Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2252 publikasjoner. Viser side 22 av 226:

Publikasjon  
År  
Kategori

Understanding Air Quality Trends in Europe. Focus on the relative contribution of changes in emission of activity sectors, natural fraction and meteorological variability.

Colette, Augustin; Solberg, Sverre; Aas, Wenche; Walker, Sam-Erik

Emission changes are the main driver of all air pollutant trends. For NO2 and PM10, both the GAM and the CTM results indicate that emission changes contribute to at least 90% of the 2000-2017 trend. For ozone peaks (as 4MDA8), meteorology can be important. The GAM model estimates that it contributes to an increase counteracting mitigation effort up to a magnitude of 20 to 80% (compared to the effect of emission and background changes) in Austria, Belgium, Czech Republic, France, and Italy. Given the good skill of the GAM model to capture meteorological effect, this estimate can be considered quite robust.

The relative contribution of agriculture and industry to the total PM10 mass has been reduced by around 30% for both sectors, but the similarity of evolution is not directly linked to the emission trends in the respective sectors. The relationship between emissions and concentrations is nonlinear and depends on availability of precursor gases to form ammonium sulphate and ammonium nitrate. The relative contribution of traffic sources to PM10 has been reduced with around 20%, while the trend attributed to residential heating is marginal. The heating sector has become a relatively more important contributor to the aerosol pollution and needs more attention. The model also indicates that the natural contributions (such as sea salt and dust) has had little impact on the long-term changes in PM10.

The analysis includes observational data only from stations with data available for at least 14 years in the period 2000-2017. This drastically reduces the number of monitoring sites included in the analysis and the spatial representativity of the assessment, with bias towards countries benefiting from a long-term monitoring network.

Further improvements of models as well as observational basis are needed to reduce the uncertainties. Understanding organic aerosols from the residential heating sector should be a priority.

ETC/ATNI

2021

Method for high resolution emission estimations from construction sites. Phase I: Mapping input data

Lopez-Aparicio, Susana; Grythe, Henrik

This report presents the results from exploring the available input data to develop a model for estimating air pollutants and GHG-emissions based on a bottom-up approach, including both exhaust and non-exhaust emissions. The availability of
reliable input data is the limiting factor and the most critical part of designing such a bottom-up approach. In this study, we have focussed on assessing input data that allow defining; i) the exact location and area affected during building and construction; ii) the starting and finalization dates; iii) the type of construction activity; iv) the non-road mobile machinery (NRMM) activity within building and construction; v) roads in the vicinity of construction sites.

NILU

2021

Health risk assessments of air pollution. Estimations of the 2019 HRA, benefit analysis of reaching specific air quality standards and more.

Ortiz, Alberto González; Guerreiro, Cristina; Soares, Joana; Horálek, Jan

The health risk related to exposure to air pollution (fine particulate matter - PM2.5, ozone - O3, and nitrogen dioxide - NO2) in 2019 was estimated in terms of number of premature deaths and years of life lost related to exposure to for 41 European countries, including the 27 EU Member States. In 2019, air pollution continued to drive a significant burden of premature death and disease in the 41 countries reporting to EEA: 373,000 premature deaths were attributed to chronic exposure to PM2.5; 47,700 premature deaths were attributed to chronic NO2 exposure; 19,070 premature deaths were attributed to acute O3 exposure. The analysis on the EU’s progress to reach the 2030 target established in the Zero Pollution Action Plan shows a steady decrease in the number of premature deaths along the years, and if it continues to fall at a comparable rate in the future, then the target would be achieved by 2032. Had the new WHO air quality guideline level for PM2.5 of 5 µg/m3 been attained already in 2019 everywhere in Europe, the number of estimated premature deaths would have been at least 58 % lower. On the other hand, the attainment of the EU limit value for PM2.5 of 25 µg/m3 would have left the estimated number of premature deaths unchanged in EU-27.

ETC/ATNI

2021

Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual Report 2020.

Svendby, Tove Marit; Hansen, Georg H.; Bäcklund, Are; Nilsen, Anne-Cathrine; Schulze, Dorothea; Johnsen, Bjørn

This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. 2020 was characterized by a strong, cold, and persistent Arctic stratospheric vortex, leading to extensive formation of Polar Stratospheric Clouds (PSCs, mother-of-pearl clouds) and chemical ozone destruction with very low ozone values and high UV levels in the exposed regions in the spring.

NILU

2021

Status report of air quality in Europe for year 2020, using validated and up-to-date data

Targa, Jaume; Ripoll, Anna; Banyuls, Lorena; Ortiz, Alberto González; Guerreiro, Cristina

This report presents summarized information on the status of air quality in Europe in 2020, based on up-to date (i.e. prior to final quality control) and validated air quality monitoring data reported by the member and cooperating countries of the EEA. It aims at giving more timely and preliminary information on the status of ambient air quality in Europe in 2020 for five key air pollutants (PM10, PM2.5, O3, NO2 and SO2). The report also gives a preliminary assessment of the progress towards meeting the European air quality standards for the protection of health and the World Health Organization air quality guidelines, and compares the air quality status in 2020 with the previous three years. The preliminary data reported for 2020 shows that more than 10% of the monitoring stations exceeded the EU standards for PM10 and O3 and the WHO guidelines for PM2.5, PM10, O3 and SO2 in the EU-27 and UK. Exceedances of the NO2 limit value and WHO guideline still occur in 9 countries of the EU-27 and the UK.

ETC/ATNI

2021

Vurdering av utslipp til luft fra Wistingfeltet i Barentshavet. Underlag for konsekvensutredning.

Berglen, Tore Flatlandsmo; Tønnesen, Dag

NILU har vurdert miljøkonsekvensene av utslipp til luft fra fremtidig utbygging og drift av Wisting-feltet i Barentshavet. Utslipp av CO2, CH4, N2O og NMVOC er vurdert utfra bidrag til strålingspådriv/global oppvarming. Kraftforsyning fra land med sjøkabel vil sterkt redusere utslippene av CO2. Klimaeffekten av utslipp til luft fra produksjonen vil bli liten. Bidraget fra Wisting til eutrofiering og forsuring gjennom avsetning av NOx og SOx forventes å være lite og knapt målbart. Likeledes vil bidraget fra Wisting til ozonproduksjon være minimalt og knapt målbart. Klimaeffekten av BC-utslipp (Black Carbon) fra installasjonene på Wisting vil bli liten. Samtidig gir utslipp av BC i Arktis større effekt pr. utslippsenhet enn utslipp lenger sør. Det bør derfor være et mål å optimalisere faklingen fra Wisting slik at utslipp av BC blir redusert til et absolutt minimum.

NILU

2021

Low-cost sensors and networks. Overview of current status by the Norwegian Reference Laboratory for Air Quality.

Castell, Nuria

The increase of the commercial availability of low-cost sensor technology to monitor atmospheric composition is contributing to the rapid adoption of such technology by both public authorities and self-organized initiatives (e.g. grass root movements, citizen science, etc.). Low-cost sensors (LCS) can provide real time measurements, in principle at lower cost than traditional monitoring reference stations, allowing higher spatial coverage than the current reference methods. However, data quality from LCS is lower than the one provided by reference methods. Also, the total cost of deploying a dense sensor network needs to consider the costs associated not only to the sensor platforms but also the costs associated for instance with deployment, maintenance and data transmission.
This report aims to give an overview of the current status of LCS technology in relation to commercialization, measuring capabilities and data quality, with especial emphasis on the challenges associated to the use of this novel technology, and the opportunities they open when correctly used.

NILU

2021

Maximizing output from non-target screening

Andreasen, Birgitta; Bavel, Bert van; Fishcher, Stellan; Haglund, Peter; Rostkowski, Pawel; Reid, Malcolm James; Samanipour, Saer; Schlabach, Martin; Veenaas, Cathrin; Dam, Maria

The purpose of this project is to dig deeper into the data material already generated in the Suspect screening in Nordic countries: Point sources in city areas (TemaNord: 2017:561) to further optimize the benefits of the major work that has already been done. Samples (effluent, sediment, and biota) from all of the Nordic countries were carefully selected, sampled and analysed by a consortium of some of the Nordic region’s most experienced scientific groups in analyses of emerging environmental contaminants. But where perhaps the full potential of the generated data is still to be realized. This project will try to further identify and describe the substances already detected, to be able to better understand what substances we in modern Nordic societies release into the sea via our wastewater.

Nordic Council of Ministers

2021

Transport Non-exhaust PM-emissions. An overview of emission estimates, relevance, trends and policies.

Vanherle, Kris; Lopez-Aparicio, Susana; Grythe, Henrik; Lükewille, Anke; Unterstaller, Andreas; Mayeres, Inge

The report holds a comprehensive literature review on the non-exhaust PM emission from transport. All types of wear particles are considered (brake, tyre, road surface) and all modes (road, rail, aviation), with strong emphasis on road. The report serves as an input to review current emission inventories, summarizing the current emission estimates, the estimation methodologies, uncertainties and future trends, briefly zooming in on the relevance of electric vehicles. The report considers both air quality as well as the relevance of non-exhaust emission as a source of microplastics. To conclude, the report includes a brief overview of technological and policy options to reduce the environmental impact.

ETC/ATNI

2021

Publikasjon
År
Kategori