara; Roszak, Joanna; Viviani, Barbara; Tanima, SenGupta

Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.

Springer

2024

The Greenhouse Gas Budget of Terrestrial Ecosystems in East Asia Since 2000

Wang, Xuhui; Gao, Yuanyi; Jeong, Sujong; Ito, Akihiko; Bastos, Ana; Poulter, Benjamin; Wang, Yilong; Ciais, Philippe; Tian, Hanqin; Yuan, Wenping; Chandra, Naveen; Chevallier, Frédéric; Fan, Lei; Hong, Songbai; Lauerwald, Ronny; Li, Wei; Lin, Zhengyang; Pan, Naiqing; Patra, Prabir K.; Peng, Shushi; Ran, Lishan; Sang, Yuxing; Sitch, Stephen; Takashi, Maki; Thompson, Rona Louise; Wang, Chenzhi; Wang, Kai; Wang, Tao; Xi, Yi; Xu, Liang; Yan, Yanzi; Yun, Jeongmin; Zhang, Yao; Zhang, Yuzhong; Zhang, Zhen; Zheng, Bo; Zhou, Feng; Tao, Shu; Canadell, Josep G.; Piao, Shilong

American Geophysical Union (AGU)

2024

Publikasjon
År
Kategori