Fant 9850 publikasjoner. Viser side 300 av 394:
2019
2019
2019
Europe's urban air quality — re-assessing implementation challenges in cities
European Environment Agency
2019
2019
Two years of continuous in situ measurements of Arctic low‐level clouds have been made at the Mount Zeppelin Observatory (78°56′N, 11°53′E), in Ny‐Ålesund, Spitsbergen. The monthly median value of the cloud particle number concentration (Nc) showed a clear seasonal variation: Its maximum appeared in May–July (65 ± 8 cm−3), and it remained low between October and March (8 ± 7 cm−3). At temperatures warmer than 0 °C, a clear correlation was found between the hourly Nc values and the number concentrations of aerosols with dry diameters larger than 70 nm (N70), which are proxies for cloud condensation nuclei (CCN). When clouds were detected at temperatures colder than 0 °C, some of the data followed the summertime Nc to N70 relationship, while other data showed systematically lower Nc values. The lidar‐derived depolarization ratios suggested that the former (CCN‐controlled) and latter (CCN‐uncontrolled) data generally corresponded to clouds consisting of supercooled water droplets and those containing ice particles, respectively. The CCN‐controlled data persistently appeared throughout the year at Zeppelin. The aerosol‐cloud interaction index (ACI = dlnNc/(3dlnN70)) for the CCN‐controlled data showed high sensitivities to aerosols both in the summer (clean air) and winter–spring (Arctic haze) seasons (0.22 ± 0.03 and 0.25 ± 0.02, respectively). The air parcel model calculations generally reproduced these values. The threshold diameters of aerosol activation (Dact), which account for the Nc of the CCN‐controlled data, were as low as 30–50 nm when N70 was less than 30 cm−3, suggesting that new particle formation can affect Arctic cloud microphysics.
American Geophysical Union (AGU)
2019
2019
2019
Air quality assessment and management in Europe and Norway: History, current status and future plans
2019
2019
2019
Norwegian Scientific Committee for Food and Environment (VKM)
2019
The aim of the study is to assess the effect of the subsidy to replace old wood stoves for new clean burning stoves, and to what extent the scheme has influenced the total particle emissions and pollution concentrations in Oslo municipality. NILU selected three methods; 1) emission and dispersion modelling for 4 different scenarios; 2) estimate the emission reduction associated with the subsidy scheme in Oslo municipality; and 3) a comparison of changes in emissions, wood consumption and emission factors over time in municipalities with and without subsidy. Modeling and assessment of the potential emission reduction associated with the subsidy scheme shows that it has a potentially significant effect on the reduction of particulate emissions and concentrations of PM2.5 and PM10. The estimates show that the subsidy scheme in Oslo municipality gives a significant reduction in average emission factor over time. However, the effect on total PM-emissions is small.
NILU
2019
2019
DNA double‐strand breaks in Arctic char (Salvelinus alpinus) from Bjørnøya in the Norwegian Arctic
High levels of organochlorine contaminants (OCs) have been found in arctic char (Salvelinus alpinus) from Lake Ellasjøen, Bjørnøya (Norwegian Arctic). The aim of the present study was to investigate the potential genotoxic effect of environmental organochlorine contaminant exposure in arctic char from Ellasjøen compared with arctic char from the low‐contaminated Lake Laksvatn nearby. Blood was analyzed using agarose gel electrophoresis and image data analysis to quantify the fraction of total DNA that migrated into the gel (DNA‐FTM) as a relative measure of DNA double‐strand breaks (DSBs). Analysis by GC‐MS of muscle samples showed an average 43 times higher concentration of ΣOCs in arctic char from Ellasjøen (n = 18) compared with Laksvatn char (n = 21). Char from Lake Ellasjøen had a much higher frequency of DSBs, as measured by DNA‐FTM, than char from Lake Laksvatn. Principal component analysis and multiple linear regressions show that there was a significant positive relationship between DSBs and levels of organochlorine contaminants in the char. In addition, DSBs were less frequent in reproductively mature char than in immature char. The results suggest that organochlorine contaminants are genotoxic to arctic char.
Pergamon Press
2019
Snow initialization has been previously investigated as a potential source of predictability atthe subseasonal‐to‐seasonal (S2S) timescale in winter and spring, through its local radiative,thermodynamical, and hydrological feedbacks. However, previous studies were conducted with low‐topmodels over short periods only. Furthermore, the potential role of the land surface‐stratosphere connectionupon the S2S predictability had remained unclear. To this end, we have carried out twin 30‐memberensembles of 2‐month (November and December) retrospective forecasts over the period 1985–2016, witheither realistic or degraded snow initialization. A high‐top version of the Norwegian Climate PredictionModel is used, based on the Whole Atmosphere Community Climate Model, to insure improved couplingwith the stratosphere. In a composite difference of high versus low initial Eurasian snow, the surfacetemperature is strongly impacted by the presence of snow, and wave activityfluxes into the stratosphere areenhanced at a 1‐month lag, leading to a weakened polar vortex. Focusing further on 7 years characterized bya strongly negative phase of the Arctic Oscillation, wefind a weak snow feedback contributing to themaintenance of the negative Arctic Oscillation. By comparing the twin forecasts, we extracted the predictiveskill increment due to realistic snow initialization. The prediction of snow itself is greatly improved, andthere is increased skill in surface temperature over snow‐covered land in thefirst 10 days, and localized skillincrements in the mid‐latitude transition regions on the southernflanks of the snow‐covered land areas, atlead times longer than 30 days.
American Geophysical Union (AGU)
2019