Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 842 publikasjoner. Viser side 22 av 36:

Publikasjon  
År  
Kategori

A flexible algorithm for network design based on information theory

Thompson, Rona Louise; Pisso, Ignacio

A novel method for atmospheric network design is presented, which is based on information theory. The method does not require calculation of the posterior uncertainty (or uncertainty reduction) and is therefore computationally more efficient than methods that require this. The algorithm is demonstrated in two examples: the first looks at designing a network for monitoring CH4 sources using observations of the stable carbon isotope ratio in CH4 (δ13C), and the second looks at designing a network for monitoring fossil fuel emissions of CO2 using observations of the radiocarbon isotope ratio in CO2 (Δ14CO2).

2023

State of the Climate in 2023 : Global Climate

Dunn, Robert J.H.; Blannin, Josh; Gobron, Nadine; Miller, John B.; Willett, Kate M.; Ades, Melanie; Adler, Robert; Alexe, Mihai; Allan, Richard P.; Anderson, John; Anneville, Orlane; Aono, Yasuyuki; Arguez, Anthony; Pasqual, Dolors Armenteras; Arosio, Carlo; Asher, Elizabeth; Augustine, John A.; Azorin-Molina, Cesar; Baez-Villanueva, Oscar M.; Barichivich, J.; Beck, Hylke E.; Bellouin, Nicolas; Benedetti, Angela; Blenkinsop, Stephen; Bock, Olivier; Bodin, Xavier; Bonte, Olivier; Bosilovich, Michael G.; Boucher, Olivier; Buehler, Stefan A.; Byrne, Michael P.; Campos, Diego; Cappucci, Fabrizio; Carrea, Laura; Chang, Kai-Lan; Christiansen, Hanne H; Christy, John R.; Chung, Eui-Seok; Ciasto, Laura M.; Clingan, Scott; Coldewey-Egbers, Melanie; Cooper, Owen R.; Cornes, Richard C.; Covey, Curt; Crétaux, Jean-Francois; Crimmins, Theresa; Crotwell, Molly; Culpepper, Joshua; Cusicanqui, Diego; Isaksen, Ketil; Kääb, Andreas; Kaiser, Johannes

2024

Permafrost Region Greenhouse Gas Budgets Suggest a Weak CO2 Sink and CH4 and N2O Sources, But Magnitudes Differ Between Top-Down and Bottom-Up Methods

Hugelius, G.; Ramage, J.; Burke, E.; Chatterjee, A.; Smallman, T.L.; Aalto, T.; Bastos, A.; Biasi, C.; Canadell, J.G.; Chandra, N.; Chevallier, F.; Ciais, P.; Chang, J.; Feng, L.; Jones, M.W.; Kleinen, T.; Kuhn, M.; Lauerwald, R.; Liu, J.; López-Blanco, E.; Luijkx, I.T.; Marushchak, M.E.; Natali, S.M.; Niwa, Y.; Olefeldt, D.; Palmer, P.I.; Patra, P.K.; Peters, W.; Potter, S.; Poulter, B.; Rogers, B.M.; Riley, W.J.; Saunois, M.; Schuur, E.A.G.; Thompson, Rona Louise; Treat, C.; Tsuruta, A.; Turetsky, M.R.; Virkkala, A.-M.; Voigt, C.; Watts, J.; Zhu, Q.; Zheng, B.

Large stocks of soil carbon (C) and nitrogen (N) in northern permafrost soils are vulnerable to remobilization under climate change. However, there are large uncertainties in present-day greenhouse gas (GHG) budgets. We compare bottom-up (data-driven upscaling and process-based models) and top-down (atmospheric inversion models) budgets of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) as well as lateral fluxes of C and N across the region over 2000–2020. Bottom-up approaches estimate higher land-to-atmosphere fluxes for all GHGs. Both bottom-up and top-down approaches show a sink of CO2 in natural ecosystems (bottom-up: −29 (−709, 455), top-down: −587 (−862, −312) Tg CO2-C yr−1) and sources of CH4 (bottom-up: 38 (22, 53), top-down: 15 (11, 18) Tg CH4-C yr−1) and N2O (bottom-up: 0.7 (0.1, 1.3), top-down: 0.09 (−0.19, 0.37) Tg N2O-N yr−1). The combined global warming potential of all three gases (GWP-100) cannot be distinguished from neutral. Over shorter timescales (GWP-20), the region is a net GHG source because CH4 dominates the total forcing. The net CO2 sink in Boreal forests and wetlands is largely offset by fires and inland water CO2 emissions as well as CH4 emissions from wetlands and inland waters, with a smaller contribution from N2O emissions. Priorities for future research include the representation of inland waters in process-based models and the compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more and well-distributed in situ GHG measurements and improved resolution in upscaling techniques.

2024

Predicting Future Condition and Conservation Costs from Modelling Improvements to the Indoor Environment: The Monumental Munch-Paintings in the University of Oslo’s Aula Assembly Hall

Grøntoft, Terje; Stoveland, Lena Porsmo; Frøysaker, Tine

The aim of this work was to assess how improvements to the indoor environment could affect the future condition, frequency and costs of major conservation-cleaning campaigns on the monumental paintings (1909–1916) by Edvard Munch, centrally located in the Aula assembly hall of the University of Oslo. A lower soiling rate is expected to reduce the need for frequent and major cleaning campaigns. Estimations were performed using the freely available NILU-EnvCul web-model. The conservation of these large, mostly unvarnished, oil paintings is challenging, and it is important to understand the potential benefits of preventive conservation measures. The results from the model suggested benefits from preventive conservation in protecting the paintings, and as a cost-efficient strategy to reduce the soiling and cleaning frequency. The model results indicated that an improvement in the indoor air quality in the Aula, of 50–80% as compared to the 1916–2009 average, would increase the time until the next similar major conservation cleaning campaign from approximately 45 years to between about 85 and 165 years. This should give a 45–70% reduction in the respective conservation costs. This saving was probably initiated by improvements in the recent past, before the last Aula campaign in 2009–11.

2019

Solar-wind-magnetosphere energy influences the interannual variability of the northern-hemispheric winter climate

He, Shengping; Wang, Huijun; Li, Fei; Li, Hui; Wang, Chi

Solar irradiance has been universally acknowledged to be dominant by quasi-decadal variability, which has been adopted frequently to investigate its effect on climate decadal variability. As one major terrestrial energy source, solar-wind energy flux into Earth's magnetosphere (Ein) exhibits dramatic interannual variation, the effect of which on Earth's climate, however, has not drawn much attention. Based on the Ein estimated by 3D magnetohydrodynamic simulations, we demonstrate a novelty that the annual mean Ein can explain up to 25% total interannual variance of the northern-hemispheric temperature in the subsequent boreal winter. The concurrent anomalous atmospheric circulation resembles the positive phase of Arctic Oscillation/North Atlantic Oscillation. The warm anomalies in the tropic stratopause and tropopause induced by increased solar-wind–magnetosphere energy persist into the subsequent winter. Due to the dominant change in the polar vortex and mid-latitude westerly in boreal winter, a ‘top-down’ propagation of the stationary planetary wave emerges in the Northern Hemisphere and further influences the atmospheric circulation and climate.

2020

Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines

Fahim, Muhammad; Sharma, Vishal; Cao, Tuan-Vu; Canberk, Berk; Duong, Trung Q.

Wind turbines are one of the primary sources of renewable energy, which leads to a sustainable and efficient energy solution. It does not release any carbon emissions to pollute our planet. The wind farms monitoring and power generation prediction is a complex problem due to the unpredictability of wind speed. Consequently, it limits the decision power of the management team to plan the energy consumption in an effective way. Our proposed model solves this challenge by utilizing a 5G-Next Generation-Radio Access Network (5G-NG-RAN) assisted cloud-based digital twins’ framework to virtually monitor wind turbines and form a predictive model to forecast wind speed and predict the generated power. The developed model is based on Microsoft Azure digital twins infrastructure as a 5-dimensional digital twins platform. The predictive modeling is based on a deep learning approach, temporal convolution network (TCN) followed by a non-parametric k-nearest neighbor (kNN) regression. Predictive modeling has two components. First, it processes the univariate time series data of wind to predict its speed. Secondly, it estimates the power generation for each quarter of the year ranges from one week to a whole month (i.e., medium-term prediction) To evaluate the framework the experiments are performed on onshore wind turbines publicly available datasets. The obtained results confirm the applicability of the proposed framework. Furthermore, the comparative analysis with the existing classical prediction models shows that our designed approach obtained better results. The model can assist the management team to monitor the wind farms remotely as well as estimate the power generation in advance.

2022

Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood

Eide, Per Kristian; Mariussen, Espen; Uggerud, Hilde Thelle; Pripp, Are Hugo; Lashkarivand, Aslan; Hassel, Bjørnar; Christensen, Hege Staaland; Hovd, Markus Herberg; Ringstad, Geir Andre

BACKGROUND. Methodology for estimation of cerebrospinal fluid (CSF) tracer clearance could have wide clinical application in predicting excretion of intrathecal drugs and metabolic solutes from brain metabolism and for diagnostic workup of CSF disturbances. METHODS. The MRI contrast agent gadobutrol (Gadovist) was used as a CSF tracer and injected into the lumbar CSF. Gadobutrol is contained outside blood vessels of the CNS and is eliminated along extravascular pathways, analogous to many CNS metabolites and intrathecal drugs. Tracer enrichment was verified and assessed in CSF by MRI at the level of the cisterna magna in parallel with obtaining blood samples through 48 hours. RESULTS. In a reference patient cohort (n = 29), both enrichment within CSF and blood coincided in time. Blood concentration profiles of gadobutrol through 48 hours varied between patients diagnosed with CSF leakage (n = 4), idiopathic normal pressure hydrocephalus dementia (n = 7), pineal cysts (n = 8), and idiopathic intracranial hypertension (n = 4). CONCLUSION. Assessment of CSF tracer clearance is clinically feasible and may provide a way to predict extravascular clearance of intrathecal drugs and endogenous metabolites from the CNS. The peak concentration in blood (at about 10 hours) was preceded by far peak tracer enhancement at MRI in extracranial lymphatic structures (at about 24 hours), as shown in previous studies, indicating a major role of the spinal canal in CSF clearance capacity. FUNDING. The work was supported by the Department of Neurosurgery, Oslo University Hospital; the Norwegian Institute for Air Research; and the University of Oslo.

2021

Large seasonal and interannual variations of biogenic sulfur compounds in the Arctic atmosphere (Svalbard; 78.9° N, 11.9° E)

Jang, Sehyun; Park, Ki-Tae; Lee, Kitack; Yoon, Young Jun; Kim, Kitae; Chung, Hyun Young; Jang, Eunho; Becagli, Silvia; Lee, Bang Young; Traversi, Rita; Eleftheriadis, Konstantinos; Krejci, Radovan; Hermansen, Ove

Seasonal to interannual variations in the concentrations of sulfur aerosols (< 2.5 µm in diameter; non sea-salt sulfate: NSS-SO2−4; anthropogenic sulfate: Anth-SO2−4; biogenic sulfate: Bio-SO2−4; methanesulfonic acid: MSA) in the Arctic atmosphere were investigated using measurements of the chemical composition of aerosols collected at Ny-Ålesund, Svalbard (78.9∘ N, 11.9∘ E) from 2015 to 2019. In all measurement years the concentration of NSS-SO2−4 was highest during the pre-bloom period and rapidly decreased towards summer. During the pre-bloom period we found a strong correlation between NSS-SO2−4 (sum of Anth-SO2−4 and Bio-SO2−4) and Anth-SO2−4. This was because more than 50 % of the NSS-SO2−4 measured during this period was Anth-SO2−4, which originated in northern Europe and was subsequently transported to the Arctic in Arctic haze. Unexpected increases in the concentration of Bio-SO2−4 aerosols (an oxidation product of dimethylsulfide: DMS) were occasionally found during the pre-bloom period. These probably originated in regions to the south (the North Atlantic Ocean and the Norwegian Sea) rather than in ocean areas in the proximity of Ny-Ålesund. Another oxidation product of DMS is MSA, and the ratio of MSA to Bio-SO2−4 is extensively used to estimate the total amount of DMS-derived aerosol particles in remote marine environments. The concentration of MSA during the pre-bloom period remained low, primarily because of the greater loss of MSA relative to Bio-SO2−4 and the suppression of condensation of gaseous MSA onto particles already present in air masses being transported northwards from distant ocean source regions (existing particles). In addition, the low light intensity during the pre-bloom period resulted in a low concentration of photochemically activated oxidant species including OH radicals and BrO; these conditions favored the oxidation pathway of DMS to Bio-SO2−4 rather than to MSA, which acted to lower the MSA concentration at Ny-Ålesund. The concentration of MSA peaked in May or June and was positively correlated with phytoplankton biomass in the Greenland and Barents seas around Svalbard. As a result, the mean ratio of MSA to the DMS-derived aerosols was low (0.09 ± 0.07) in the pre-bloom period but high (0.32 ± 0.15) in the bloom and post-bloom periods. There was large interannual variability in the ratio of MSA to Bio-SO2−4 (i.e., 0.24 ± 0.11 in 2017, 0.40 ± 0.14 in 2018, and 0.36 ± 0.14 in 2019) during the bloom and post-bloom periods. This was probably associated with changes in the chemical properties of existing particles, biological activities surrounding the observation site, and air mass transport patterns. Our results indicate that MSA is not a conservative tracer for predicting DMS-derived particles, and the contribution of MSA to the growth of newly formed particles may be much larger during the bloom and post-bloom periods than during the pre-bloom period.

2021

Health impacts of PM2.5 originating from residential wood combustion in four nordic cities

Orru, Hans; Olstrup, Henrik; Kukkonen, Jaakko; Lopez-Aparicio, Susana; Segersson, David; Geels, Camilla; Tamm, Tanel; Riikonen, Kari; Maragkidou, Androniki; Sigsgaard, Torben; Brandt, Jørgen; Grythe, Henrik; Forsberg, Bertil

Residential wood combustion (RWC) is one of the largest sources of fine particles (PM2.5) in the Nordic cities. The current study aims to calculate the related health effects in four studied city areas in Sweden, Finland, Norway, and Denmark.

2022

Longitudinal changes in concentrations of persistent organic pollutants (1986–2016) and their associations with type 2 diabetes mellitus

Charles, Dolley; Berg, Vivian; Nøst, Therese Haugdahl; Bergdahl, Ingvar A.; Huber, Sandra; Ayotte, Pierre; Wilsgaard, Tom; Averina, Maria; Sandanger, Torkjel M; Rylander, Charlotta

Background: Positive associations have been reported between persistent organic pollutants (POPs) and type 2 diabetes mellitus (T2DM); however, causality has not been established. Over the last decades, environmental exposure to legacy POPs has decreased, complicating epidemiological studies. In addition, physiological risk factors for T2DM may also influence POP concentrations, contributing to a complex network of factors that could impact associations with T2DM. Longitudinal studies on this topic are lacking, and few have assessed prospective and cross-sectional associations between repeated POP measurements and T2DM in the same individuals, which may shed light on causality.<p> <p>Objectives: To compare longitudinal trends in concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in T2DM cases and controls, and to examine prospective and cross-sectional associations between PCBs, OCPs and T2DM at different time-points before and after T2DM diagnosis in cases. <p>Methods: We conducted a longitudinal, nested case-control study (1986–2016) of 116 T2DM cases and 139 controls from the Tromsø Study. All participants had three blood samples collected before T2DM diagnosis in cases, and up to two samples thereafter. We used linear mixed-effect models to assess temporal changes of POPs within and between T2DM cases and controls, and logistic regression models to investigate the associations between different POPs and T2DM at different time-points. <p>Results: PCBs, trans-nonachlor, cis-nonachlor, oxychlordane, cis-heptachlor epoxide, p,p’-DDE, and p,p’-DDT declined more slowly in cases than controls, whereas β-HCH and HCB declined similarly in both groups. Most POPs showed positive associations between both pre- and post-diagnostic concentrations and T2DM, though effect estimates were imprecise. These associations were most consistent for cis-heptachlor epoxide. <p>Discussion: The observed positive associations between certain POPs and T2DM may be because of higher POP concentrations within prospective T2DM cases, due to slower temporal declines as compared to controls.

2022

Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontology

Chatterjee, Ayan; Riegler, Michael; Johnson, Miriam S.; Das, Jishnu; Pahari, Nibedita; Ramachandra, Raghavendra; Ghosh, Bikramaditya; Saha, Arpan; Bajpai, Ram

Lifestyle diseases significantly contribute to the global health burden, with lifestyle factors playing a crucial role in the development of depression. The COVID-19 pandemic has intensified many determinants of depression. This study aimed to identify lifestyle and demographic factors associated with depression symptoms among Indians during the pandemic, focusing on a sample from Kolkata, India. An online public survey was conducted, gathering data from 1,834 participants (with 1,767 retained post-cleaning) over three months via social media and email. The survey consisted of 44 questions and was distributed anonymously to ensure privacy. Data were analyzed using statistical methods and machine learning, with principal component analysis (PCA) and analysis of variance (ANOVA) employed for feature selection. K-means clustering divided the pre-processed dataset into five clusters, and a support vector machine (SVM) with a linear kernel achieved 96% accuracy in a multi-class classification problem. The Local Interpretable Model-agnostic Explanations (LIME) algorithm provided local explanations for the SVM model predictions. Additionally, an OWL (web ontology language) ontology facilitated the semantic representation and reasoning of the survey data. The study highlighted a pipeline for collecting, analyzing, and representing data from online public surveys during the pandemic. The identified factors were correlated with depressive symptoms, illustrating the significant influence of lifestyle and demographic variables on mental health. The online survey method proved advantageous for data collection, visualization, and cost-effectiveness while maintaining anonymity and reducing bias. Challenges included reaching the target population, addressing language barriers, ensuring digital literacy, and mitigating dishonest responses and sampling errors. In conclusion, lifestyle and demographic factors significantly impact depression during the COVID-19 pandemic. The study’s methodology offers valuable insights into addressing mental health challenges through scalable online surveys, aiding in the understanding and mitigation of depression risk factors.

2024

Polycyclic aromatic hydrocarbons (PAHs), oxy- and nitro-PAHs in ambient air of the Arctic town Longyearbyen, Svalbard

Drotikova, Titiana; Ali, Aasim Musa Mohamed; Halse, Anne Karine; Reinardy, Helena; Kallenborn, Roland

Polycyclic aromatic hydrocarbons (PAHs) are not
declining in Arctic air despite reductions in their global emissions.
In Svalbard, the Longyearbyen coal-fired power plant
is considered to be one of the major local sources of PAHs.
Power plant stack emissions and ambient air samples, collected
simultaneously at 1 km (UNIS) and 6 km (Adventdalen)
transect distance, were analysed (gaseous and particulate
phases separately) for 22 nitro-PAHs, 8 oxy-PAHs,
and 16 parent PAHs by gas chromatography in combination
with single quadrupole electron capture negative ionization
mass spectrometry (GC-ECNI-MS) and gas chromatography
in combination with triple quadrupole electron ionization
mass spectrometry (GC-EI-MS/MS). Results confirm low
levels of PAH emissions (Sum 16 PAHs D 1:5 μg/kg coal)
from the power plant. Phenanthrene, 9,10-anthraquinone, 9-
fluorenone, fluorene, fluoranthene, and pyrene accounted for
85% of the plant emission (not including naphthalene). A dilution
effect was observed for the transect ambient air samples:
1.26+/- 0.16 and 0.63+/- 0.14 ng/m3 were the sum of all
47 PAH derivatives for UNIS and Adventdalen, respectively.
The PAH profile was homogeneous for these recipient stations
with phenanthrene and 9-fluorenone being most abundant.
Multivariate statistical analysis confirmed coal combustion
and vehicle and marine traffic as the predominant
sources of PAHs. Secondary atmospheric formation of 9-
nitroanthracene and 2C3-nitrofluoranthene was evaluated
and concluded. PAHs partitioning between gaseous and particulate
phases showed a strong dependence on ambient temperatures
and humidity. The present study contributes important
data which can be utilized to eliminate uncertainties in
model predictions that aim to assess the extent and impacts
of Arctic atmospheric contaminants.

2020

The value of coastal lagoons: Case study of recreation at the Ria de Aveiro, Portugal in comparison to the Coorong, Australia

Clara, Inês; Dyack, Brenda; Rolfe, John; Newton, Alice; Borg, Darien; Povilanskas, Ramunas; Brito, Ana C.

2018

Cadmium pollution from zinc‐smelters up to four‐fold higher than expected in western Europe in the 1980s as revealed by alpine ice

Legrand, Michel; McConnell, Joseph; Lestel, L.; Preunkert, Susanne; Arienzo, Monica M; Chellman, Nathan J; Stohl, Andreas; Eckhardt, Sabine

Estimates of past emission inventories suggest that toxic heavy metal pollution in Europe was highest in the mid‐1970s for lead and in the mid‐1960s for cadmium, but these previous estimates have not been compared to observations. Here, alpine ice‐cores were used to document cadmium and lead pollution in western Europe between 1890 and 2000. The ice‐core trends show that while lead pollution largely from leaded gasoline reached a maximum in ~1975 as expected, cadmium pollution primarily from zinc smelters peaked in the early‐1980s rather than in ~1965 and was up to fourfold higher than estimated after 1975. Comparisons between ice‐core trends, estimated past emissions, and state‐of‐the‐art atmospheric aerosol transport and deposition modeling suggest that the estimated decreases in cadmium emissions after 1970 were based on overly optimistic emissions reductions from the introduction of pollution control devices and other technological improvements.

2020

Global nitrous oxide budget (1980–2020)

Tian, Hanqin; Pan, Naiqing; Thompson, Rona Louise; Canadell, Josep G.; Suntharalingam, Parvadha; Regnier, Pierre; Davidson, Eric A.; Prather, Michael; Ciais, Philippe; Muntean, Marilena; Pan, Shufen; Winiwarter, Wilfried; Zaehle, Sonke; Zhou, Feng; Jackson, Robert B.; Bange, Hermann W.; Berthet, Sarah; Bian, Zihao; Bianchi, Daniele; Bouwman, Alexander F.; Buitenhuis, Erik T.; Dutton, Geoffrey; Hu, Minpeng; Ito, Akihiko; Jain, Atul K.; Jeltsch-Thömmes, Aurich; Joos, Fortunat; Kou-Giesbrecht, Sian; Krummel, Paul B.; Lan, Xin; Landolfi, Angela; Lauerwald, Ronny; Li, Ya; Lu, Chaoqun; Maavara, Taylor; Manizza, Manfredi; Millet, Dylan B.; Mühle, Jens; Patra, Prabir K.; Peters, Glen Philip; Qin, Xiaoyu; Raymond, Peter; Resplandy, Laure; Rosentreter, Judith A.; Shi, Hao; Sun, Qing; Tonina, Daniele; Tubiello, Francesco N.; Werf, Guido R. Van Der; Vuichard, Nicolas; Wang, Junjie; Wells, Kelley C.; Western, Luke M.; Wilson, Chris; Yang, Jia; Yao, Yuanzhi; You, Yongfa; Zhu, Qing

Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).

2024

Elevated stratopause events in the current and a future climate: A chemistry-climate model study

Scheffler, Janice; Ayarzagüena, Blanca; Orsolini, Yvan J.; Langematz, Ulrike

The characteristics and driving mechanisms of Elevated Stratopause Events (ESEs) are examined in simulations of the ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-climate model under present and projected climate conditions. ESEs develop after sudden stratospheric warmings (SSWs) in boreal winter. While the stratopause descends during SSWs, it is reformed at higher altitudes after the SSWs, leading to ESEs in years with a particularly high new stratopause. EMAC reproduces well the frequency and main characteristics of observed ESEs. ESEs occur in 24% of the winters, mostly after major SSWs. They develop in stable polar vortices due to a persistent tropospheric wave forcing leading to a prolonged zonal wind reversal in the lower stratosphere. By wave filtering, this enables a faster re-establishment of the mesospheric westerly jet, polar downwelling and a higher stratopause. We find the presence of a westward-propagating wavenumber-1 planetary wave in the mesosphere following the onset, consistent with in-situ generation by large-scale instability. By the end of the 21st century, the number of ESEs is projected to increase, mainly due to a sinking of the original stratopause after strong tropospheric wave forcing and planetary wave dissipation at lower levels. Future ESEs develop preferably in more intense and cold polar vortices, and tend to be shorter. While in the current climate, planetary wavenumber-2 contributes to the forcing of ESEs, future wave forcing is dominated by wavenumber-1 activity as a result of climate change. Hence, a persistent wave forcing seems to be more relevant for the development of an ESE than the wavenumber decomposition of the forcing.

2021

Pan-European rural monitoring network shows dominance of NH3 gas and NH4NO3 aerosol in inorganic atmospheric pollution load

Tang, Y. Sim; Flechard, Chris R.; Dämmgen, Ulrich; Vidic, Sonja; Djuricic, Vesna; Mitosinkova, Marta; Uggerud, Hilde Thelle; Sanz, Maria J.; Simmons, Ivan; Dragosits, Ulrike; Nemitz, Eiko; Twigg, Marsailidh; Dijk, Netty van; Fauvel, Yannick; Sanz, Francisco; Ferm, Martin; Perrino, Cinzia; Catrambone, Maria; Leaver, David; Braban, Christine F.; Cape, J. Neil; Heal, Mathew R.; Sutton, Mark A.

A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl), and aerosols (NH+4, NO−3, SO2−4, Cl−, Na+, Ca2+, Mg2+) is presented and analysed. Speciated measurements were made with a low-volume denuder and filter pack method (DEnuder for Long-Term Atmospheric sampling, DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between seven European laboratories. Bulk wet-deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories.

The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions, and four main ecosystem types (crops, grassland, forests, and semi-natural). The smallest concentrations (with the exception of SO2−4 and Na+) were in northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in central and eastern Europe, with larger SO2 emissions, but particulate SO2−4 concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH+4, and NO−3 were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and the smallest were at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH+4 and NO−3 aerosol. In the aerosol phase, NH+4 was highly correlated with both NO−3 and SO2−4, with a near-1:1 relationship between the equivalent concentrations of NH+4 and sum (NO−3+ SO2−4),of which around 60 % was as NH4NO3.

Distinct seasonality was also observed in the data, influenced by changes in emissions, chemical interactions, and the influence of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition, and gas–aerosol-phase equilibrium. Seasonality in SO2 was mainly driven by emissions (combustion), with concentrations peaking in winter, except in southern Europe, where the peak occurred in summer. Particulate SO2−4 showed large peaks in concentrations in summer in southern and eastern Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO2−4 coincided with peaks in NH3 concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry, and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in eastern and southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH+4 and NO−3. The seasonal profile of NO−3 was mirrored by NH+4, illustrating the influence of gas–aerosol partitioning of NH4NO3 in the seasonality of these components.

Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected trends in SO2, NOx, and NH3 emissions, concentrations of NH3 and NH4NO3 can be expected to continue to dominate...

2021

Use of the single cell gel electrophoresis assay for the detection of DNA-protective dietary factors: Results of human intervention studies

Mišík, Miroslav; Staudinger, Marlen; Kundi, Michael; Worel, Nadine; Nersesyan, Armen; Ferk, Franziska; Dusinska, Maria; Azqueta, Amaya; Møller, Peter; Knasmüller, Siegfried

2023

Chlorinated paraffins and dechloranes in free-range chicken eggs and soil around waste disposal sites in Tanzania

Haarr, Ane; Nipen, Maja; Mwakalapa, Eliezer Brown; Borgen, Anders; Mmochi, Aviti J.; Borgå, Katrine

Electronic waste is a source of both legacy and emerging flame retardants to the environment, especially in regions where sufficient waste handling systems are lacking. In the present study, we quantified the occurrence of short- and medium chain chlorinated paraffins (SCCPs and MCCPs) and dechloranes in household chicken (Gallus domesticus) eggs and soil collected near waste disposal sites on Zanzibar and the Tanzanian mainland. Sampling locations included an e-waste facility and the active dumpsite of Dar es Salaam, a historical dumpsite in Dar es Salaam, and an informal dumpsite on Zanzibar. We compared concentrations and contaminant profiles between soil and eggs, as free-range chickens ingest a considerable amount of soil during foraging, with potential for maternal transfer to the eggs. We found no correlation between soil and egg concentrations or patterns of dechloranes or CPs. CPs with shorter chain lengths and higher chlorination degree were associated with soil, while longer chain lengths and lower chlorination degree were associated with eggs. MCCPs dominated the CP profile in eggs, with median concentrations ranging from 500 to 900 ng/g lipid weight (lw) among locations. SCCP concentrations in eggs ranged from below the detection limit (LOD) to 370 ng/g lw. Dechlorane Plus was the dominating dechlorane compound in all egg samples, with median concentrations ranging from 0.5 to 2.8 ng/g lw. SCCPs dominated in the soil samples (400–21300 ng/g soil organic matter, SOM), except at the official dumpsite where MCCPs were highest (65000 ng/g SOM). Concentrations of dechloranes in soil ranged from below LOD to 240 ng/g SOM, and the dominating compounds were Dechlorane Plus and Dechlorane 603. Risk assessment of CP levels gave margins of exposure (MOE) close to or below 1000 for SCCPs at one location.

2023

European aerosol phenomenology − 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets

Chen, Gang; Canonaco, Francesco; Tobler, Anna; Aas, Wenche; Alastuey, Andres; Allan, James; Atabakhsh, Samira; Aurela, Minna; Baltensperger, Urs; Bougiatioti, Aikaterini; Brito, Joel F. De; Ceburnis, Darius; Chazeau, Benjamin; Chebaicheb, Hasna; Daellenbach, Kaspar R.; Ehn, Mikael; Haddad, Imad El; Eleftheriadis, Konstantinos; Favez, Olivier; Flentje, Harald; Font, Anna; Fossum, Kirsten; Freney, Evelyn; Gini, Maria; Green, David C; Heikkinen, Liine; Herrmann, Hartmut; Kalogridis, Athina-Cerise; Keernik, Hannes; Lhotka, Radek; Lin, Chunshui; Lunder, Chris Rene; Maasikmets, Marek; Manousakas, Manousos I.; Marchand, Nicolas; Marin, Cristina; Marmureanu, Luminita; Mihalopoulos, Nikolaos; Močnik, Griša; Nęcki, Jaroslaw; O'Dowd, Colin; Ovadnevaite, Jurgita; Peter, Thomas; Petit, Jean-Eudes; Pikridas, Michael; Platt, Stephen Matthew; Pokorná, Petra; Poulain, Laurent; Priestman, Max; Riffault, Véronique; Rinaldi, Matteo; Różański, Kazimierz; Schwarz, Jaroslav; Sciare, Jean; Simon, Leïla; Skiba, Alicja; Slowik, Jay G.; Sosedova, Yulia; Stavroulas, Iasonas; Styszko, Katarzyna; Teinemaa, Erik; Timonen, Hilkka; Tremper, Anja; Vasilescu, Jeni; Via, Marta; Vodička, Petr; Wiedensohler, Alfred; Zografou, Olga; Minguillón, María Cruz; Prévôt, André S.H.

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013–2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30–240 min) and long-term data coverage (9–36 months), providing essential information to improve/validate air quality, health impact, and climate models.

2022

The colony forming efficiency assay for toxicity testing of nanomaterials—Modifications for higher-throughput

Rundén-Pran, Elise; Mariussen, Espen; Yamani, Naouale El; Elje, Elisabeth; Longhin, Eleonora Marta; Dusinska, Maria

To cope with the high number of nanomaterials manufactured, it is essential to develop high-throughput methods for in vitro toxicity screening. At the same time, the issue with interference of the nanomaterial (NM) with the read-out or the reagent of the assay needs to be addressed to avoid biased results. Thus, validated label-free methods are urgently needed for hazard identification of NMs to avoid unintended adverse effects on human health. The colony forming efficiency (CFE) assay is a label- and interference-free method for quantification of cytotoxicity by cell survival and colony forming efficiency by CFE formation. The CFE has shown to be compatible with toxicity testing of NMs. Here we present an optimized protocol for a higher-throughput set up.

2022

Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals

Freitas, Gabriel Pereira; Kopec, Ben; Adachi, Kouji; Krejci, Radovan; Heslin-Rees, Dominic; Yttri, Karl Espen; Hubbard, Alun Lloyd; Welker, Jeffrey M.; Zieger, Paul

Mixed-phase clouds (MPCs) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions rely, among other factors, on the ice content of MPCs, which is regulated by the availability of ice-nucleating particles (INPs). While it appears that INPs are associated with the presence of primary biological aerosol particles (PBAPs) in the Arctic, the nuances of the processes and patterns of INPs and their association with clouds and moisture sources have not been resolved. Here, we investigated for a full year the abundance of and variability in fluorescent PBAPs (fPBAPs) within cloud residuals, directly sampled by a multiparameter bioaerosol spectrometer coupled to a ground-based counterflow virtual impactor inlet at the Zeppelin Observatory (475 m a.s.l.) in Ny-Ålesund, Svalbard. fPBAP concentrations (10−3–10−2 L−1) and contributions to coarse-mode cloud residuals (0.1 to 1 in every 103 particles) were found to be close to those expected for high-temperature INPs. Transmission electron microscopy confirmed the presence of PBAPs, most likely bacteria, within one cloud residual sample. Seasonally, our results reveal an elevated presence of fPBAPs within cloud residuals in summer. Parallel water vapor isotope measurements point towards a link between summer clouds and regionally sourced air masses. Low-level MPCs were predominantly observed at the beginning and end of summer, and one explanation for their presence is the existence of high-temperature INPs. In this study, we present direct observational evidence that fPBAPs may play an important role in determining the phase of low-level Arctic clouds. These findings have potential implications for the future description of sources of ice nuclei given ongoing changes in the hydrological and biogeochemical cycles that will influence the PBAP flux in and towards the Arctic

2024

A European aerosol phenomenology – 9: Light absorption properties of carbonaceous aerosol particles across surface Europe

Rovira, Jordi; Savadkoohi, Marjan; Močnik, Griša; Chen, Gang I.; Aas, Wenche; Alados-Arboledas, Lucas; Artiñano, Begoña; Aurela, Minna; Backman, John; Banerji, Sujai; Beddows, David; Brem, Benjamin T.; Chazeau, Benjamin; Coen, Martine Collaud; Colombi, Cristina; Conil, Sébastien; Costabile, Francesca; Coz, Esther; Brito, Joel F. De; Eleftheriadis, Kostas; Favez, Olivier; Flentje, Harald; Freney, Evelyn; Gregorič, Asta; Gysel-Beer, Martin; Harrison, Roy M.; Hueglin, Christoph; Hyvärinen, Antti; Ivančič, Matic; Kalogridis, Athina-Cerise; Keernik, Hannes; Konstantinos, Granakis; Laj, Paolo; Liakakou, Eleni; Lin, Chunshui; Listrani, Stefano; Luoma, Krista; Maasikmets, Marek; Manninen, Hanna; Marchand, Nicolas; Santos, Sebastiao Martins Dos; Mbengue, Saliou; Mihalopoulos, Nikos; Nicolae, Doina; Niemi, Jarkko V; Norman, Michael; Ovadnevaite, Jurgita; Petit, Jean Eudes; Platt, Stephen Matthew; Prévôt, André S.H.; Pujadas, Manuel; Putaud, Jean-Philippe; Riffault, Véronique; Rigler, Martin; Rinaldi, Matteo; Schwarz, Jaroslav; Silvergren, Sanna; Teinemaa, Erik; Teinilä, Kimmo; Timonen, Hilkka; Titos, Gloria; Tobler, Anna; Vasilescu, Jeni; Vratolis, Stergios; Yttri, Karl Espen; Yubero, Eduardo; Zíková, Naděžda; Alastuey, Andrés; Petäjä, Tuukka; Querol, Xavier; Yus-Díez, Jesús; Pandolfi, Marco

Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11–20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV–VIS radiation presenting highly variable absorption properties in Europe.

2025

Publikasjon
År
Kategori