Fant 431 publikasjoner. Viser side 3 av 18:
Assessing the environmental burden of disease related to air pollution in Europe in 2022
This report evaluates the health burden due to long-term exposure to PM2.5, NO2, and O3 across Europe in 2022. By analysing all-cause and cause-specific mortality and morbidity, it estimates disease burden using four indicators: Attributable Deaths (AD), Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life Years (DALY). However, the main results only consider the impact of exposure to levels of pollutants exceeding the current WHO air quality guidelines. The results indicate that PM2.5 contributes the most significant health impact (linked to six diseases), resulting in over 2.7 million DALY across 40 countries, and resulting in 269 000 AD, with mortality rates peaking in Eastern Europe. The report introduces methodological advancements, assessing the long-term impacts of O3 for the first time. Findings underscore the critical need for targeted air quality interventions, as pollution continues to drive significant health losses across the continent, particularly among vulnerable populations.
ETC/HE
2024
The report presents interim 2023 maps for PM10 annual average, PM2.5 annual average, O3 indicator peak season average of maximum daily 8-hour means, and NO2 annual average. The maps have been produced based on the 2023 non-validated E2a (UTD) data of the AQ e-reporting database, the CAMS Ensemble Forecast modelling data and other supplementary data. Together with the concentration maps, the inter-annual differences between 5-year average 2018-2022 and 2023 are presented (using the 2018-2022 regular and the 2023 interim maps), as well as basic exposure estimates based on the interim maps.
ETC/HE
2024
2024
Analyses of selected organic contaminants and metals in coffee cups. Technical report.
On behalf of Norwegian Consumer Council, NILU has conducted analyses of organic contaminants and metals in the leachate from selected coffee-cups. The simulation of the leakage is conducted based on a compilation of the methods described within NS-EN-1186-9 and NS-EN-13130-1. The instrumental analytical methods used were already established at NILU and NIVA. A number of different organic contaminants and metals have been found in trace amounts in the different products.
NILU
2018
Copernicus Atmosphere Monitoring Service
2020
Monitoring of long-range transported air pollutants in Norway. Annual report 2018.
This report presents results from the monitoring of atmospheric composition and deposition of air pollution in 2018, and focuses on main components in air and precipitation, particulate and gaseous phase of inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate matter. 2018 was a special year with elevated ozone levels during the whole summer season due to prolonged heat and drought.
NILU
2019
Air quality in Sandefjord, Norway. November 2021 – August 2023.
This report examines the air quality patterns in terms of particulate matter with a diameter less than 2.5 μm (PM2.5) in Sandefjord, Norway. PM2.5 was monitored through five low-cost sensors in hourly resolution from November 2021 to August 2023. The sensors’ reliability is high, with consistent PM2.5 measurements and similar variation over time. Occasional extreme PM2.5 was attributed to local contributions with higher values observed during cold months, or specific long-range transport events. Overall, Sandefjord maintained good air quality for most of the measurement period with daily PM2.5 levels below the air quality criteria. Residential heating activities (wood burning) is the most significant local source, being more pronounced during winter.
NILU
2024
Survey of emissions of volatile organic chemicals from handheld toys for children above 3 years
NILU has, on behalf of the Norwegian Environment Agency, performed a screening study to identify volatile organic chemicals (VOCs) emitted from handheld toys for children. The goal was to identify individual VOCs emitted from toys at room temperature and to evaluate what impact the toys may have on the composition and concentrations of VOCs in indoor air. 12-30 individual VOCs were identified in each toy and 65-143 individual VOCs were detected with a concentration higher than 1 µg/m3. VOCs emitted at high concentrations and/or with hazardous properties were cyclohexanone, aromatic VOCs (xylenes, toluene, ethylbenzene), cyclic siloxanes and 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (TXIB). A regulated hydrochlorofluorocarbon (HCFC-141 b) was also detected from 5 toys. The toys with high concentrations of cyclohexanone and cyclic siloxanes affected the composition and concentrations of VOCs in indoor air.
NILU
2020
Målinger av miljøgifter i luft ved Franzefoss Eide på Sotra og Husøya ved Kristiansund
NILU har gjennomført måleprogram for konsentrasjoner i luft ved Franzefoss Gjenvinning AS sine anlegg ved Eide på Sotra og ved Husøya ved Kristiansund. Ved Eide ble det tatt prøver i luft og analysert for prioriterte miljøgifter som dekloraner, fenoler, ftalater, PFAS, benzotriazoler, organiske tinnforbindelser, samt VOC inkludert D6, ammoniakk (NH3), gassfase HCl og hydrogensulfid (H2S). For de prioriterte miljøgiftene var de fleste prøvene under deteksjonsgrensen. De høyeste verdiene ble observert ved Lokasjon 11 Vannrenseanlegget. Ved Husøya ble det tatt prøver i luft og analysert for VOC inkludert D6, ammoniakk (NH3) og gassfase HCl. Verdiene ved Husøya var lavere enn ved Eide.
NILU
2022
Air Quality in Ny-Ålesund. Monitoring of Local Air Quality 2019 and 2020.
The concentrations of the measured components are generally low and below national limit values for the protection of
human health and critical levels for the protection of vegetation. Wind from northern sectors gave the highest average concentrations of nitrogen oxides and sulfur dioxide, which indicates the power station and the harbour as possible sources. We also see single episodes of long-range transport of sulfur dioxide.
NILU
2021
2021
Screening of Chlorinated Paraffins, Dechloranes and UV-filters in Nordic Countries
In 2019, the Nordic screening group decided to perform a Nordic screening on chlorinated paraffins, dechloranes and UV-filters. These compounds are used in a wide range of applications. They all have long range transport characteristics and can potentially be regulated under the Stockholm POP convention. However, there are still huge data gaps, which need to be addressed in order to fulfill regulation requests. Several topics and questions were in focus for more measurements and a deeper understanding: (1) importance of long-range atmospheric transport and deposition, (2) differences/similarities in terrestrial versus marine food chains, and (3) variations between the Nordic countries and between urban and remote areas. Based on these priorities, availability of samples, and other practical reasons, samples from different Nordic countries, different environments, and both urban and remote places were selected. This study includes analysis of the compounds in air, marine and freshwater fish and marine mammals and bird eggs, but as the chlorinated paraffins also have been found to accumulate in the terrestrial food web, terrestrial mammals and bird eggs were included as well. Additionally, samples of pine needles were analysed both to look at the possibility for long range transport and to investigate it as a possible source of chlorinated paraffins for the terrestrial mammals.
Nordic Council of Ministers
2022
The report provides the annual update of the European air quality concentration maps and population exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, SOMO35, SOMO10) and NO2 (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2018. The report contains also Phytotoxic ozone dose (POD) for wheat and potato maps and NOx annual average maps for 2018. The POD maps are presented for the first time in this regular mapping report. The trends in exposure estimates in the period 2005-2018 are summarized. The analysis is based on interpolation of annual statistics of the 2018 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database. The mapping method is the Regression – Interpolation – Merging Mapping. It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps.
ETC/ATNI
2021
This report presents the results of the European Union Action
on Black Carbon in the Arctic (EUA-BCA) initiative’s review of
observation capacities and data availability for black carbon in the Arctic region.
EUA-BCA/AMAP
2019
Chlorinated paraffins in urban air in Nordic countries
In 2022, the Joint Nordic screening group decided to perform a Nordic study on short-, medium- and long-chain chlorinated paraffins (SCCPs, MCCPs, LCCPs) in urban air. A previous study performed on behalf of screening group in 2019 observed higher concentrations of chlorinated paraffins (CPs) in air samples from an urban site than from remote sites (Schlabach et al. 2022). It was then suggested that tire wear particles could be the source for the elevated urban concentrations.
The focus of the study in 2022 was to collect data to improve the understanding of sources for CPs in air by: (1) comparing concentrations measured in wintertime when studded tires are used and in summertime when normal tires are used, (2) comparing data from three capitals in the Nordic countries, and (3) compare urban air concentrations to air concentrations in a car tire testing facility. All the member countries were invited to participate but based on the possibilities to collect active air samples in urban locations, it was decided to collect air samples from Helsinki (Finland), Reykjavik and Reykjanesbær (Iceland) and Oslo (Norway). Samples were collected in February–March 2022 and May–August 2022. The sampling time for each sample was 48 hrs and 3–6 samples were collected per site and season.
Nordic Council of Ministers
2023
Environmental Contaminants in an Urban Fjord, 2021
This report presents data from the first year of a new 5-year period of the Urban Fjord programme. The programme started in 2013 and has since been altered/advanced. In 2021 the programme covers sampling and analyses of stormwater, river water, effluent from a wastewater treatment plant (inputs to the fjord), fjord sediment, blue mussel, cod and (river) trout, all from the Inner Oslofjord area. A total of 260 single compounds/isomers were analysed and frequent detection was found of benzothiazoles in abiotic aqueous phases, UV-compounds in most matrices, metals in all matrices, PBDEs in biota, chlorinated paraffins in all matrices and PCBs in biota and abiotic particle phases. Four
Norsk institutt for vannforskning (NIVA)
2022
Monitoring of environmental contaminants in air and precipitation. Annual report 2022.
This report presents air monitoring data from 2022 for the Norwegian monitoring programme "Atmospheric contaminants". The results cover 260 organic compounds (regulated and non-regulated) and 16 compound groups, 14 heavy metals, and a selection of organic chemicals of concern.
NILU
2023
The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Amsterdam (the Netherlands).
ClairCity Project
2020
This report analyses evolution and trends of air quality in Europe, based on a 15-year time series of spatial data fusion maps for the years 2005-2019. The analysis has been performed for PM10 annual average, the ozone indicator SOMO35 and NO2 annual average. For the purpose of the Eionet Report - ETC/ATNI 2021/11 trend analysis, a consistent reconstruction of the full 15-year time series of air quality maps has been performed, based on a consistent mapping methodology and input data. For the reconstruction, the Regression – Interpolation – Merging Mapping (RIMM) methodology as routinely used in the regular European-wide annual mapping has been applied.
The trend analysis has been performed based on time series of the aggregated data for individual countries, for large European regions and for the entire mapping area, both for spatial and population-weighted aggregations. In addition, maps of trends have been constructed based on the trend estimates for all grid cells of a map.
For the European-wide aggregations across the whole mapping area, statistically significant downward trend have been estimated for PM10 and NO2, while no significant trend was detected in the case of ozone.
ETC/ATNI
2021