Fant 9890 publikasjoner. Viser side 106 av 396:
Quality assurance and quality control procedure for national and Union GHG projections 2021
The quality assurance and quality control (QA/QC) procedure is an element of the QA/QC programme of the Union system for policies and measures and projections to be established in 2021 according to Article 39 of the Regulation on the Governance of the Energy Union and Climate Action (EU) 2018/1999. The European Environment Agency (EEA) is responsible for the annual implementation of the QA/QC procedures and is assisted by the European Topic Centre on Climate Change Mitigation and Energy (ETC/CME). The QA/QC procedure document describes QA/QC checks carried out at EU level on the national reported projections from Member States and on the compiled Union GHG projections. QA/QC procedures are performed at several different stages during the preparation of the national and Union GHG projections in order to aim to ensure the timeliness, transparency, accuracy, consistency, comparability and completeness of the reported information. The results of the 2021 QA/QC procedure are presented in the related paper ETC/CME Eionet Report 8/2021.
ETC/CME
2021
Quality assurance and quality control procedure for national and Union GHG projections 2019
The quality assurance and quality control (QA/QC) procedure is an element of the QA/QC programme of the Union system for policies and measures and projections to be established in 2019 according to Article 12 of the MMR. The European Environment Agency (EEA) is responsible for the annual implementation of the QA/QC procedures and is assisted by the European Topic Centre on Climate change mitigation and energy (ETC/CME). The QA/QC procedure document describes QA/QC checks carried out at EU level on the national reported projections from Member States and on the compiled Union GHG projections. QA/QC procedures are performed at several different stages during the preparation of the national and Union GHG projections in order to aim to ensure the timeliness, transparency, accuracy, consistency, comparability and completeness of the reported information. The results of the 2019 QA/QC procedure are presented in the related paper ETC/CME Eionet Report 2019/6.
ETC/CME
2019
2002
2008
2002
Qatar air quality modelling workshop. Outcomes and recommendations. NILU OR
NILU arrangerte et 4-dagers seminar (¿Luftkvalitetsmodellering¿) 27.-30.mai 2013 for helsemyndighetene i Qatar (SCH). Seminaret ble finansiert av Verdens helseorganisasjon (WHO). Målene for seminaret var å gi nødvendig opplæring for eksperter i Qatar om de grunnleggende prinsippene for modellering, ulike tilgjengelige verktøy og applikasjoner for luftkvalitetsmodellering. Denne informasjonen vil da gi de ansvarlige myndigheter en verdifull innføring i å forstå hvordan de kan bygge opp sitt eget modelleringsprogram for luftkvalitet og kompetanse på dette feltet.
2013
2008
1999
2001
2001
2017
Public Perception of Urban Air Quality Using Volunteered Geographic Information Services
Investigating perceived air quality (AQ) in urban areas is a rather new topic of interest. Papers presenting results from studies on perception of AQ have thus far focused on the individual characteristics leading to a certain AQ perception or have compared personal perception with on-site measurements. Here we present a novel approach, namely applying volunteered geographic information (VGI) technologies in urban AQ monitoring. We present two smartphone applications that have been developed and applied in two EU projects (FP7 CITI-SENSE and H2020 hackAIR) to obtain citizens’ perception of AQ. We focus on observations reported through the smartphone apps for the greater Oslo area in Norway. In order to evaluate whether the reports on perceived AQ contain information about the actual spatial patterns of AQ, we carried out a comparison of the perception data against the output from the high-resolution urban AQ model EPISODE. The results indicate an association between modelled annual average pollutant concentrations and the provided perception reports. This demonstrates that the spatial patterns of perceived AQ are not entirely random but follow to some extent what would be expected due to proximity of emission sources and transport. This information shows that VGI about citizens’ perception of AQ has the potential to identify areas with low environmental quality for urban development.
2020