Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 842 publikasjoner. Viser side 21 av 36:

Publikasjon  
År  
Kategori

Using life cycle assessment to inform municipal climate mitigation planning

Thorne, Rebecca Jayne; Bouman, Evert; Guerreiro, Cristina D.b.b.; Majchrzak, Anna; Calus, Sylwia

Local governments can play a key role in reducing emissions associated with local energy use. 17 Polish municipalities provided data on energy use and CO2 emissions for 2015. Life Cycle Assessment (LCA) was used to calculate lifecycle impact indicators for greenhouse gases, particulate matter, acidification and eutrophication associated with the annual energy demand in each municipality. Results showed that impacts from energy use increase almost proportionally with total energy used in the participating municipalities due to the heavy reliance on fossil fuels. Analysis of two municipalities of similar size showed that impacts can be attributed to different usage sectors. For one municipality, energy plans should focus on reducing emissions from private transport and associated fuel use. For the other, energy plans should focus on reducing energy demand from residential buildings. This means that a ‘one-size-fits-all’ energy plan, which may be developed at a national level, would not fit all municipalities. The application of LCA allows for identifying and informing energy planning with impact reduction potential for multiple environmental pressures. Analysis of the provided energy use and CO2 data showed large uncertainties in CO2 emission intensities and allowing for sufficient time and guidance in the energy and emissions accounting is recommended.

2019

An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity

Vodenkova, Sona; Azqueta, Amaya; Collins, Andrew Richard; Dusinska, Maria; Gaivao, Isabel; Møller, Peter; Opattová, Alena; Vodicka, Pavel; Godschalk, Roger W. L.; Langie, Sabine A.S.

2020

The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015

Monteil, Guillaume; Broquet, Grégoire; Scholze, Marko; Lang, Matthew; Karstens, Ute; Gerbig, Christoph; Koch, Frank-Thomas; Smith, Naomi; Thompson, Rona Louise; Luijkx, Ingrid T.; White, Emily; Meesters, Antoon; Ciais, Philippe; Ganesan, Anita L.; Manning, Alistair; Mischurow, Michael; Peters, Wouter; Peylin, Philippe; Tarniewicz, Jerome; Rigby, Matt; Rödenbeck, Christian; Vermeulen, Alex; Walton, Evie M.

Atmospheric inversions have been used for the past two decades to derive large-scale constraints on the sources and sinks of CO2 into the atmosphere. The development of dense in situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM (European atmospheric transport inversion comparison) project is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006–2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale.

The project participants were provided with a common database of in situ-observed CO2 concentrations (including the observation sites that are now part of the ICOS network) and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach, and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties.

This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (−0.21±0.2
 Pg C yr−1). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for sub-regions within Europe, and in these areas with dense observational coverage, the objective of delivering robust country-scale flux estimates appears achievable in the near future.

2020

Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure

Besis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini; Katsoyiannis, Athanasios A.; Hanssen, Linda; Huber, Sandra

2019

Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia

Zamora, Lauren M; Kahn, Ralph A.; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Huebert, Klaus B

Aerosol distributions have a potentially large influence on climate-relevant cloud properties but can be difficult to observe over the Arctic given pervasive cloudiness, long polar nights, data paucity over remote regions, and periodic diamond dust events that satellites can misclassify as aerosol. We compared Arctic 2008–2015 mineral dust and combustion aerosol distributions from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis products, and the FLEXible PARTicle (FLEXPART) dispersion model. Based on coincident, seasonal Atmospheric Infrared Sounder (AIRS) Arctic satellite meteorological data, diamond dust may occur up to 60 % of the time in winter, but it hardly ever occurs in summer. In its absence, MERRA-2 and FLEXPART each predict the vertical and horizontal distribution of large-scale patterns in combustion aerosols with relatively high confidence (Kendall tau rank correlation > 0.6), although a sizable amount of variability is still unaccounted for. They do the same for dust, except in conditions conducive to diamond dust formation where CALIPSO is likely misclassifying diamond dust as mineral dust and near the surface...

2022

Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC Technical Report)

Purchase, Diane; Abbasi, Golnoush; Bisschop, Lieselot; Chatterjee, Debashish; Ekberg, Christian; Ermolin, Mikhail; Fedotov, Petr; Garelick, Hemda; Isimekhai, Khadijah; Kandile, Nadia G.; Lundström, Mari; Matharu, Avtar; Miller, Bradley W.; Pineda, Antonio; Popoola, Oluseun E.; Retegan, Teodora; Ruedel, Heinz; Serpe, Angela; Sheva, Yehuda; Surati, Kiran R.; Walsh, Fiona; Wilson, Benjamin P.; Wong, Ming Hung

The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare Earth elements), and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern, due to widespread illegal shipments; weak environmental, as well as health and safety, regulations; lack of technology; and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan, and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora, and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders seeking to devise integrated management strategies to tackle this global environmental concern.

2020

State of the Climate in 2021: The Arctic

Thoman, Richard L.; Druckenmiller, Matthew L.; Moon, Twila A.; Andreassen, Liss Marie; Baker, E.; Ballinger, Thomas J.; Berner, Logan T.; Bernhard, Germar H.; Bhatt, Uma S.; Bjerke, Jarle W.; Boisvert, L.N.; Box, Jason E.; Brettschneider, B.; Burgess, D.; Butler, Amy H.; Cappelen, John; Christiansen, Hanne H; Decharme, B.; Derksen, C.; Divine, Dmitry V; Drozdov, D. S.; Chereque, A. Elias; Epstein, Howard E.; Farrell, Sinead L.; Fausto, Robert S.; Fettweis, Xavier; Fioletov, Vitali E.; Forbes, Bruce C.; Frost, Gerald V.; Gerland, Sebastian; Goetz, Scott J.; Grooß, Jens-Uwe; Haas, Christian; Hanna, Edward; Hanssen-Bauer, Inger; Heijmans, M. M. P. D.; Hendricks, Stefan; Ialongo, Iolanda; Isaksen, Ketil; Jensen, C.D.; Johnsen, Bjørn; Kaleschke, L.; Kholodov, A. L.; Kim, Seong-Joong; Kohler, Jack; Korsgaard, Niels J.; Labe, Zachary; Lakkala, Kaisa; Lara, Mark J.; Lee, Simon H.; Loomis, Bryant; Luks, B.; Luojus, K.; Macander, Matthew J.; Magnússon, R. Í.; Malkova, G. V.; Mankoff, Kenneth D.; Manney, Gloria L.; Meier, Walter N.; Mote, Thomas; Mudryk, Lawrence; Müller, Rolf; Nyland, K. E.; Overland, James E.; Pàlsson, F.; Park, T.; Parker, C. L.; Perovich, Don; Petty, Alek; Phoenix, Gareth k.; Pinzon, J. E.; Ricker, Robert; Romanovsky, Vladimir E.; Serbin, S. P.; Sheffield, G.; Shiklomanov, Nikolai I.; Smith, Sharon L.; Stafford, K. M.; Steer, Adam; Streletskiy, Dimitri A.; Svendby, Tove Marit; Tedesco, Marco; Thomson, L.; Thorsteinsson, T.; Tian-Kunze, X.; Timmermans, Mary-Louise; Tømmervik, Hans; Tschudi, Mark; Tucker, C. J.; Walker, Donald A.; Walsh, John E.; Wang, Muyin; Webster, Melinda; Wehrlé, A.; Winton, Øyvind; Wolken, G.; Wood, K.; Wouters, B.; Yang, D.

2022

Coffee and oxidative stress: a human intervention study

Shaposhnikov, Sergey; Hatzold, Thomas; Yamani, Naouale El; Stavro, Philip Mark; Lorenzo, Yolanda; Dusinska, Maria; Reus, Astrid; Pasman, Wilrike J.; Collins, Andrew Richard

2018

DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population

Niazi, Yasmeen; Thomsen, Hauke; Smolkova, Bozena; Vodickova, Ludmila; Vodenkova, Sona; Kroupa, Michal; Vymetalkova, Veronika; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Staruchova, Marta; Hoffmann, Per; Nöthen, Markus M; Dusinska, Maria; Musak, Ludovit; Vodicka, Pavel; Försti, Asta; Hemminki, Kari

2021

Global greenhouse gas reconciliation 2022

Deng, Zhu; Ciais, Philippe; Hu, Liting; Martinez, Adrien; Saunois, Marielle; Thompson, Rona Louise; Tibrewal, Kushal; Peters, Wouter; Byrne, Brendan; Grassi, Giacomo; Palmer, Paul I.; Luijkx, Ingrid T.; Liu, Zhu; Liu, Junjie; Fang, Xuekun; Wang, Tengjiao; Tian, Hanqin; Tanaka, Katsumasa; Bastos, Ana; Sitch, Stephen; Poulter, Benjamin; Albergel, Clement; Tsuruta, Aki; Maksyutov, Shamil; Janardanan, Rajesh; Niwa, Yosuke; Zheng, Bo; Thanwerdas, Joel; Belikov, Dmitry; Segers, Arjo; Chevallier, Frédéric

n this study, we provide an update on the methodology and data used by Deng et al. (2022) to compare the national greenhouse gas inventories (NGHGIs) and atmospheric inversion model ensembles contributed by international research teams coordinated by the Global Carbon Project. The comparison framework uses transparent processing of the net ecosystem exchange fluxes of carbon dioxide (CO2) from inversions to provide estimates of terrestrial carbon stock changes over managed land that can be used to evaluate NGHGIs. For methane (CH4), and nitrous oxide (N2O), we separate anthropogenic emissions from natural sources based directly on the inversion results to make them compatible with NGHGIs. Our global harmonized NGHGI database was updated with inventory data until February 2023 by compiling data from periodical United Nations Framework Convention on Climate Change (UNFCCC) inventories by Annex I countries and sporadic and less detailed emissions reports by non-Annex I countries given by national communications and biennial update reports. For the inversion data, we used an ensemble of 22 global inversions produced for the most recent assessments of the global budgets of CO2, CH4, and N2O coordinated by the Global Carbon Project with ancillary data. The CO2 inversion ensemble in this study goes through 2021, building on our previous report from 1990 to 2019, and includes three new satellite inversions compared to the previous study and an improved managed-land mask. As a result, although significant differences exist between the CO2 inversion estimates, both satellite and in situ inversions over managed lands indicate that Russia and Canada had a larger land carbon sink in recent years than reported in their NGHGIs, while the NGHGIs reported a significant upward trend of carbon sink in Russia but a downward trend in Canada. For CH4 and N2O, the results of the new inversion ensembles are extended to 2020. Rapid increases in anthropogenic CH4 emissions were observed in developing countries, with varying levels of agreement between NGHGIs and inversion results, while developed countries showed a slowly declining or stable trend in emissions. Much denser sampling of atmospheric CO2 and CH4 concentrations by different satellites, coordinated into a global constellation, is expected in the coming years. The methodology proposed here to compare inversion results with NGHGIs can be applied regularly for monitoring the effectiveness of mitigation policy and progress by countries to meet the objectives of their pledges. The dataset constructed for this study is publicly available at https://doi.org/10.5281/zenodo.13887128 (Deng et al., 2024).

2025

Modelling the influence of suburban sprawl vs. compact city development upon road network performance and traffic emissions

Drabicki, Arkadiusz; Grythe, Henrik; Lopez-Aparicio, Susana; Górska, Lidia; Gzylo, Cyryl; Pyzik, Michal

Road traffic externalities are an important consequence of land-use and transport interactions and may be especially induced by their inefficient combinations. In this study, we integrate land-use, transport and emission modelling tools (the LUTEm framework) to assess how suburban expansion vs. inward densification scenarios influence journey parameters, road network performance and traffic emissions. Case-study simulations for Warsaw (Poland) underscore the negative consequences of suburban sprawl development, which are hardly mitigated by additional land-use or transport interventions, such as rebalancing of population-workplace distribution or road capacity reductions. On the other side, compact city development lowers global traffic congestion and emissions, but can also raise the risks of traffic externalities in central city area unless complemented with further interventions such as improved public transport attractiveness. This study aims to enrich the understanding of how integrating the land-use development and transport interventions can ultimately influence travel parameters and reduce urban road traffic externalities.

2025

Predicting the student's perceptions of multi-domain environmental factors in a Norwegian school building: Machine learning approach

Alam, Azimil Gani; Bartonova, Alena; Høiskar, Britt Ann Kåstad; Fredriksen, Mirjam; Sharma, Jivitesh; Mathisen, Hans Martin; Yang, Zhirong; Gustavsen, Kai; Hart, Kent; Fredriksen, Tore; Cao, Guangyu

Poor Indoor Environmental Quality (IEQ) in schools significantly impacts students’ well-being, learning capabilities, and health. Perceived dissatisfaction rates (PD%) among students often remain high, even when indoor environmental variables appear well-controlled. This study aims to predict perceived dissatisfaction rates (PD%) across multi-domain environmental factors—thermal, acoustic, visual, and indoor air quality (IAQ)—using machine learning (ML) models. The research integrates sensor-based environmental measurements, outdoor weather data, building parameters, and 1437 student survey responses collected from three classrooms in a Norwegian school across multiple seasons. Statistical tests were used to pre-select relevant input variables, followed by the development and evaluation of multiple ML algorithms. Among the tested ML models, Random Forest (RF) demonstrated the highest predictive accuracy for PD%, outperforming multi-linear regression (MLR) and decision trees (DT), with R² values up to 0.91 for overall IEQ dissatisfaction (PDIEQ%). SHAP analysis revealed key predictors: CO₂ levels, VOCs, humidity, temperature, solar radiation, and room window orientation. IAQ, thermal comfort, and acoustic environment were the most influential factors affecting students' perceived well-being. Despite limitations as implementation in building level scale, the study demonstrates the feasibility of deploying predictive ML models under real-world constraints for improving IEQ monitoring system. The findings support practical strategies for adaptive indoor environmental management, particularly in educational settings, and provide a replicable framework for future research. Future research can expand to other climates, buildings, measurements, occupant levels, and ML training optimization.

2025

Non-target and suspect characterisation of organic contaminants in ambient air, Part I: Combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography

Röhler, Laura; Bohlin-Nizzetto, Pernilla; Rostkowski, Pawel; Kallenborn, Roland; Schlabach, Martin

Long-term monitoring of regulated organic chemicals, such as legacy persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), in ambient air provides valuable information about the compounds' environmental fate as well as temporal and spatial trends. This is the foundation to evaluate the effectiveness of national and international regulations for priority pollutants. Extracts of high-volume air samples, collected on glass fibre filters (GFF for particle phase) and polyurethane foam plugs (PUF for gaseous phase), for targeted analyses of legacy POPs are commonly cleaned by treatment with concentrated sulfuric acid, resulting in extracts clean from most interfering compounds and matrices that are suitable for multi-quantitative trace analysis. Such standardised methods, however, severely restrict the number of analytes for quantification and are not applicable when targeting new and emerging compounds as some may be less stable under acid treatment. Recently developed suspect and non-target screening analytical strategies (SUS and NTS, respectively) are shown to be effective evaluation tools aimed at identifying a high number of compounds of emerging concern. These strategies, combining highly sophisticated analytical technology with extensive data interpretation and statistics, are already widely accepted in environmental sciences for investigations of various environmental matrices, but their application to air samples is still very limited. In order to apply SUS and NTS for the identification of organic contaminants in air samples, an adapted and more wide-scope sample clean-up method is needed compared to the traditional method, which uses concentrated sulfuric acid. Analysis of raw air sample extracts without clean-up would generate extensive contamination of the analytical system, especially with PUF matrix-based compounds, and thus highly interfered mass spectra and detection limits which are unacceptable high for trace analysis in air samples.

In this study, a novel wide-scope sample clean-up method for high-volume air samples has been developed and applied to real high-volume air samples, which facilitates simultaneous target, suspect and non-target analyses. The scope and efficiency of the method were quantitatively evaluated with organic compounds covering a wide range of polarities (logP 2–11), including legacy POPs, brominated flame retardants (BFRs), chlorinated pesticides and currently used pesticides (CUPs). In addition, data reduction and selection strategies for SUS and NTS were developed for comprehensive two-dimensional gas chromatography separation with low-resolution time-of-flight mass spectrometric detection (GC × GC-LRMS) data and applied to real high-volume air samples. Combination of the newly developed clean-up procedure and data treatment strategy enabled the prioritisation of over 600 compounds of interest in the particle phase (on GFF) and over 850 compounds in the gas phase (on PUF) out of over 25 000 chemical features detected in the raw dataset. Of these, 50 individual compounds were identified and confirmed with reference standards, 80 compounds were identified with a probable structure, and 774 compounds were assigned to various compound classes. In the dataset available here, 11 hitherto unknown halogenated compounds were detected. These unknown compounds were not yet listed in the available mass spectral libraries.

2021

CSF sodium at toxic levels precedes delirium in hip fracture patients

Hassel, Bjørnar; Mariussen, Espen; Idland, Ane-Victoria; Dahl, Gry Torsæter; Ræder, Johan; Frihagen, Frede Jon; Berg, Jens Petter; Chaudhry, Farrukh Abbas; Wyller, Torgeir Bruun; Watne, Leiv

2018

Technical note: Reanalysis of Aura MLS chemical observations

Errera, Quentin; Chabrillat, Simon; Christophe, Yves; Debosscher, Jonas; Hubert, Daan; Lahoz, William A.; Santee, Michelle L.; Shiotani, Masato; Skachko, Sergey; Clarmann, Thomas von; Walker, Kaley A.

This paper presents a reanalysis of the atmospheric chemical composition from the upper troposphere to the lower mesosphere from August 2004 to December 2017. This reanalysis is produced by the Belgian Assimilation System for Chemical ObsErvations (BASCOE) constrained by the chemical observations from the Microwave Limb Sounder (MLS) on board the Aura satellite. BASCOE is based on the ensemble Kalman filter (EnKF) method and includes a chemical transport model driven by the winds and temperature from the ERA-Interim meteorological reanalysis. The model resolution is 3.75∘ in longitude, 2.5∘ in latitude and 37 vertical levels from the surface to 0.1 hPa with 25 levels above 100 hPa. The outputs are provided every 6 h. This reanalysis is called BRAM2 for BASCOE Reanalysis of Aura MLS, version 2.

Vertical profiles of eight species from MLS version 4 are assimilated and are evaluated in this paper: ozone (O3), water vapour (H2O), nitrous oxide (N2O), nitric acid (HNO3), hydrogen chloride (HCl), chlorine oxide (ClO), methyl chloride (CH3Cl) and carbon monoxide (CO). They are evaluated using independent observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and N2O observations from a different MLS radiometer than the one used to deliver the standard product and ozonesondes. The evaluation is carried out in four regions of interest where only selected species are evaluated. These regions are (1) the lower-stratospheric polar vortex where O3, H2O, N2O, HNO3, HCl and ClO are evaluated; (2) the upper-stratospheric–lower-mesospheric polar vortex where H2O, N2O, HNO3 and CO are evaluated; (3) the upper troposphere–lower stratosphere (UTLS) where O3, H2O, CO and CH3Cl are evaluated; and (4) the middle stratosphere where O3, H2O, N2O, HNO3, HCl, ClO and CH3Cl are evaluated.

In general BRAM2 reproduces MLS observations within their uncertainties and agrees well with independent observations, with several limitations discussed in this paper (see the summary in Sect. 5.5). In particular, ozone is not assimilated at altitudes above (i.e. pressures lower than) 4 hPa due to a model bias that cannot be corrected by the assimilation. MLS ozone profiles display unphysical oscillations in the tropical UTLS, which are corrected by the assimilation, allowing a good agreement with ozonesondes. Moreover, in the upper troposphere, comparison of BRAM2 with MLS and independent observations suggests a positive bias in MLS O3 and a negative bias in MLS H2O. The reanalysis also reveals a drift in MLS N2O against independent observations, which highlights the potential use of BRAM2 to estimate biases between instruments. BRAM2 is publicly available and will be extended to assimilate MLS observations after 2017.

2019

Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons

Vollmer, Martin K; Mühle, Jens; Henne, Stephan; Young, Dickon; Rigby, Matthew; Mitrevski, Blagoj; Park, Sunyoung; Lunder, Chris Rene; Rhee, Tae Siek; Harth, Christina M.; Hill, Matthias; Langenfelds, Ray L.; Guillevic, Myriam; Schlauri, Paul M.; Hermansen, Ove; Arduini, Jgor; Wang, Ray H. J.; Salameh, Peter K.; Maione, Michela; Krummel, Paul B.; Reimann, Stefan; O'Doherty, Simon; Simmonds, Peter G.; Fraser, Paul J.; Prinn, Ronald G.; Weiss, Ray F.; Steele, L. Paul

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b (CH2ClCClF2), which is newly discovered in the atmosphere, and updated results for HCFC-133a (CH2ClCF3) and HCFC-31 (CH2ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y−1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016–2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y−1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y−1. Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.

2021

Spatial trends of chlorinated paraffins and dechloranes in air and soil in a tropical urban, suburban, and rural environment

Nipen, Maja; Vogt, Rolf David; Bohlin-Nizzetto, Pernilla; Borgå, Katrine; Mwakalapa, Eliezer Brown; Borgen, Anders; Jørgensen, Susanne Jøntvedt; Ntapanta, Samwel Moses; Mmochi, Aviti John; Schlabach, Martin; Breivik, Knut

There are large knowledge gaps concerning environmental levels and fate of many organic pollutants, particularly for chemicals of emerging concern in tropical regions of the Global South. In this study, we investigated the levels of chlorinated paraffins (CPs) and dechloranes in air and soil in rural, suburban, and urban regions in and around Dar es Salaam, Tanzania. Samples were also collected near the city's main municipal waste dumpsite and an electronic waste (e-waste) handling facility. In passive air samples, short chain CPs (SCCPs) dominated, with an average estimated concentration of 22 ng/m3, while medium chain CPs (MCCPs) had an average estimated concentration of 9 ng/m3. The average estimated air concentration of ∑dechloranes (Dechlorane Plus (DP) + Dechlorane 602 + Dechlorane 603) was three to four orders of magnitudes lower, 2 pg/m3. In soil samples, MCCPs dominated with an average concentration of 640 ng/g dw, followed by SCCPs with an average concentration of 330 ng/g dw, and ∑dechloranes with an average concentration of 0.9 ng/g dw. In both air and soil, DP was the dominating dechlorane compound. Urban pulses were observed for CPs and dechloranes in air and soil. CPs were in addition found in elevated levels at the municipal waste dumpsite and the e-waste handling facility, while DPs were found in elevated levels at the e-waste handling facility. This suggests that waste handling sites represent important emission sources for these pollutants. Investigations into seasonal trends and environmental fate of CPs and dechloranes showed that monsoonal rain patterns play a major role in governing air concentrations and mobility, particularly for the less volatile MCCPs and dechloranes. This study is the first to report levels of CPs in air from sub-Saharan Africa, and DP, Dechlorane 602, and Dechlorane 603 in soil from sub-Saharan Africa.

2021

Preclinical validation of human recombinant glutamate-oxaloacetate transaminase for the treatment of acute ischemic stroke

Pérez-Mato, María; Dopico-López, Antonio; Akkoc, Yunus; López-Amoedo, Sonia; Correa-Paz, Clara; Candamo-Lourido, María; Iglesias-Rey, Ramón; López-Arias, Esteban; Bugallo-Casal, Ana; Silva-Candal, Andrés da; Bravo, Susana B.; Chantada-Vázquez, María del Pilar; Arias, Susana; Santamaría-Cadavid, María; Estany-Gestal, Ana; Zaghmi, Ahlem; Gauthier, Marc A.; Gutiérrez-Fernández, María; Martin, Abraham; Llop, Jordi; Rodríguez, Cristina; Almeida, Ángeles; Migliavacca, Martina; Polo, Ester; Pelaz, Beatriz; Gozuacik, Devrim; Yamani, Naouale El; Sengupta, Tanima; Rundén-Pran, Elise; Vivancos, José; Castellanos, Mar; Díez-Tejedor, Exuperio; Sobrino, Tomás; Rabinkov, Aharon; Mirelman, David; Castillo, José; Campos, Francisco

The blood enzyme glutamate-oxaloacetate transaminase (GOT) has been postulated as an effective therapeutic to protect the brain during stroke. To demonstrate its potential clinical utility, a new human recombinant form of GOT (rGOT) was produced for medical use.

We tested the pharmacokinetics and evaluated the protective efficacy of rGOT in rodent and non-human primate models that reflected clinical stroke conditions.

We found that continuous intravenous administration of rGOT within the first 8 h after ischemic onset significantly reduced the infarct size in both severe (30%) and mild lesions (48%). Cerebrospinal fluid and proteomics analysis, in combination with positron emission tomography imaging, indicated that rGOT can reach the brain and induce cytoprotective autophagy and induce local protection by alleviating neuronal apoptosis.

Our results suggest that rGOT can be safely used immediately in patients suspected of having a stroke. This study requires further validation in clinical stroke populations.

2024

Trends of inorganic and organic aerosols and precursor gases in Europe: insights from the EURODELTA multi-model experiment over the 1990–2010 period

Ciarelli, Giancarlo; Theobald, Mark, R.; Vivanco, Marta García; Beekmann, Matthias; Aas, Wenche; Andersson, Camilla; Bergström, Robert; Manders-Groot, Astrid; Couvidat, Florian; Mircea, Mihaela; Tsyro, Svetlana; Fagerli, Hilde; Mar, Kathleen; Raffort, Valentin; Roustan, Yelva; Pay, Maria-Teresa; Schaap, Martijn; Kranenburg, Richard; Adani, Mario; Briganti, Gino; Cappelletti, Andrea; D'Isidoro, Massimo; Cuvelier, Cornelis; Cholakian, Arineh; Bessagnet, Bertrand; Wind, Peter; Colette, Augustin

In the framework of the EURODELTA-Trends (EDT) modeling experiment, several chemical transport models (CTMs) were applied for the 1990–2010 period to investigate air quality changes in Europe as well as the capability of the models to reproduce observed long-term air quality trends. Five CTMs have provided modeled air quality data for 21 continuous years in Europe using emission scenarios prepared by the International Institute for Applied Systems Analysis/Greenhouse Gas – Air Pollution Interactions and Synergies (IIASA/GAINS) and corresponding year-by-year meteorology derived from ERA-Interim global reanalysis. For this study, long-term observations of particle sulfate (SO2−4

), total nitrate (TNO3), total ammonium (TNHx) as well as sulfur dioxide (SO2) and nitrogen dioxide (NO2) for multiple sites in Europe were used to evaluate the model results. The trend analysis was performed for the full 21 years (referred to as PT) but also for two 11-year subperiods: 1990–2000 (referred to as P1) and 2000–2010 (referred to as P2).

The experiment revealed that the models were able to reproduce the faster decline in observed SO2 concentrations during the first decade, i.e., 1990–2000, with a 64 %–76 % mean relative reduction in SO2 concentrations indicated by the EDT experiment (range of all the models) versus an 82 % mean relative reduction in observed concentrations. During the second decade (P2), the models estimated a mean relative reduction in SO2 concentrations of about 34 %–54 %, which was also in line with that observed (47 %). Comparisons of observed and modeled NO2 trends revealed a mean relative decrease of 25 % and between 19 % and 23 % (range of all the models) during the P1 period, and 12 % and between 22 % and 26 % (range of all the models) during the P2 period, respectively.

Comparisons of observed and modeled trends in SO2−4
concentrations during the P1 period indicated that the models were able to reproduce the observed trends at most of the sites, with a 42 %–54 % mean relative reduction indicated by the EDT experiment (range of all models) versus a 57 % mean relative reduction in observed concentrations and with good performance also during the P2 and PT periods, even though all the models overpredicted the number of statistically significant decreasing trends during the P2 period. Moreover, especially during the P1 period, both modeled and observational data indicated smaller reductions in SO2−4

concentrations compared with their gas-phase precursor (i.e., SO2), which could be mainly attributed to increased oxidant levels and pH-dependent cloud chemistry.

An analysis of the trends in TNO3 concentrations indicated a 28 %–39 % and 29 % mean relative reduction in TNO3 concentrations for the full period for model data (range of all the models) and observations, respectively. Further analysis of the trends in modeled HNO3 and particle nitrate (NO−3
) concentrations revealed that the relative reduction in HNO3 was larger than that for NO−3 during the P1 period, which was mainly attributed to an increased availability of “free ammonia”. By contrast, trends in modeled HNO3 and NO−3 concentrations were more comparable during the P2 period. Also, trends of TNHx concentrations were, in general, underpredicted by all models, with worse performance for the P1 period than for P2. Trends in modeled anthropogenic and biogenic secondary organic aerosol (ASOA and BSOA) concentrations together with the trends in available emissions of biogenic volatile organic compounds (BVOCs) were also investigated. A strong decrease in ASOA was indicated by all the models, following the reduction in anthropogenic non-methane VOC (NMVOC) precursors. Biogenic emission data...

2019

Regionally sourced bioaerosols drive high-temperature ice nucleating particles in the Arctic

Freitas, Gabriel Pereira; Adachi, Kouji; Conen, Franz; Heslin-Rees, Dominic; Krejci, Radovan; Tobo, Yutaka; Yttri, Karl Espen; Zieger, Paul

Primary biological aerosol particles (PBAP) play an important role in the climate system, facilitating the formation of ice within clouds, consequently PBAP may be important in understanding the rapidly changing Arctic. Within this work, we use single-particle fluorescence spectroscopy to identify and quantify PBAP at an Arctic mountain site, with transmission electronic microscopy analysis supporting the presence of PBAP. We find that PBAP concentrations range between 10−3–10−1 L−1 and peak in summer. Evidences suggest that the terrestrial Arctic biosphere is an important regional source of PBAP, given the high correlation to air temperature, surface albedo, surface vegetation and PBAP tracers. PBAP clearly correlate with high-temperature ice nucleating particles (INP) (>-15 °C), of which a high a fraction (>90%) are proteinaceous in summer, implying biological origin. These findings will contribute to an improved understanding of sources and characteristics of Arctic PBAP and their links to INP.

2023

Publikasjon
År
Kategori