Fant 10088 publikasjoner. Viser side 368 av 404:
2025
Protein-nanomaterial interaction is a topic of great interest for nanotechnology research, particularly for advancing strategies in nanomedicine and nanosafety. This study explores the thermodynamic signatures associated with the interactions of six TiO2 nanoforms, (differing in their crystalline structure, surface properties and particle size) with bovine serum albumin as model protein. By integrating findings from electron paramagnetic resonance spectroscopy (EPR) regarding the free radical generation following interaction, together with information on the stability and conformational changes of the protein during adsorption on TiO2 nanomaterials, we aim to elucidate the binding mechanisms and identify the primary factors influencing nanomaterial's reactivity. The effect of the particle size, crystalline structure and surface properties on the binding parameters, protein structural stability and EPR data is discussed. Finally, the relevant parameters suitable for understanding molecular interactions at the bio/nano interface have been corroborated with the toxicological outcomes resulting from the measurements on the viability, proliferation and real time attachment of relevant cell lines, as well as with the detection of DNA strand breaks and oxidized DNA at the single-cell level. Thermodynamic and EPR parameters emerge as key descriptors for determining adsorption/binding processes and toxic effects of nanomaterials. The rankings with respect to cell damage and to oxidative stress inducing potential follow the same ranking seen in nanomaterial's influence on the BSA structural stability, binding affinity and enthalpic character of the interaction. Our findings highlight the intricate relationships between the parameters governing bio-nano interactions and the toxicity of the nanomaterials, and their significance in assessing nanomaterial safety and efficacy.
2025
Understanding nanomaterial (NM)–protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM–protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA–NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.
2020
2012
Thirteenth EIONET workshop on air quality management and assessment, Brugge, Belgium 29-30 September 2008. Proceedings. ETC/ACC Technical paper, 2008/11
2008
2013
2011
2011
2018
A Lagrangian particle dispersion model, the FLEXible PARTicle dispersion chemical transport model (FLEXPART CTM), is used to simulate global three-dimensional fields of trace gas abundance. These fields are constrained with surface observation data through nudging, a data assimilation method, which relaxes model fields to observed values. Such fields are of interest to a variety of applications, such as inverse modelling, satellite retrievals, radiative forcing models and estimating global growth rates of greenhouse gases. Here, we apply this method to methane using 6 million model particles filling the global model domain. For each particle, methane mass tendencies due to emissions (based on several inventories) and loss by reaction with OH, Cl and O(1D), as well as observation data nudging were calculated. Model particles were transported by mean, turbulent and convective transport driven by 1∘×1∘ ERA-Interim meteorology. Nudging is applied at 79 surface stations, which are mostly included in the World Data Centre for Greenhouse Gases (WDCGG) database or the Japan–Russia Siberian Tall Tower Inland Observation Network (JR-STATION) in Siberia. For simulations of 1 year (2013), we perform a sensitivity analysis to show how nudging settings affect modelled concentration fields. These are evaluated with a set of independent surface observations and with vertical profiles in North America from the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL), and in Siberia from the Airborne Extensive Regional Observations in SIBeria (YAK-AEROSIB) and the National Institute for Environmental Studies (NIES). FLEXPART CTM results are also compared to simulations from the global Eulerian chemistry Transport Model version 5 (TM5) based on optimized fluxes. Results show that nudging strongly improves modelled methane near the surface, not only at the nudging locations but also at independent stations. Mean bias at all surface locations could be reduced from over 20 to less than 5 ppb through nudging. Near the surface, FLEXPART CTM, including nudging, appears better able to capture methane molar mixing ratios than TM5 with optimized fluxes, based on a larger bias of over 13 ppb in TM5 simulations. The vertical profiles indicate that nudging affects model methane at high altitudes, yet leads to little improvement in the model results there. Averaged from 19 aircraft profile locations in North America and Siberia, root mean square error (RMSE) changes only from 16.3 to 15.7 ppb through nudging, while the mean absolute bias increases from 5.3 to 8.2 ppb. The performance for vertical profiles is thereby similar to TM5 simulations based on TM5 optimized fluxes where we found a bias of 5 ppb and RMSE of 15.9 ppb. With this rather simple model setup, we thus provide three-dimensional methane fields suitable for use as boundary conditions in regional inverse modelling as a priori information for satellite retrievals and for more accurate estimation of mean mixing ratios and growth rates. The method is also applicable to other long-lived trace gases.
2018
2009
2000
Thymidine Kinase+/− Mammalian Cell Mutagenicity Assays for Assessment of Nanomaterials
The methods outlined here are part of a series of papers designed specifically for genotoxicity assessment of nanomaterials (NM). Common Considerations such as NM characterization, sample preparation and dose selection, relevant to all genotoxicity assays, are found in an accompanying paper. The present paper describes methods for evaluation of mutagenicity in the mammalian (mouse) thymidine kinase (Tk) gene occurring in L5178Y mouse lymphoma (ML) cells and in the designated TK gene in human lymphoblastoid TK6 cells. Mutations change the functional genotype from TK+/− to TK−/−, detectable as cells surviving on media selective for the lack of thymidine kinase (TK) function. Unlike cells with TK enzyme function, the TK−/− cells are unable to integrate the toxic selection agent, allowing these cells to survive as rare mutant colonies. The ML assay has been shown to detect a broad spectrum of genetic damage, including both small scale (point) mutations and chromosomal alterations. This assay is a widely used mammalian cell gene mutation assay for regulatory purposes and is included in the core battery of genotoxicity tests for regulatory decision-making. The TK6 assay is an assay using a human cell line derived similarly via mutagenic manipulations and optimal selection. Details are provided on the materials required, cell culture methods, selection of test chemical concentrations, cytotoxicity, treatment time, mutation expression, cloning, and data calculation and interpretation. The methods describe the microwell plate version of the assays without metabolic activation.
2022
2017
2009
2012
2023
2024
2024
2025
Tidal Amplification in the Lower Thermosphere During the 2003 October–November Solar Storms
Abstract Using the National Center for Atmospheric Research's vertically extended version of the Whole Atmosphere Community Climate Model nudged with reanalyses, we examine the impact of the 2003 Halloween solar storms on atmospheric tides and planetary waves in the lower thermosphere (LT). One of the largest solar flares and fastest coronal mass ejections on record occurred on 30 October, resulting in significant energy transfer via Joule heating and auroral particle precipitation in the Earth's higher latitude thermosphere. In the simulation, that occurrence creates large zonally asymmetric heating perturbations, amplifying the diurnal migrating tide (DW1), semidiurnal migrating tide (SW2), as well as non‐migrating westward and eastward tides between 120 and 200 km. Large‐amplitude bursts of DW1 in the Northern Hemisphere and non‐migrating westward tides in the Southern Hemisphere lead to westward wave forcings, which strengthen the thermospheric wind. Planetary waves are also amplified, but their forcing is much weaker than the forcing exerted by tides in the LT. Non‐migrating tides are generated by nonlinear interactions between tides, or between tides and quasi‐stationary planetary waves, and in situ processes in the LT linked to Joule heating and auroral particle precipitation. The induced disruptions of the thermospheric mean meridional circulation reinforce the Spring thermospheric branch in the Southern Hemisphere at high latitudes and oppose the Fall branch in the Northern Hemisphere. Our examination could be relevant to understand the dynamical impact of recent geomagnetic storms that occurred in May 2024 and October 2024.
2025
2021