Fant 835 publikasjoner. Viser side 35 av 35:
Leveraging opportunity of low carbon transition by super-emitter cities in China
Chinese cities are core in the national carbon mitigation and largely affect global decarbonisation initiatives, yet disparities between cities challenge country-wide progress. Low-carbon transition should preferably lead to a convergence of both equity and mitigation targets among cities. Inter-city supply chains that link the production and consumption of cities are a factor in shaping inequality and mitigation but less considered aggregately. Here, we modelled supply chains of 309 Chinese cities for 2012 to quantify carbon footprint inequality, as well as explored a leverage opportunity to achieve an inclusive low-carbon transition. We revealed significant carbon inequalities: the 10 richest cities in China have per capita carbon footprints comparable to the US level, while half of the Chinese cities sit below the global average. Inter-city supply chains in China, which are associated with 80% of carbon emissions, imply substantial carbon leakage risks and also contribute to socioeconomic disparities. However, the significant carbon inequality implies a leveraging opportunity that substantial mitigation can be achieved by 32 super-emitting cities. If the super-emitting cities adopt their differentiated mitigation pathway based on affluence, industrial structure, and role of supply chains, up to 1.4 Gt carbon quota can be created, raising 30% of the projected carbon quota to carbon peak. The additional carbon quota allows the average living standard of the other 60% of Chinese people to reach an upper-middle-income level, highlighting collaborative mechanism at the city level has a great potential to lead to a convergence of both equity and mitigation targets.
2023
We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, “Nanoparticle Populations” of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.
2022
Dechloranes and chlorinated paraffins in sediments and biota of two subarctic lakes
Our understanding of the environmental behavior, bioaccumulation and concentrations of chlorinated paraffins (CPs) and Dechloranes (Dec) in the Arctic environment is still limited, particularly in freshwater ecosystems. In this descriptive study, short chain (SCCPs) and medium chain (MCCPs) CPs, Dechlorane Plus (DP) and analogues, and polychlorinated biphenyls (PCBs) were measured in sediments, benthic organisms, three-spined stickleback (Gasterosteus aculeatus), Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in two Sub-Arctic lakes in Northern Norway. Takvannet (TA) is a remote lake, with no known local sources for organic contaminants, while Storvannet (ST) is situated in a populated area. SCCPs and MCCPs were detected in all sediment samples from ST with concentration of 42.26–115.29 ng/g dw and 66.18–136.69 ng/g dw for SCCPs and MCCPs, respectively. Only SCCPs were detected in TA sediments (0.4–5.28 ng/g dw). In biota samples, sticklebacks and benthic organisms showed the highest concentrations of CPs, while concentrations were low or below detection limits in both char and trout. The congener group patterns observed in both lakes showed SCCP profiles dominated by higher chlorinated congener groups while the MCCPs showed consistency in their profiles, with C14 being the most prevalent carbon chain length. Anti- and syn-DP isomers were detected in all sediment, benthic and stickleback samples with higher concentrations in ST than in TA. However, they were only present in a few char and trout samples from ST. Dec 601 and 604 were below detection limits in all samples in both lakes. Dec 603 was detected only in ST sediments, sticklebacks and 2 trout samples, while Dec 602 was the only DP analogue found in all samples from both lakes. While there were clear differences in sediment concentrations of DP and Dec 602 between ST and TA, differences between lakes decreased with increasing δ15N. This pattern was similar to the PCB behavior, suggesting the lake characteristics in ST are playing an important role in the lack of biomagnification of pollutants in this lake. Our results suggest that ST receives pollutants from local sources in addition to atmospheric transport.
2024
Accurate gas velocity measurements in emission plumes are highly desirable for various atmospheric remote sensing applications. The imaging technique of UV SO2 cameras is commonly used to monitor SO2 emissions from volcanoes and anthropogenic sources (e.g. power plants, ships). The camera systems capture the emission plumes at high spatial and temporal resolution. This allows the gas velocities in the plume to be retrieved directly from the images. The latter can be measured at a pixel level using optical flow (OF) algorithms. This is particularly advantageous under turbulent plume conditions. However, OF algorithms intrinsically rely on contrast in the images and often fail to detect motion in low-contrast image areas. We present a new method to identify ill-constrained OF motion vectors and replace them using the local average velocity vector. The latter is derived based on histograms of the retrieved OF motion fields. The new method is applied to two example data sets recorded at Mt Etna (Italy) and Guallatiri (Chile). We show that in many cases, the uncorrected OF yields significantly underestimated SO2 emission rates. We further show that our proposed correction can account for this and that it significantly improves the reliability of optical-flow-based gas velocity retrievals.
In the case of Mt Etna, the SO2 emissions of the north-eastern crater are investigated. The corrected SO2 emission rates range between 4.8 and 10.7 kg s−1 (average of 7.1 ± 1.3 kg s−1) and are in good agreement with previously reported values. For the Guallatiri data, the emissions of the central crater and a fumarolic field are investigated. The retrieved SO2 emission rates are between 0.5 and 2.9 kg s−1 (average of 1.3 ± 0.5 kg s−1) and provide the first report of SO2 emissions from this remotely located and inaccessible volcano.
2018
Quantitative chemical analysis of airborne particulate matter (PM) is vital for the understanding of health effects in indoor and outdoor environments, as well as for enforcing EU air quality regulations. Typically, airborne particles are sampled over long time periods on filters, followed by lab-based analysis, e.g., with inductively coupled plasma mass spectrometry (ICP-MS). During the EURAMET EMPIR AEROMET project, cascade impactor aerosol sampling is combined for the first time with on-site total reflection X-ray fluorescence (TXRF) spectroscopy to develop a tool for quantifying particle element compositions within short time intervals and even on-site. This makes variations of aerosol chemistry observable with time resolution only a few hours and with good size resolution in the PM10 range. The study investigates the proof of principles of this methodological approach. Acrylic discs and silicon wafers are shown to be suitable impactor carriers with sufficiently smooth and clean surfaces, and a non-destructive elemental mass concentration measurement with a lower limit of detection around 10 pg/m3 could be achieved. We demonstrate the traceability of field TXRF measurements to a radiometrically calibrated TXRF reference, and the results from both analytical methods correspond satisfactorily.
2021
Urban air pollution is a challenge in several European cities. For most Norwegian cities, the major challenge is the reduction of the NO2 annual mean concentration in order to comply with the limit value in the European Directive 2008/50/EC, but also too many high NO2 hourly values occur during strong inversions in cold winter periods. In Oslo, the main contributor to NO2 concentration levels is diesel exhaust and hence the proposed measures in this study are targeting road traffic. An extensive array of individual and grouped measures were constructed and we studied the change in traffic and NO2 concentrations by performing consecutive modelling studies which included traffic, emissions, and dispersion models. These measures were intended for permanent and temporary action. They included increases of the tolls that give access to the inner parts of the city, the establishment of low emission zones (LEZs), allowing for temporary free public transport, odd-even driving, defining priority lanes for low emission vehicles, and imposing higher parking fees. We concluded that the most efficient measures were the creation of LEZs and the increase of parking fees. We also explain how the findings from this work have helped to implement Norwegian air quality control policies.
2020
Evaluating the effectiveness of a stove exchange programme on PM 2.5 emission reduction
Residential wood combustion (RWC) is one of the most important sources of particulate matter () in urban areas. As a consequence, different types of regulatory instruments are being implemented to reduce emissions. In this study, we evaluate both the potential and actual effect of a subsidy programme for stove exchange, which has been in place for over 20 years in Oslo (Norway). The subsidy programme provides economic support to the inhabitants for substituting old stoves for RWC with new and cleaner stoves as a measure to reduce emissions. Different approaches were selected to assess the potential effect of the Oslo subsidy programme. First, we evaluate the potential for reductions in emissions and pollution levels through the use of emission and dispersion modelling under different scenarios. We then assess the actual reductions associated with the stoves already replaced with the subsidy. We conclude the study by evaluating the time variation (2005 to 2018) in emissions, wood consumption and emission factors in Oslo in comparison with other municipalities with and without subsidy programmes in place. Results from emission and dispersion modelling show that the replacement of old wood stoves for new ones could have a significant effect on the reduction of emissions (up to 46%) and levels (up to 21%). Despite that, with near 8% of the total existing stoves in Oslo being exchanged with subsidy, the potential for reduction based on improved emission factors was estimated to be smaller by an order of magnitude. We find no evidence that municipalities with subsidy reduce emissions faster than those without subsidy. We therefore conclude that there is no evidence from our modelling results, supported by available observation data, that indicate that the emissions or concentrations in Oslo have been reduced as a result of the subsidy programme.
2020
Brominated flame retardants (BFRs) that are gradually being phased out are being replaced by emerging BFRs. Here, we report the concentration of the α- and β-isomers of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH; also known as DBE-DBCH) in over 300 air, water, and precipitation samples collected between 2019 and 2022 using active air and deposition sampling as well as networks of passive air and water samplers. The sampling region includes Canada's most populated cities and areas along the St. Lawrence River and Estuary, Quebec, as well as around the Salish Sea, British Columbia. TBECH was detected in over 60 % of air samples at levels comparable to those of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Concentrations of TBECH and BDE-47 were typically higher in urban areas, with stronger correlations with population density during warmer deployments. Uniform α- β-TBECH ratios across space, time, and environmental media indicate the highly similar atmospheric fate of the two isomers. Although TBECH air concentrations were strongly related to temperature in urban Toronto and a remote site on the east coast, the lack of such dependence at a remote site on the west coast can be explained by the small seasonal temperature range and summertime air mass transport from the Pacific Ocean. Despite there being no evidence that TBECH has been produced, or imported for use, in Canada, it is now one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that its emissions are not constrained to specific locations but are generally tied to the presence of humans. The most likely explanation for its environmental occurrence in Canada is the release from imported consumer products containing TBECH. Chiral analysis suggests that despite its urban origin, at least some fraction of TBECH has experienced enantioselective processing, i.e., has volatilized from reservoirs where it has undergone microbial transformations. Microbial processes in urban soils and in marine waters may have divergent enantioselectivity.
2023
The study aimed at investigating the concentrations and geographical patterns of 11 polychlorinated biphenyls (PCBs) and 15 organochlorine pesticides (OCPs) in reindeer muscle samples (n = 100) collected from 10 grazing districts in Norway, 2009. Concentrations were examined for patterns related to geographical region as well as age and sex of animals. Concentrations measured for PCBs and OCPs in reindeer meat samples were generally low. Geographical patterns were revealed and districts with previous mining activities, military trenches, or those that were in the vicinity of the Russian border exhibited slightly elevated concentrations compared to other districts. Calves (10 months) exhibited higher concentrations than young (1.5 year) and old animals (>2 years) adjusted for sex, whereas males exhibited higher concentrations than females, adjusted for age. All PCB congeners inter-correlated strongly with each other, whereas oxy-chlordane and heptachlor epoxide were the strongest inter-correlated OCP compounds. Concentrations of PCBs and OCPs in reindeer meat were all considerably lower than the maximum levels set for those contaminants in foodstuffs for safe human consumption by the European Commission. Thus, reindeer meat is not likely to be a substantial contributor to the human body burden of persistent organic pollutants.
2021
Marine plastic litter is subject to different abiotic and biotic forces that lead to its degradation, the main driver being UV-induced photodegradation. Since UV-exposure leads to both physical and chemical degradation of plastic, leading to a release of micro- and nanoplastics as well as leaching of chemicals and degradation products – it is expected to have radical impacts on plastics fate and effects in the marine environment. The number of laboratory studies investigating the mechanisms of plastic UV-degradation in seawater has increased significantly in the past 10 years, but are the exposures designed in a manner that allow observations to be extrapolated to environmental fate? Most studies to date focus on quantifying plastic fragmentation and surface changes, but is this relevant for impact assessments? Here, we provide a review of the current scientific literature on UV-degradation of plastic under marine conditions. Plastic fragmentation processes and surface changes as well as implications of UV-degradation of plastics on additive leaching and the toxicity of UV-weathered versus non-weathered plastics are highlighted. Furthermore, experimental set-ups are critically inspected and recommendations for future studies are issued.
Elsevier
2025
Concerns have been raised as to whether gunshot fumes induce prolonged reduced lung capacity or even cancer due to inhalation. Gunshot fumes from three different types of ammunition calibre 5.56 mm × 45 NATO were investigated. SS109 has a soft lead (Pb) core, while NM255 and NM229 have a harder steel core. Emissions from ammunitions were characterized with respect to particle number- and mass-size, and mass distribution, heavy metal content, and different gases. Lung epithelial cells were exposed to the fumes at the air liquid interface to elucidate cytotoxicity and genotoxicity. Irrespectively of ammunition type, the largest mass fraction of generated particulate matter (PM) had a size between 1 and 3 μm. The highest number of particles generated was in the size range of 30 nm. Fumes from NM255 and NM229 induced cytotoxic effects of which the emission from NM229 induced the highest effect. Fumes from NM229 induced a dose-related increase in DNA-damage. Significant effects were only achieved at the highest exposure level, which led to approximately 40% reduced cell viability after 24 h. The effect probably relates to the mass of emitted particles where the size may be of importance, in addition to emission of Cu and Zn. A complex mixture of chemical substances and PM may increase the toxicity of the fumes and should encourage measures to reduce exposure.
2021
The adverse outcome pathway (AOP) framework plays a crucial role in the paradigm shift of toxicity testing towards the development and use of new approach methodologies. AOPs developed for chemicals are in theory applicable to nanomaterials (NMs). However, only initial efforts have been made to integrate information on NM-induced toxicity into existing AOPs. In a previous study, we identified AOPs in the AOP-Wiki associated with the molecular initiating events (MIEs) and key events (KEs) reported for NMs in scientific literature. In a next step, we analyzed these AOPs and found that mitochondrial toxicity plays a significant role in several of them at the molecular and cellular levels. In this study, we aimed to generate hypothesis-based AOPs related to NM-induced mitochondrial toxicity. This was achieved by integrating knowledge on NM-induced mitochondrial toxicity into all existing AOPs in the AOP-Wiki, which already includes mitochondrial toxicity as a MIE/KE. Several AOPs in the AOP-Wiki related to the lung, liver, cardiovascular and nervous system, with extensively defined KEs and key event relationships (KERs), could be utilized to develop AOPs that are relevant for NMs. However, the majority of the studies included in our literature review were of poor quality, particularly in reporting NM physicochemical characteristics, and NM-relevant mitochondrial MIEs were rarely reported. This study highlights the potential role of NM-induced mitochondrial toxicity in human-relevant adverse outcomes and identifies useful AOPs in the AOP-Wiki for the development of AOPs for NMs.
Elsevier
2024
Microfibers (MF) are one of the major classes of microplastic found in the marine environment on a global scale. Very little is known about how they move and distribute from point sources such as wastewater effluents into the ocean. We chose Adventfjorden near the settlement of Longyearbyen on the Arctic Svalbard archipelago as a case study to investigate how microfibers emitted with untreated wastewater will distribute in the fjord, both on a spatial and temporal scale. Fiber abundance in the effluent was estimated from wastewater samples taken during two one-week periods in June and September 2017. Large emissions of MFs were detected, similar in scale to a modern WWTP serving 1.3 million people and providing evidence of the importance of untreated wastewater from small settlements as major local sources for MF emissions in the Arctic. Fiber movement and distribution in the fjord mapped using an online-coupled hydrodynamic-drift model (FVCOM-FABM). For parameterizing a wider spectrum of fibers from synthetic to wool, four different density classes of MFs, i.e., buoyant, neutral, sinking, and fast sinking fibers are introduced to the modeling framework. The results clearly show that fiber class has a large impact on the fiber distributions. Light fibers remained in the surface layers and left the fjord quickly with outgoing currents, while heavy fibers mostly sank to the bottom and deposited in the inner parts of the fjord and along the northern shore. A number of accumulation sites were identified within the fjord. The southern shore, in contrast, was much less affected, with low fiber concentrations throughout the modeling period. Fiber distributions were then compared with published pelagic and benthic fauna distributions in different seasons at selected stations around the fjord. The ratios of fibers to organisms showed a very wide range, indicating hot spots of encounter risk for pelagic and benthic biota. This approach, in combination with in-situ ground-truthing, can be instrumental in understanding microplastic pathways and fate in fjord systems and coastal areas and help authorities develop monitoring and mitigation strategies for microfiber and microplastic pollution in their local waters.
Frontiers Media S.A.
2021
Procellariiform seabirds like northern fulmars (Fulmarus glacialis) are prone to ingest and accumulate floating plastic pieces. In the North Sea region, there is a long tradition to use beached fulmars as biomonitors for marine plastic pollution. Monitoring data revealed consistently lower plastic burdens in adult fulmars compared to younger age classes. Those findings were hypothesized to partly result from parental transfer of plastic to chicks. However, no prior study has examined this mechanism in fulmars by comparing plastic burdens in fledglings and older fulmars shortly after the chick-rearing period. Therefore, we investigated plastic ingestion in 39 fulmars from Kongsfjorden (Svalbard), including 21 fledglings and 18 older fulmars (adults/older immatures). We found that fledglings (50−60 days old) had significantly more plastic than older fulmars. While plastic was found in all fledglings, two older fulmars contained no and several older individuals barely any plastic. These findings supported that fulmar chicks from Svalbard get fed high quantities of plastic by their parents. Adverse effects of plastic on fulmars were indicated by one fragment that perforated the stomach and possibly one thread perforating the intestine. Negative correlations between plastic mass and body fat in fledglings and older fulmars were not significant.
2023
Frontiers Media S.A.
2022
Northern Fulmars (Fulmarus glacialis) are a pelagic seabird species distributed at northern and polar latitudes. They are often used as an indicator of plastic pollution in the North Sea region, but data are lacking from higher latitudes, especially when it comes to chicks. Here, we investigated amounts of ingested plastic and their characteristics in fulmar chicks from the Faroe Islands. Plastic particles (1 mm) in chicks of two age classes were searched using a digestion method with KOH. In addition, to evaluate if additive tissue burden reflects plastic ingestion, we measured liver tissue concentrations of two pollutant classes associated with plastic materials: polybrominated diphenyl ethers (PBDEs) and several dechloranes, using gas chromatography with high-resolution mass spectrometry. The most common shape was hard fragment (81%) and the most common polymer was polyethylene (73%). Plastic contamination did not differ between either age class, and we found no correlation between neither the amount and mass of plastic particles and the concentration of additives. After comparison with previous studies on adult fulmars, we do not recommend using chicks for biomonitoring adults because chicks seem to ingest more plastics than adults.
2022
State of the Climate in 2021: 5. The Arctic
American Meteorological Society
2022
Uptake and effects of 2, 4, 6 - trinitrotoluene (TNT) in juvenile Atlantic salmon (Salmo salar)
Elsevier
2018