Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 835 publikasjoner. Viser side 14 av 35:

Publikasjon  
År  
Kategori

Simulated and projected relationship between the East Asian winter monsoon and winter Arctic Oscillation in CMIP5 models

Li, Shuo; He, Shengping; Li, Fei; Wang, Huijun

Interdecadal change in the relationship between the East Asian winter monsoon (EAWM) and the Arctic Oscillation (AO) has been documented by many studies. This study, utilizing the model outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5), evaluates the ability of the coupled models in CMIP5 to capture the intensified relationship between the EAWM and winter AO since the 1980s, and further projects the evolution of the EAWM–AO relationship during the 21st century. It is found that the observed evolution of the EAWM–AO relationship can be reproduced well by some coupled models (e.g., GFDL-ESM2M, GISS-E2-H, and MPI-ESM-MR). The coupled models’ simulations indicate that the impact of winter AO on the EAWM-related circulation and East Asian winter temperature has strengthened since the 1980s. Such interdecadal change in the EAWM–AO relationship is attributed to the intensified propagation of stationary planetary waves associated with winter AO. Projections under the RCP4.5 and RCP8.5 scenarios suggest that the EAWM–AO relationship is significant before the 2030s and after the early 2070s, and insignificant during the 2060s, but uncertain from the 2030s to the 2050s.

2018

Evaluation of climate model aerosol trends with ground-based observations over the last 2 decades – an AeroCom and CMIP6 analysis

Mortier, Augustin; Gliss, Jonas; Schulz, Michael; Aas, Wenche; Andrews, Elisabeth; Bian, Huisheng; Chin, Mian; Ginoux, Paul; Hand, Jenny; Holben, Brent; Zhang, Hua; Kipling, Zak; Kirkevåg, Alf; Laj, Paolo; Lurton, Thibault; Myhre, Gunnar; Neubauer, David; Oliviè, Dirk Jan Leo; Salzen, Knut von; Skeie, Ragnhild Bieltvedt; Takemura, Toshihiko; Tilmes, Simone

This study presents a multiparameter analysis of aerosol trends over the last 2 decades at regional and global scales. Regional time series have been computed for a set of nine optical, chemical-composition and mass aerosol properties by using the observations from several ground-based networks. From these regional time series the aerosol trends have been derived for the different regions of the world. Most of the properties related to aerosol loading exhibit negative trends, both at the surface and in the total atmospheric column. Significant decreases in aerosol optical depth (AOD) are found in Europe, North America, South America, North Africa and Asia, ranging from −1.2 % yr−1 to −3.1 % yr−1. An error and representativity analysis of the spatially and temporally limited observational data has been performed using model data subsets in order to investigate how much the observed trends represent the actual trends happening in the regions over the full study period from 2000 to 2014. This analysis reveals that significant uncertainty is associated with some of the regional trends due to time and space sampling deficiencies. The set of observed regional trends has then been used for the evaluation of 10 models (6 AeroCom phase III models and 4 CMIP6 models) and the CAMS reanalysis dataset and of their skills in reproducing the aerosol trends. Model performance is found to vary depending on the parameters and the regions of the world. The models tend to capture trends in AOD, the column Ångström exponent, sulfate and particulate matter well (except in North Africa), but they show larger discrepancies for coarse-mode AOD. The rather good agreement of the trends, across different aerosol parameters between models and observations, when co-locating them in time and space, implies that global model trends, including those in poorly monitored regions, are likely correct. The models can help to provide a global picture of the aerosol trends by filling the gaps in regions not covered by observations. The calculation of aerosol trends at a global scale reveals a different picture from that depicted by solely relying on ground-based observations. Using a model with complete diagnostics (NorESM2), we find a global increase in AOD of about 0.2 % yr−1 between 2000 and 2014, primarily caused by an increase in the loads of organic aerosols, sulfate and black carbon.

2020

Potato plant disease detection: leveraging hybrid deep learning models

Sinamenye, Jackson Herbert; Chatterjee, Ayan; Shrestha, Raju

Agriculture, a crucial sector for global economic development and sustainable food production, faces significant challenges in detecting and managing crop diseases. These diseases can greatly impact yield and productivity, making early and accurate detection vital, especially in staple crops like potatoes. Traditional manual methods, as well as some existing machine learning and deep learning techniques, often lack accuracy and generalizability due to factors such as variability in real-world conditions. This study proposes a novel approach to improve potato plant disease detection and identification using a hybrid deep-learning model, EfficientNetV2B3+ViT. This model combines the strengths of a Convolutional Neural Network - EfficientNetV2B3 and a Vision Transformer (ViT). It has been trained on a diverse potato leaf image dataset, the “Potato Leaf Disease Dataset”, which reflects real-world agricultural conditions. The proposed model achieved an accuracy of 85.06, representing an 11.43 improvement over the results of the previous study. These results highlight the effectiveness of the hybrid model in complex agricultural settings and its potential to improve potato plant disease detection and identification.

2025

Hazard assessment of nanomaterials: how to meet the requirements for (next generation) risk assessment

Longhin, Eleonora Marta; Mondragon, Ivan Rios; Mariussen, Espen; Zheng, Congying; Puntes, Victor Franco; Hofshagen, Ole-Bendik; Cimpan, Mihaela-Roxana; Shaposhnikov, Sergey; Dusinska, Maria; Rundén-Pran, Elise

Background

Hazard and risk assessment of nanomaterials (NMs) face challenges due to, among others, the numerous existing nanoforms, discordant data and conflicting results found in the literature, and specific challenges in the application of strategies such as grouping and read-across, emphasizing the need for New Approach Methodologies (NAMs) to support Next Generation Risk Assessment (NGRA). Here these challenges are addressed in a study that couples physico-chemical characterization with in vitro investigations and in silico similarity analyses for nine nanoforms, having different chemical composition, sizes, aggregation states and shapes. For cytotoxicity assessment, three methods (Alamar Blue, Colony Forming Efficiency, and Electric Cell-Substrate Impedance Sensing) are applied in a cross-validation approach to support NAMs implementation into NGRA.

Results

The results highlight the role of physico-chemical properties in eliciting biological responses. Uptake studies reveal distinct cellular morphological changes. The cytotoxicity assessment shows varying responses among NMs, consistent among the three methods used, while only one nanoform gave a positive response in the genotoxicity assessment performed by comet assay.

Conclusions

The study highlights the potential of in silico models to effectively identify biologically active nanoforms based on their physico-chemical properties, reinforcing previous knowledge on the relevance of certain properties, such as aspect ratio. The potential of implementing in vitro methods into NGRA is underlined, cross-validating three cytotoxicity assessment methods, and showcasing their strength in terms of sensitivity and suitability for the testing of NMs.

2024

Microplastics in the atmosphere and cryosphere in the circumpolar North: a case for multicompartment monitoring

Hamilton, Bonnie M.; Jantunen, Liisa; Bergmann, Melanie; Vorkamp, Katrin; Aherne, Julian; Magnusson, Kerstin; Herzke, Dorte; Granberg, Maria; Hallanger, Ingeborg G.; Gomiero, Alessio; Peeken, Ilka

The atmosphere and cryosphere have recently garnered considerable attention due to their role in transporting microplastics to and within the Arctic, and between freshwater, marine, and terrestrial environments. While investigating either in isolation provides valuable insight on the fate of microplastics in the Arctic, monitoring both provides a more holistic view. Nonetheless, despite the recent scientific interest, fundamental knowledge on microplastic abundance and consistent monitoring efforts are lacking for these compartments. Here, we build upon the work of the Arctic Monitoring and Assessment Programme's Monitoring Guidelines for Litter and Microplastic to provide a roadmap for multicompartment monitoring of the atmosphere and cryosphere to support our understanding of the sources, pathways, and sinks of plastic pollution across the Arctic. Overall, we recommend the use of existing standard techniques for ice and atmospheric sampling and to build upon existing monitoring efforts in the Arctic to obtain a more comprehensive pan-Arctic view of microplastic pollution in these two compartments.

2022

A case study of anisotropic airborne pollen transport in Northern Patagonia using a Lagrangian particle dispersion model

Pérez, Claudio Fabian; Bianchi, María Martha; Gassmann, María Isabel; Tonti, Natalia; Pisso, Ignacio

2018

Hemispheric-scale heavy metal pollution from South American and Australian mining and metallurgy during the Common Era

McConnell, Joseph R.; Chellman, Nathan J.; Wensman, Sophia M.; Plach, Andreas; Stanish, Charles; Santibáñez, Pamela A.; Brugger, Sandra O.; Eckhardt, Sabine; Freitag, Johannes; Kipfstuhl, Sepp; Stohl, Andreas

2024

Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling: From global emissions to deposition

Evangeliou, Nikolaos; Tichý, Ondřej; Eckhardt, Sabine; Zwaaftink, Christine Groot; Brahney, Janice

We combine observations from Western USA and inverse modelling to constrain global atmospheric emissions of microplastics (MPs) and microfibers (MFs). The latter are used further to model their global atmospheric dynamics. Global annual MP emissions were calculated as 9.6 ± 3.6 Tg and MF emissions as 6.5 ± 2.9 Tg. Global average monthly MP concentrations were 47 ng m-3 and 33 ng m-3 for MFs, at maximum. The largest deposition of agricultural MPs occurred close to the world’s largest agricultural regions. Road MPs mostly deposited in the East Coast of USA, Central Europe, and Southeastern Asia; MPs resuspended with mineral dust near Sahara and Middle East. Only 1.8% of the emitted mass of oceanic MPs was transferred to land, and 1.4% of land MPs to ocean; the rest were deposited in the same environment. Previous studies reported that 0.74–1.9 Tg y-1 of land-based atmospheric MPs/MFs (

2022

Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020–2030

Jeddi, Maryam Zare; Hopf, Nancy B.; Louro, Henriqueta; Viegas, Susana; Galea, Karen S.; Pasanen-Kase, Robert; Santonen, Tiina; Mustieles, Vicente; Fernandez, Mariana F.; Verhagen, Hans; Bopp, Stephanie K.; Antignac, Jean Philippe; David, Arthur; Mol, Hans; Barouki, Robert; Audouze, Karine; Duca, Radu-Corneliu; Fantke, Peter; Scheepers, Paul; Ghosh, Manosij; Nieuwenhuyse, An Van; Vicente, Joana Lobo; Trier, Xenia; Rambaud, Loïc; Fillol, Clémence; Denys, Sebastien; Conrad, André; Kolossa-Gehring, Marike; Paini, Alicia; Arnot, Jon; Schulze, Florian; Jones, Kate; Sepai, Ovnair; Ali, Imran; Brennan, Lorraine; Benfenati, Emilio; Cubadda, Francesco; Mantovani, Alberto; Bartonova, Alena; Connolly, Alison; Slobodnik, Jaroslav; Bruin, Yuri Bruinen de; Klaveren, Jacob van; Palmen, Nicole; Dirven, Hubert; Husøy, Trine; Thomsen, Cathrine; Virgolino, Ana; Röösli, Martin; Gant, Tim; Goetz, Natalie von; Bessems, Jos

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission’s Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures.

In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders.

HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

2022

SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality

Stebel, Kerstin; Stachlewska, Iwona S.; Nemuc, Anca; Horálek, Jan; Schneider, Philipp; Ajtai, Nicolae; Diamandi, Andrei; Benesova, Nina; Boldeanu, M.; Botezan, Camelia; Markova, Jana; Dumitrache, R.; Iriza-Burca, Amalia; Juras, R.; Nicolae, Doina; Nicolae, V.; Novotný, Petr; Stefanie, Horatiu; Vanek, Lumir; Vlcek, O.; Zawadzka-Manko, Olga; Zehner, Claus

The satellite based monitoring initiative for regional air quality (SAMIRA) initiative was set up to demonstrate the exploitation of existing satellite data for monitoring regional and urban scale air quality. The project was carried out between May 2016 and December 2019 and focused on aerosol optical depth (AOD), particulate matter (PM), nitrogen dioxide (NO2), and sulfur dioxide (SO2). SAMIRA was built around several research tasks: 1. The spinning enhanced visible and infrared imager (SEVIRI) AOD optimal estimation algorithm was improved and geographically extended from Poland to Romania, the Czech Republic and Southern Norway. A near real-time retrieval was implemented and is currently operational. Correlation coefficients of 0.61 and 0.62 were found between SEVIRI AOD and ground-based sun-photometer for Romania and Poland, respectively. 2. A retrieval for ground-level concentrations of PM2.5 was implemented using the SEVIRI AOD in combination with WRF-Chem output. For representative sites a correlation of 0.56 and 0.49 between satellite-based PM2.5 and in situ PM2.5 was found for Poland and the Czech Republic, respectively. 3. An operational algorithm for data fusion was extended to make use of various satellite-based air quality products (NO2, SO2, AOD, PM2.5 and PM10). For the Czech Republic inclusion of satellite data improved mapping of NO2 in rural areas and on an annual basis in urban background areas. It slightly improved mapping of rural and urban background SO2. The use of satellites based AOD or PM2.5 improved mapping results for PM2.5 and PM10. 4. A geostatistical downscaling algorithm for satellite-based air quality products was developed to bridge the gap towards urban-scale applications. Initial testing using synthetic data was followed by applying the algorithm to OMI NO2 data with a direct comparison against high-resolution TROPOMI NO2 as a reference, thus allowing for a quantitative assessment of the algorithm performance and demonstrating significant accuracy improvements after downscaling. We can conclude that SAMIRA demonstrated the added value of using satellite data for regional- and urban-scale air quality monitoring.

2021

Composition and sources of carbonaceous aerosols in Northern Europe during winter

Glasius, M.; Hansen, A. M. K.; Claeys, M.; Henzing, J.S; Jedynska, A. D.; Kasper-Giebl, Anne; Kistler, M.; Kristensen, K.; Martinsson, J.; Maenhaut, W.; Nøjgaard, J.K.; Spindler, G.; Stenström, K. E.; Swietlicki, E.; Szidat, S.; Simpson, David; Yttri, Karl Espen

2018

Holocene black carbon in New Zealand lake sediment records

Brugger, Sandra O.; McWethy, David B.; Chellman, Nathan J.; Prebble, Matiu; Mustaphi, Colin J. Courtney; Eckhardt, Sabine; Plach, Andreas; Stohl, Andreas; Wilmshurst, Janet M.; McConnell, Joseph R.; Whitlock, Cathy

Black carbon emitted from incomplete combustion of biomass and fossil fuel burning is an important aerosol; however, available long-term black carbon data are limited to remote polar and high-alpine ice cores from few geographic regions. Black carbon records from lake sediments fill geographic gaps but such records are still scarce, particularly in the Southern Hemisphere. We applied a new incandescence-based methodology to develop Holocene refractory black carbon (rBC) records from four lake-sediment archives in New Zealand and compare these with macroscopic charcoal records. Our rBC records suggest periods with substantial rBC deposition during the Holocene before human arrival in the 13th century reflecting long-range transport and possibly local wetland fires. With Polynesian settlement, rBC deposition increased on the South Island in agreement with macroscopic charcoal records, and it is this period of burning that is proposed as the source of rBC increases evident in Antarctic ice cores. However, sites on the North Island show no contemporaneous rBC increase suggesting regional differences in biomass burning patterns between the North and South islands. None of the New Zealand records show an increase in rBC from fossil fuel sources during the Industrial Era post-1850 CE.

2024

Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model

Elje, Elisabeth; Mariussen, Espen; Moriones, Oscar H.; Bastus, Neus G.; Puntes, Victor; Kohl, Yvonne; Dusinska, Maria; Rundén-Pran, Elise

(1) In compliance with the 3Rs policy to reduce, refine and replace animal experiments, the development of advanced in vitro models is needed for nanotoxicity assessment. Cells cultivated in 3D resemble organ structures better than 2D cultures. This study aims to compare cytotoxic and genotoxic responses induced by titanium dioxide (TiO2), silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) in 2D monolayer and 3D spheroid cultures of HepG2 human liver cells. (2) NPs were characterized by electron microscopy, dynamic light scattering, laser Doppler anemometry, UV-vis spectroscopy and mass spectrometry. Cytotoxicity was investigated by the alamarBlue assay and confocal microscopy in HepG2 monolayer and spheroid cultures after 24 h of NP exposure. DNA damage (strand breaks and oxidized base lesions) was measured by the comet assay. (3) Ag-NPs were aggregated at 24 h, and a substantial part of the ZnO-NPs was dissolved in culture medium. Ag-NPs induced stronger cytotoxicity in 2D cultures (EC50 3.8 µg/cm2) than in 3D cultures (EC50 > 30 µg/cm2), and ZnO-NPs induced cytotoxicity to a similar extent in both models (EC50 10.1–16.2 µg/cm2). Ag- and ZnO-NPs showed a concentration-dependent genotoxic effect, but the effect was not statistically significant. TiO2-NPs showed no toxicity (EC50 > 75 µg/cm2). (4) This study shows that the HepG2 spheroid model is a promising advanced in vitro model for toxicity assessment of NPs.

2020

Strengths and weaknesses of the FAIRMODE benchmarking methodology for the evaluation of air quality models

Monteiro, Alexandra; Durka, Pawel; Flandorfer, Claudia; Georgieva, Emilia; Guerreiro, Cristina; Kushta, Jonilda; Malherbe, L.; Maiheu, B.; Miranda, Ana Isabel; Santos, Gabriela Sousa; Stocker, Jenny R.; Trimpeneers, Elke; Tognet, Frédéric; Stortini, Michele; Wesseling, Joost; Janssen, Stijn; Thunis, Philippe

2018

Pharmacokinetics of PEGylated Gold Nanoparticles: In Vitro—In Vivo Correlation

Dubaj, Tibor; Kozics, Katarina; Srámková, Monika; Manova, Alena; Bastus, Neus G.; Moriones, Oscar H.; Kohl, Yvonne; Dusinska, Maria; Rundén-Pran, Elise; Puntes, Victor; Nelson, Andrew; Gábelová, Alena; Simon, Peter

Data suitable for assembling a physiologically-based pharmacokinetic (PBPK) model for nanoparticles (NPs) remain relatively scarce. Therefore, there is a trend in extrapolating the results of in vitro and in silico studies to in vivo nanoparticle hazard and risk assessment. To evaluate the reliability of such approach, a pharmacokinetic study was performed using the same polyethylene glycol-coated gold nanoparticles (PEG-AuNPs) in vitro and in vivo. As in vitro models, human cell lines TH1, A549, Hep G2, and 16HBE were employed. The in vivo PEG-AuNP biodistribution was assessed in rats. The internalization and exclusion of PEG-AuNPs in vitro were modeled as first-order rate processes with the partition coefficient describing the equilibrium distribution. The pharmacokinetic parameters were obtained by fitting the model to the in vitro data and subsequently used for PBPK simulation in vivo. Notable differences were observed in the internalized amount of Au in individual cell lines compared to the corresponding tissues in vivo, with the highest found for renal TH1 cells and kidneys. The main reason for these discrepancies is the absence of natural barriers in the in vitro conditions. Therefore, caution should be exercised when extrapolating in vitro data to predict the in vivo NP burden and response to exposure.

2022

A comprehensive evaluation of the use of Lagrangian particle dispersion models for inverse modeling of greenhouse gas emissions

Vojta, Martin; Plach, Andreas; Thompson, Rona Louise; Stohl, Andreas

Using the example of sulfur hexafluoride (SF6), we investigate the use of Lagrangian particle dispersion models (LPDMs) for inverse modeling of greenhouse gas (GHG) emissions and explore the limitations of this approach. We put the main focus on the impacts of baseline methods and the LPDM backward simulation period on the a posteriori emissions determined by the inversion. We consider baseline methods that are based on a statistical selection of observations at individual measurement sites and a global-distribution-based (GDB) approach, where global mixing ratio fields are coupled to the LPDM back-trajectories at their termination points. We show that purely statistical baseline methods can cause large systematic errors, which lead to inversion results that are sensitive to the LPDM backward simulation period and can generate unrealistic global total a posteriori emissions. The GDB method produces a posteriori emissions that are far less sensitive to the backward simulation period and that show a better agreement with recognized global total emissions. Our results show that longer backward simulation periods, beyond the often used 5 to 10 d, reduce the mean squared error and increase the correlation between a priori modeled and observed mixing ratios. Also, the inversion becomes less sensitive to biases in the a priori emissions and the global mixing ratio fields for longer backward simulation periods. Further, longer periods might help to better constrain emissions in regions poorly covered by the global SF6 monitoring network. We find that the inclusion of existing flask measurements in the inversion helps to further close these gaps and suggest that a few additional and well-placed flask sampling sites would have great value for improving global a posteriori emission fields.

2022

Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling

Winiger, P.; Barrett, T. E.; Sheesley, R. J.; Huang, L.; Sharma, S.; Barrie, L. A.; Yttri, Karl Espen; Evangeliou, Nikolaos; Eckhardt, Sabine; Stohl, Andreas; Klimont, Z.; Heyes, C.; Semiletov, I. P.; Dudarev, O. V.; Charkin, A.; Shakhova, N.; Holmstrand, H.; Andersson, A.; Gustafsson, Ö.

Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.

2019

The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O

Sun, Qing; Joos, Fortunat; Lienert, Sebastian; Berthet, Sarah; Carroll, Dustin; Gong, Cheng; Ito, Akihiko; Jain, Atul K.; Kou-Giesbrecht, Sian; Landolfi, Angela; Manizza, Manfredi; Pan, Naiqing; Prather, Michael; Regnier, Pierre; Resplandy, Laure; Séférian, Roland; Shi, Hao; Suntharalingam, Parvadha; Thompson, Rona Louise; Tian, Hanqin; Vuichard, Nicolas; Zaehle, Sönke; Zhu, Qing

Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.

2024

PFAS Exposure is Associated with a Lower Spermatic Quality in an Arctic Seabird

Humann-Guilleminot, Ségolène; Blévin, Pierre; Gabrielsen, Geir W.; Herzke, Dorte; Nikiforov, Vladimir; Jouanneau, William; Moe, Børge; Parenteau, Charline; Helfenstein, Fabrice; Chastel, Olivier

Several studies have reported an increasing occurrence of poly- and perfluorinated alkyl substances (PFASs) in Arctic wildlife tissues, raising concerns due to their resistance to degradation. While some research has explored PFAS’s physiological effects on birds, their impact on reproductive functions, particularly sperm quality, remains underexplored. This study aims to assess (1) potential association between PFAS concentrations in blood and sperm quality in black-legged kittiwakes (Rissa tridactyla), focusing on the percentage of abnormal spermatozoa, sperm velocity, percentage of sperm motility, and morphology; and (2) examine the association of plasma levels of testosterone, corticosterone, and luteinizing hormone with both PFAS concentrations and sperm quality parameters to assess possible endocrine disrupting pathways. Our findings reveal a positive correlation between the concentration of longer-chain perfluoroalkyl carboxylates (PFCA; C11–C14) in blood and the percentage of abnormal sperm in kittiwakes. Additionally, we observed that two other PFAS (i.e., PFOSlin and PFNA), distinct from those associated with sperm abnormalities, were positively correlated with the stress hormone corticosterone. These findings emphasize the potentially harmful substance-specific effects of long-chain PFCAs on seabirds and the need for further research into the impact of pollutants on sperm quality as a potential additional detrimental effect on birds.

2024

Microplastics and nanoplastics in the marine-atmosphere environment

Allen, Deonie; Allen, Steve; Abbasi, Sajjad; Baker, Alex; Bergmann, Melanie; Brahney, Janice; Butler, Tim; Duce, Robert; Eckhardt, Sabine; Evangeliou, Nikolaos; Jickells, Tim; Kanakidou, Maria; Kershaw, Peter J; Laj, Paolo G.; Levermore, Joseph; Li, Daoji; Liss, Peter; Liu, Kai; Mahowald, Natalie M.; Masque, Pere; Materic, Dusan; Mayes, Andrew G.; McGinnity, Paul; Osvath, Iolanda; Prather, Kimberly A.; Prospero, Joseph M.; Revell, Laura E.; Sander, Sylvia G.; Shim, Won Joon; Slade, Jonathan; Stein, Ariel F.; Wright, Stephanie

The discovery of atmospheric micro(nano)plastic transport and ocean–atmosphere exchange points to a highly complex marine plastic cycle, with negative implications for human and ecosystem health. Yet, observations are currently limited. In this Perspective, we quantify the processes and fluxes of the marine-atmospheric micro(nano)plastic cycle, with the aim of highlighting the remaining unknowns in atmospheric micro(nano)plastic transport. Between 0.013 and 25 million metric tons per year of micro(nano)plastics are potentially being transported within the marine atmosphere and deposited in the oceans. However, the high uncertainty in these marine-atmospheric fluxes is related to data limitations and a lack of study intercomparability. To address the uncertainties and remaining knowledge gaps in the marine-atmospheric micro(nano)plastic cycle, we propose a future global marine-atmospheric micro(nano)plastic observation strategy, incorporating novel sampling methods and the creation of a comparable, harmonized and global data set. Together with long-term observations and intensive investigations, this strategy will help to define the trends in marine-atmospheric pollution and any responses to future policy and management actions.

2022

Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations

Choi, Haklim; Redington, Alison L.; Park, Hyeri; Kim, Jooil; Thompson, Rona Louise; Mühle, Jens; Salameh, Peter K.; Harth, Christina M.; Weiss, Ray F.; Manning, Alistair J.; Park, Sunyoung

Hydrofluorocarbons (HFCs) are powerful anthropogenic greenhouse gases (GHGs) with high global-warming potentials (GWPs). They have been widely used as refrigerants, insulation foam-blowing agents, aerosol propellants, and fire suppression agents. Since the mid-1990s, emissions of HFCs have been increasing rapidly as they are used in many applications to replace ozone-depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) whose consumption and production have been phased out under the Montreal Protocol (MP). Due to the high GWP of HFCs, the Kigali Amendment to the MP requires the phasedown of production and consumption of HFCs to gradually achieve an 80 %–85 % reduction by 2047, starting in 2019 for non-Article 5 (developed) countries with a 10 % reduction against each defined baseline and later schedules for Article 5 (developing) countries. In this study, we have examined long-term high-precision measurements of atmospheric abundances of five major HFCs (HFC-134a, HFC-143a, HFC-32, HFC-125, and HFC-152a) at Gosan station, Jeju Island, South Korea, from 2008 to 2020. Background abundances of HFCs gradually increased, and the inflow of polluted air masses with elevated abundances from surrounding source regions were detected over the entire period. From these pollution events, we inferred regional and country-specific HFC emission estimates using two independent Lagrangian particle dispersion models and Bayesian inversion frameworks (FLEXPART-FLEXINVERT+ and NAME-InTEM). The spatial distribution of the derived “top-down” (measurement based) emissions for all HFCs shows large fluxes from megacities and industrial areas in the region. Our most important finding is that HFC emissions in eastern China and Japan have sharply increased from 2016 to 2018. The contribution of East Asian HFC emissions to the global total increased from 9 % (2008–2014) to 13 % (2016–2020). In particular, HFC emissions in Japan (Annex I country) rose rapidly from 2016 onward, with accumulated total inferred HFC emissions being ∼ 114 Gg yr−1, which is ∼ 76 Gg yr−1 higher for 2016–2020 than the “bottom-up” (i.e., based on activity data and emission factors) emissions of ∼ 38 Gg yr−1 reported to the United Nations Framework Convention on Climate Change (UNFCCC). This is likely related to the increase in domestic demand in Japan for refrigerants and air-conditioning-system-related products and incomplete accounting. A downward trend of HFC emissions that started in 2019 reflects the effectiveness of the F-gas policy in Japan. Eastern China and South Korea, though not obligated to report to the UNFCCC, voluntarily reported emissions, which also show differences between top-down and bottom-up emission estimates, demonstrating the need for atmospheric measurements, comprehensive data analysis, and accurate reporting for precise emission management. Further, the proportional contribution of each country's CO2-equivalent HFC emissions has changed over time, with HFC-134a decreasing and HFC-125 increasing. This demonstrates the transition in the predominant HFC substances contributing to global warming in each country.

2024

Technical and environmental viability of a European CO2 EOR system

Thorne, Rebecca Jayne; Sundseth, Kyrre; Bouman, Evert; Czarnowska, Lucyna; Mathisen, Anette; Skagestad, Ragnhild; Stanek, Wojciech; Pacyna, Jozef M; Pacyna, Elisabeth G

Captured CO2 from large industrial emitters may be used for enhanced oil recovery (EOR), but as of yet there are no European large-scale EOR systems. Recent implementation decisions for a Norwegian carbon capture and storage demonstration will result in the establishment of a central CO2 hub on the west-coast of Norway and storage on the Norwegian Continental Shelf. This development may continue towards a large-scale operation involving European CO2 and CO2 EOR operation. To this end, a conceptual EOR system was developed here based on an oxyfuel power plant located in Poland that acted as a source for CO2, coupled to a promising oil field located on the Norwegian Continental Shelf. Lifecycle assessment was subsequently used to estimate environmental emissions indicators. When averaged over the operational lifetime, results show greenhouse gas (GHG) emissions of 0.4 kg CO2-eq per kg oil (and n kWh associated electricity) produced, of which 64 % derived from the oxyfuel power plant. This represents a 71 % emission reduction when compared to the same amount of oil and electricity production using conventional technology. Other environmental impact indicators were increased, showing that this type of CO2 EOR system may help reach GHG reduction targets, but care should be taken to avoid problem shifting.

2020

Time trends of persistent organic pollutants in 30 year olds sampled in 1986, 1994, 2001 and 2007 in Northern Norway: measurements, mechanistic modeling and a comparison of study designs

Nøst, Therese Haugdahl; Berg, Vivian; Hanssen, Linda; Rylander, Charlotta; Gaudreau, Eric; Dumas, Pierre; Breivik, Knut; Sandanger, Torkjel M

<p><i>Background</i>: Human biomonitoring studies have demonstrated decreasing concentrations of many persistent organic pollutants (POPs) in years after emission peaks.</p> <p><i>Objectives</i>: To describe time trends of POPs in blood using four cross-sectional samples of 30 year olds from Tromsø, Norway across 1986–2007, and to compare the measured concentrations of polychlorinated biphenyl 153 (PCB-153) to model-estimated values. A second objective was to compare the repeated cross-sectional time trends with those observed in our previous longitudinal study using repeated individual measurements in older men from the same surveys.</p> <p><i>Methods</i>: Serum from 45 persons aged 30 years in each of the following years: 1986, 1994, 2001, and 2007 was analyzed for 14 POPs. Further, predicted concentrations of PCB-153 in each sampling year were derived using the emission-based CoZMoMAN model.</p> <p><i>Results</i>: The median decreases in summed serum POP concentrations (lipid-adjusted) in 1994, 2001, and 2007 relative to 1986 were − 71%, − 81%, and − 86% for women and − 65%, − 77%, and − 87% for men, respectively. The overall time trend in predicted PCB-153 concentrations demonstrated agreement with the observed trend although model predictions were higher than the measured concentrations at all time points. Compared to our previous longitudinal study of repeated individual measurements in older men, similar although more prominent declines were observed in the younger cross-sectional samples.</p> <p><i>Discussion</i>: Observed declines in serum concentrations from 1986 to 2007 were substantial for legacy POPs in men and women at reproductive ages in Northern Norway and are generally consistent with previous longitudinal biomonitoring efforts in the study population. The measured concentrations and observed declines likely reflect a combination of recent and historic exposures. Small differences in time trends observed between the studies could be attributed to different study designs (i.e. the chosen age group or sex and cross-sectional versus repeated individual measurement sampling).</p>

2019

Temporal and cross-sectional associations of serum per- and polyfluoroalkyl substances (PFAS) and lipids from 1986 to 2016 − The Tromsø study

Coelho, Ana Carolina; Charles, Dolley; Nøst, Therese Haugdahl; Cioni, Lara; Huber, Sandra; Herzke, Dorte; Rylander, Charlotta; Berg, Vivian; Sandanger, Torkjel M

Introduction
Per- and polyfluoroalkyl substances (PFAS) have been linked to effects on human lipid profiles, with several epidemiological studies reporting associations between specific PFAS and blood lipid concentrations. However, these associations have been inconsistent, and most studies have focused on cross-sectional analyses with limited repeated measurements.

Objective
In this study, we investigated associations between serum PFAS concentrations and major blood lipid classes over a 30-year period (1986–2016) and up to five time points. Lipids analyzed included total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG).

Methods
This study included 145 participants from The Tromsø Study, Norway, who donated plasma samples three to five times over the study period. Linear mixed-effects (LME) models assessed longitudinal associations between PFAS and lipid classes, while multiple linear regression (MLR) models were used for cross-sectional associations.

Results
LME models demonstrated positive longitudinal associations between perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and perfluorotridecanoic acid (PFTrDA) with TC. Additionally, PFOA, PFDA, PFUnDA, PFDoDA, and PFTrDA were associated with LDL-C, and PFUnDA and summed perfluorooctane sulfonate isomers (∑PFOS) with HDL-C. Cross-sectional analyses corroborated positive associations between the six PFAS compounds and TC at least three times, but the LDL-C and HDL-C associations were not confirmed. Summed perfluorooctane sulfonamide isomers (∑PFOSA) showed a negative association with LDL-C longitudinally, but this was not confirmed cross-sectionally. No associations were observed between PFAS and TG, longitudinally or cross-sectionally.

Conclusion
Concentrations of multiple PFAS were positively associated with blood lipids in longitudinal analyses, with the most consistent associations observed between six PFCA compounds and TC. These findings highlight the need for further investigation into these complex associations.

2025

Publikasjon
År
Kategori