Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9998 publikasjoner. Viser side 15 av 400:

Publikasjon  
År  
Kategori

Addendum to "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus".

Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.-U.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-Lacaux, C.; Hou, A.; Pienaar, J.J.; Gillett, R.; Forti, M.C.; Gromov, S.; Hara, H.; Khodzher, T.; Mahowald, N.M, Nickovic, S.; Rao, P.S.P.; Reid, N.W.

2014

Addressing black carbon driven albedo variability in the Arctic: VAUUAV. NILU F

Burkhart, J.F.; Storvold, R.; Pedersen, C.; Bogren, W.; Bates, T.; Quinn, P.

2010

Addressing emissions of pm from wood burning using levoglucosan. NILU F

Yttri, K.E.; Dye, C.; Forster, C.

2005

Addressing pan-Arctic black carbon through the collective measurements of the IASOA observatories. NILU F

Burkhart, J.F.; Sharma, S.; Ogren, J.A.; Starkweather, S.; Bergin, M.H.; Eleftheriadis, K.; Lihavainen, H.; Fiebig, M.

2013

Addressing the advantages and limitations of using Aethalometer data to determine the optimal absorption Ångström exponents (AAEs) values for eBC source apportionment

Savadkoohi, Marjan; Gerras, Mohamed; Favez, Olivier; Petit, Jean-Eudes; Rovira, Jordi; Chen, Gang I.; Via, Marta; Platt, Stephen Matthew; Aurela, Minna; Chazeau, Benjamin; Brito, Joel F. De; Riffault, Véronique; Eleftheriadis, Kostas; Flentje, Harald; Gysel-Beer, Martin; Hueglin, Christoph; Rigler, Martin; Gregorič, Asta; Ivančič, Matic; Keernik, Hannes; Maasikmets, Marek; Liakakou, Eleni; Stavroulas, Iasonas; Luoma, Krista; Marchand, Nicolas; Mihalopoulos, Nikos; Petäjä, Tuukka; Prévôt, André S.H.; Daellenbach, Kaspar R.; Vodička, Petr; Timonen, Hilkka; Tobler, Anna; Vasilescu, Jeni; Dandocsi, Andrei; Mbengue, Saliou; Vratolis, Stergios; Zografou, Olga; Chauvigné, Aurélien; Hopke, Philip K.; Querol, Xavier; Alastuey, Andrés; Pandolfi, Marco

The apportionment of equivalent black carbon (eBC) to combustion sources from liquid fuels (mainly fossil; eBCLF) and solid fuels (mainly non-fossil; eBCSF) is commonly performed using data from Aethalometer instruments (AE approach). This study evaluates the feasibility of using AE data to determine the absorption Ångström exponents (AAEs) for liquid fuels (AAELF) and solid fuels (AAESF), which are fundamental parameters in the AE approach. AAEs were derived from Aethalometer data as the fit in a logarithmic space of the six absorption coefficients (470–950 nm) versus the corresponding wavelengths. The findings indicate that AAELF can be robustly determined as the 1st percentile (PC1) of AAE values from fits with R2 > 0.99. This R2-filtering was necessary to remove extremely low and noisy-driven AAE values commonly observed under clean atmospheric conditions (i.e., low absorption coefficients). Conversely, AAESF can be obtained from the 99th percentile (PC99) of unfiltered AAE values. To optimize the signal from solid fuel sources, winter data should be used to calculate PC99, whereas summer data should be employed for calculating PC1 to maximize the signal from liquid fuel sources. The derived PC1 (AAELF) and PC99 (AAESF) values ranged from 0.79 to 1.08, and 1.45 to 1.84, respectively. The AAESF values were further compared with those constrained using the signal at mass-to-charge 60 (m/z 60), a tracer for fresh biomass combustion, measured using aerosol chemical speciation monitor (ACSM) and aerosol mass spectrometry (AMS) instruments deployed at 16 sites. Overall, the AAESF values obtained from the two methods showed strong agreement, with a coefficient of determination (R2) of 0.78. However, uncertainties in both approaches may vary due to site-specific sources, and in certain environments, such as traffic-dominated sites, neither approach may be fully applicable.

2025

Addressing Urgent Questions for PFAS in the 21st Century

Ng, Carla; Cousins, Ian T.; Dewitt, Jamie C.; Glüge, Juliane; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Miller, Mark; Patton, Sharyle; Scheringer, Martin; Trier, Xenia; Wang, Zhanyun

2021

Advanced biological models in vitro for hazard assessment of nanomaterials on human health

Camassa, Laura Maria Azzurra; Sadeghiankaffash, Hamed; Zheng, Congying; Ervik, Torunn Kringlen; Anmarkrud, Kristine Haugen; Elje, Elisabeth; Shaposhnikov, Sergey; Rundén-Pran, Elise; Zienolddiny-Narui, Shan

2023

Advanced Respiratory Models for Hazard Assessment of Nanomaterials—Performance of Mono-, Co- and Tricultures

Camassa, Laura Maria Azzurra; Elje, Elisabeth; Mariussen, Espen; Longhin, Eleonora Marta; Dusinska, Maria; Zienolddiny-Narui, Shanbeh; Rundén-Pran, Elise

Advanced in vitro models are needed to support next-generation risk assessment (NGRA), moving from hazard assessment based mainly on animal studies to the application of new alternative methods (NAMs). Advanced models must be tested for hazard assessment of nanomaterials (NMs). The aim of this study was to perform an interlaboratory trial across two laboratories to test the robustness of and optimize a 3D lung model of human epithelial A549 cells cultivated at the air–liquid interface (ALI). Potential change in sensitivity in hazard identification when adding complexity, going from monocultures to co- and tricultures, was tested by including human endothelial cells EA.hy926 and differentiated monocytes dTHP-1. All models were exposed to NM-300K in an aerosol exposure system (VITROCELL® cloud-chamber). Cyto- and genotoxicity were measured by AlamarBlue and comet assay. Cellular uptake was investigated with transmission electron microscopy. The models were characterized by confocal microscopy and barrier function tested. We demonstrated that this advanced lung model is applicable for hazard assessment of NMs. The results point to a change in sensitivity of the model by adding complexity and to the importance of detailed protocols for robustness and reproducibility of advanced in vitro models

2022

Advances in assessing the quality of Sentinel-5P TROPOMI cloud products and their reprocessings using Cloudnet and ARM network data

Compernolle, Steven; Argyrouli, Athina; Lutz, Ronny; Sneep, Maarten; Lambert, Jean-Christopher; Fjæraa, Ann Mari; Granville, José; Hubert, Daan; Keppens, Arno; Loyola, Diego; O’Connor, Ewan; Pinardi, Gaia; Rasson, Olivier; Romahn, Fabian; Stammes, Piet; Verhoelst, Tijl; Wang, Ping

2024

Advances in our understanding of nanomaterial carcinogenicity.

Dusinska, M.; Gabelova, A.; El Yamani, N.; Fjellsbø, L. M.; Silva, M.J.; Rundén-Pran, E.

2016

Advances in remote sensing and forecasting of volcanic ash.

Prata, F.; Buongiorno, F.; Richter, A.; Seibert, P.; Stohl, A.; Corradini, S.; Spinetti, C.; Kristiansen, N.; Eckhardt, S.

2012

Advancing Air Quality Awareness and Action: Insights from the SOCIO-BEE Project on Community-Based Monitoring

Hassani, Amirhossein; Kyfonidis, Charalampos; Mansilla, Diego Casado; Salamalikis, Vasileios; Kotzagianni, Maria; Roussos, Anargyros; Castell, Nuria; Udina, Sergi; Morresi, Nicole; Casccia, Sara; Revel, Gian Marco; Angelis, Georgios-Fotios; Emvoliadis, Alexandros; Theodorou, Traianos-Ioannis; Karanassos, Dimitrios; Kopsacheilis, Evangelos; Drosou, Anastasios; Tzovaras, Dimitrios; Lopez, Carlos; Lisbona, Daniel

2024

Advancing climate forecasting.

Merryfield, W. J.; Doblas-Reyes, F. J.; Ferranti, L.; Jeong, J.-H.; Orsolini, Y. J.; Saurral, R. I.; Scaife, A.; A.; Tolstykh, M. A.; Rixen, M.

2017

Advancing Genotoxicity Assessment by Building a Global AOP Network

Demuynck, Emmanuel; Vanhaecke, Tamara; Thienpont, Anouck; Cappoen, Davie; Goethem, Freddy Van; Winkelman, L. M. T.; Beltman, Joost B.; Murugadoss, Sivakumar; Olsen, Ann-Karin Hardie; Marcon, Francesca; Bossa, Cecilia; Shaikh, Sanah M.; Nikolopoulou, Dimitra; Hatzi, Vasiliki; Pennings, Jeroen L A; Luijten, Mirjam; Adam-Guillermin, Christelle; Paparella, Martin; Audebert, Marc; Mertens, Birgit

2025

Advarer: – Om dette fortsetter blir det ille

Hodson, Andrew; Platt, Stephen Matthew (intervjuobjekter)

2025

AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations

Gliss, Jonas; Mortier, Augustin; Schulz, Michael; Andrews, Elisabeth; Balkanski, Yves; Bauer, Susanne E.; Benedictow, Anna Maria Katarina; Bian, Huisheng; Checa-Garcia, Ramiro; Chin, Mian; Ginoux, Paul; Griesfeller, Jan; Heckel, Andreas; Kipling, Zak; Kirkevåg, Alf; Kokkola, Harri; Laj, Paolo G.; Sager, Philippe Le; Lund, Marianne Tronstad; Myhre, Cathrine Lund; Matsui, Hitoshi; Myhre, Gunnar; Neubauer, David; Noije, Twan van; North, Peter; Oliviè, Dirk Jan Leo; Remy, Samuel; Sogacheva, Larisa; Takemura, Toshihiko; Tsigaridis, Kostas; Tsyro, Svetlana

Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes.
Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1.
Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc.
Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment.
Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models.
Considerable ...

2021

Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds

Motos, Ghislain; Freitas, Gabriel; Georgakaki, Paraskevi; Wieder, Jörg; Li, Guangyu; Aas, Wenche; Lunder, Chris Rene; Krejci, Radovan; Pasquier, Julie Thérèse; Henneberger, Jan; David, Robert Oscar; Ritter, Christoph; Mohr, Claudia; Zieger, Paul; Nenes, Athanasios

The Arctic is one of the most rapidly warming regions of the globe. Low-level clouds and fog modify the energy transfer from and to space and play a key role in the observed strong Arctic surface warming, a phenomenon commonly termed “Arctic amplification”. The response of low-level clouds to changing aerosol characteristics throughout the year is therefore an important driver of Arctic change that currently lacks sufficient constraints. As such, during the NASCENT campaign (Ny-Ålesund AeroSol Cloud ExperimeNT) extending over a full year from October 2019 to October 2020, microphysical properties of aerosols and clouds were studied at the Zeppelin station (475 m a.s.l.), Ny-Ålesund, Svalbard, Norway. Particle number size distributions obtained from differential mobility particle sizers as well as chemical composition derived from filter samples and an aerosol chemical speciation monitor were analyzed together with meteorological data, in particular vertical wind velocity. The results were used as input to a state-of-the-art cloud droplet formation parameterization to investigate the particle sizes that can activate to cloud droplets, the levels of supersaturation that can develop, the droplet susceptibility to aerosol and the role of vertical velocity. We evaluate the parameterization and the droplet numbers calculated through a droplet closure with in-cloud in situ measurements taken during nine flights over 4 d. A remarkable finding is that, for the clouds sampled in situ, closure is successful in mixed-phase cloud conditions regardless of the cloud glaciation fraction. This suggests that ice production through ice–ice collisions or droplet shattering may have explained the high ice fraction, as opposed to rime splintering that would have significantly reduced the cloud droplet number below levels predicted by warm-cloud activation theory. We also show that pristine-like conditions during fall led to clouds that formed over an aerosol-limited regime, with high levels of supersaturation (generally around 1 %, although highly variable) that activate particles smaller than 20 nm in diameter. Clouds formed in the same regime in late spring and summer, but aerosol activation diameters were much larger due to lower cloud supersaturations (ca. 0.5 %) that develop because of higher aerosol concentrations and lower vertical velocities. The contribution of new particle formation to cloud formation was therefore strongly limited, at least until these newly formed particles started growing. However, clouds forming during the Arctic haze period (winter and early spring) can be limited by updraft velocity, although rarely, with supersaturation levels dropping below 0.1 % and generally activating larger particles (20 to 200 nm), including pollution transported over a long range. The relationship between updraft velocity and the limiting cloud droplet number agrees with previous observations of various types of clouds worldwide, which supports the universality of this relationship.

2023

Publikasjon
År
Kategori