Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2246 publikasjoner. Viser side 23 av 225:

Publikasjon  
År  
Kategori

Heavy metals and POPs: Pollution assessment of toxic substances on regional and global scales

Ilyin, Ilia; Batrakova, Nadezhda; Gusev, Aleksey; Kleimenov, Mikhail; Rozovskaya, Olga; Shatalov, Victor; Strizhkina, Irina; Travnikov, Oleg; Breivik, Knut; Halvorsen, Helene Lunder; Bohlin-Nizzetto, Pernilla; Pfaffhuber, Katrine Aspmo; Aas, Wenche; Mareckova, Katarina; Poupa, Stephan; Wankmüller, Robert; Ullrich, Bernhard; Degorska, Anna

Meteorological Synthesizing Centre - East

2021

Understanding Air Quality Trends in Europe. Focus on the relative contribution of changes in emission of activity sectors, natural fraction and meteorological variability.

Colette, Augustin; Solberg, Sverre; Aas, Wenche; Walker, Sam-Erik

Emission changes are the main driver of all air pollutant trends. For NO2 and PM10, both the GAM and the CTM results indicate that emission changes contribute to at least 90% of the 2000-2017 trend. For ozone peaks (as 4MDA8), meteorology can be important. The GAM model estimates that it contributes to an increase counteracting mitigation effort up to a magnitude of 20 to 80% (compared to the effect of emission and background changes) in Austria, Belgium, Czech Republic, France, and Italy. Given the good skill of the GAM model to capture meteorological effect, this estimate can be considered quite robust.

The relative contribution of agriculture and industry to the total PM10 mass has been reduced by around 30% for both sectors, but the similarity of evolution is not directly linked to the emission trends in the respective sectors. The relationship between emissions and concentrations is nonlinear and depends on availability of precursor gases to form ammonium sulphate and ammonium nitrate. The relative contribution of traffic sources to PM10 has been reduced with around 20%, while the trend attributed to residential heating is marginal. The heating sector has become a relatively more important contributor to the aerosol pollution and needs more attention. The model also indicates that the natural contributions (such as sea salt and dust) has had little impact on the long-term changes in PM10.

The analysis includes observational data only from stations with data available for at least 14 years in the period 2000-2017. This drastically reduces the number of monitoring sites included in the analysis and the spatial representativity of the assessment, with bias towards countries benefiting from a long-term monitoring network.

Further improvements of models as well as observational basis are needed to reduce the uncertainties. Understanding organic aerosols from the residential heating sector should be a priority.

ETC/ATNI

2021

Status report of air quality in Europe for year 2020, using validated and up-to-date data

Targa, Jaume; Ripoll, Anna; Banyuls, Lorena; Ortiz, Alberto González; Guerreiro, Cristina

This report presents summarized information on the status of air quality in Europe in 2020, based on up-to date (i.e. prior to final quality control) and validated air quality monitoring data reported by the member and cooperating countries of the EEA. It aims at giving more timely and preliminary information on the status of ambient air quality in Europe in 2020 for five key air pollutants (PM10, PM2.5, O3, NO2 and SO2). The report also gives a preliminary assessment of the progress towards meeting the European air quality standards for the protection of health and the World Health Organization air quality guidelines, and compares the air quality status in 2020 with the previous three years. The preliminary data reported for 2020 shows that more than 10% of the monitoring stations exceeded the EU standards for PM10 and O3 and the WHO guidelines for PM2.5, PM10, O3 and SO2 in the EU-27 and UK. Exceedances of the NO2 limit value and WHO guideline still occur in 9 countries of the EU-27 and the UK.

ETC/ATNI

2021

Status report of air quality in Europe for year 2019, using validated data

Targa, Jaume; Ripoll, Anna; Banyuls, Lorena; Ortiz, Alberto González; Guerreiro, Cristina

This report presents summarized information on the status of air quality in Europe in 2019, based on validated air quality monitoring data officially reported by the member and cooperating countries of the EEA. It aims at informing on the status of ambient air quality in Europe in 2019 and on the progress towards meeting the European air quality standards for the protection of health, as well as the WHO air quality guidelines. The report also compares the air quality status in 2019 with the previous three years. The pollutants covered in this report are particulate matter (PM10 and PM2.5), O3, NO2, benzo(a)pyrene (BaP), SO2, CO, benzene and toxic metals (As, Cd, Ni, Pb). Measured concentrations above the European air quality standards for PM10, PM2.5, O3, NO2 were reported by 21, 7, 24, and 22 European countries for 2019, respectively. Exceedances of the air quality standards for BaP, SO2, CO, and benzene were measured in, respectively, 14, 6, 3, and two European countries in 2019. Exceedances of European standards for toxic metals were reported by one country for Cd and Pb and by three countries for As and Ni.

ETC/ATNI

2021

Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual Report 2020.

Svendby, Tove Marit; Hansen, Georg H.; Bäcklund, Are; Nilsen, Anne-Cathrine; Schulze, Dorothea; Johnsen, Bjørn

This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. 2020 was characterized by a strong, cold, and persistent Arctic stratospheric vortex, leading to extensive formation of Polar Stratospheric Clouds (PSCs, mother-of-pearl clouds) and chemical ozone destruction with very low ozone values and high UV levels in the exposed regions in the spring.

NILU

2021

Vurdering av CLEO for norske reindriftsutøvere

Fredriksen, Mirjam

Denne rapporten er en evaluering av Local Environmental Observer (LEO) Network ved bruk av erfaringene fra pilottestene utført i perioden 2016-2020 av arktiske akademikere, urfolksinstitusjoner og samisk samfunn i Norge. Rapporten prøver å finne svar på hvordan man kan tilrettelegge for innrapportering av observasjoner på lokale miljøendringer blant norske reindriftsutøvere samt opprettholde en utstrakt bruk. Dette for å skape engasjement, bevisstgjøring, forsterke lokale stemmer og identifisere svar på viktige miljøutfordringer og mulige handlinger, og søke konstruktive og respektfulle måter å dele informasjon og samarbeid mellom ulike kunnskapssystemer.
Rapporten konkluderer med at for å gjøre det mulig for norske reindriftsutøvere å rapportere inn observasjoner av klimaendringer i miljøet, og legge til rette for en utstrakt og kontinuerlig bruk, bør det bygges en egen Sápmi løsning.

NILU

2021

Ozone measurements 2019

Hjellbrekke, Anne-Gunn; Solberg, Sverre

NILU

2021

Overvåking av langtransporterte atmosfæriske miljøgifter i luft og nedbør, årsrapport 2020.

Bohlin-Nizzetto, Pernilla; Aas, Wenche; Halvorsen, Helene Lunder; Nikiforov, Vladimir; Pfaffhuber, Katrine Aspmo

Denne rapporten inkluderer miljøovervåkningsdata fra 2020 og tidstrender for programmet Langtransporterte atmosfæriske miljøgifter. Resultatene omfatter 200 organiske miljøgifter (regulerte og ennå ikke regulerte), 11 tungmetaller og et utvalg organiske kjemikalier som potensielt er av bekymring for Arktisk miljø.

NILU

2021

VOC measurements 2019

Solberg, Sverre; Claude, Anja; Reimann, Stefan; Sauvage, Stéphane

This report presents VOC (volatile organic compound) measurements carried out during 2019 at EMEP monitoring sites. In total, 19 sites reported VOC-data from EMEP VOC sites this year. Some of the data-sets are considered preliminary and are not included in the report.
The monitoring of VOC has become more diverse with time in terms of instrumentation. Starting in the early 1990s with standardized methods based on manual sampling in steel canisters and adsorption tubes with subsequent analyses at the lab, the methods now consist of a variety of instruments and measurement principles, including automated continuous monitors and manual flask samples.
Within the EU infrastructure project ACTRIS, data quality issues related to measurements of VOC are an important topic. Many of the institutions providing VOC-data to EMEP are participating in the ACTRIS infrastructure project, either as formal partners or on a voluntary basis. Participation in ACTRIS means an extensive effort with data-checking including detailed discussions between the ACTRIS community and individual participants. There is no doubt that this extensive effort has benefited the EMEP-program substantially and has led to improved data quality in general.
Comparison between median levels in 2019 and the medians of the previous 10-years period, revealed similar geographical patterns as in the previous years. Changes in instrumentation, procedures and station network with time make it difficult though to provide a rigorous and pan-European assessment of long-term trends of the observed VOCs. In this report, we have estimated the trends in NMHC over the 2000-2019 period at five sites by three independent statistical methods. All three methods gave comparable estimates of the trends, although the Mann-Kendall method based on annual data (compared to daily data for the other two methods) found fewer significant trends.
These estimates indicate marked differences in the long-term trends for the individual species. Small or non-significant trends were found for ethane during 2000-2019. Propane also showed fairly small reductions. On the other hand, components linked to road traffic (ethene, ethyne and benzene) showed the strongest drop in mean concentrations, up to 60-80% at some stations.

NILU

2021

Publikasjon
År
Kategori