Gå til innhold
Vitenskapelig tidsskriftspublikasjon

Citizen-operated low-cost sensors for estimating outdoor particulate matter infiltration

Salamalikis, Vasileios; Hassani, Amir; Zawadzki, Paweł; Bykuć, Sebastian; Castell, Núria Balaguer

Publikasjonsdetaljer

Tidsskrift: Air quality, atmosphere and health, 2025

Doi: doi.org/10.1007/s11869-025-01787-4

Sammendrag:
Fine particulates observed indoors exhibit high variability, influenced by both indoor emission sources and the infiltration of outdoor particles through open spaces and the incomplete building insulation. This study examines the relationship between indoor and outdoor PM2.5 levels in Legionowo, Poland, using data from low-cost air quality sensors operated by citizens. The indoor PM2.5 was lower than outdoor levels (median PM2.5: 1.9–17.3 μg m–3 indoors and 6.7–27.9 μg m–3 outdoors), with occasional peaks attributed to potential indoor emission sources. Statistical analysis identified emission events—particularly during cooking and household-heating periods—occurring more frequently from October to April. During this period, nearly 17% of indoor PM2.5 measurements were attributed to indoor emission sources after 18:00 LT, representing a 7% increase compared to the May–September period. In the absence of indoor sources, outdoor particles accounted for 29% to 75% of indoor concentrations, highlighting the significance of infiltration. This research emphasizes how citizen-generated data using low-cost sensors, after post-processing, can provide decision-ready information as for example outdoor particles’ infiltration factors for each building. The knowledge of the infiltration factor enables the determination of the contribution of indoor and outdoor sources to each resident’s exposure to airborne PM. This information can help decision-makers in devising interventions such as prioritizing indoor ventilation, reducing indoor activities resulting in increased exposure, and addressing outdoor pollution sources.