Fant 2700 publikasjoner. Viser side 1 av 270:
New Approach Methodologies (NAMs) are gaining significant momentum globally to reduce animal testing and enhance the efficiency and human relevance of chemical safety assessment. Even with substantial EU commitment from regulatory agencies and the academic community, the full regulatory adoption of NAMs remains a distant prospect. This challenge is further complicated by the fact that the academic world, oriented toward NAMs development, and regulatory agencies, focused on practical application, frequently operate in separate spheres. Addressing this disconnect, the present paper, developed within the European Partnership for the Assessment of Risks from Chemicals (PARC), provides a clear overview of both the available non-animal tests and current evaluation practices for genotoxic and carcinogenic hazard assessment, while simultaneously highlighting existing regulatory needs, gaps, and challenges toward greater human health protection and the replacement of animal testing through NAMs adoption.
The analysis reveals a complex landscape: while the EU is deeply committed to developing and adopting NAMs, as outlined in its Chemical Strategy for Sustainability and supported by initiatives like PARC, prescriptive regulations such as Classification, Labelling and Packaging (CLP) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) still heavily mandate in vivo animal data for hazard classification, particularly for germ cell mutagenicity and carcinogenicity. This reliance creates a “too-short-blanket-problem,” where efforts to reduce animal testing may impact human health protection because of the current in vivo-based classification criteria. In contrast, sectors such as cosmetics and certain European Food Safety Authority (EFSA)-regulated products demonstrate greater flexibility toward progressive integration of NAMs. While the deep mechanistic understanding of genotoxicity and carcinogenicity has significantly advanced the integration of alternatives to animal tests into regulatory chemical hazard assessment, their broader and full implementation faces considerable challenges due to both scientific complexities (i.e., the development and validation of fit-for-purpose NAMs) and existing legislative provisions.
2026
Nitrogen dioxide (NO2) is a well-known air pollutant, mostly elevated by car traffic in cities. To date, small, reliable, cost-efficient multipollutant sensors with sufficient power and accuracy for community-based atmospheric studies are still lacking. The HAPADS (highly accurate and autonomous programmable platforms for providing air pollution data services) platforms, developed and tested in real conditions, can be a possible approach to solving this issue. The developed HAPADS platforms are equipped with three different NO2 sensors (7E4-NO2–5, SGX-7NO2, MICS-2711 MOS) and a combined ambient air temperature, humidity, and pressure sensor (BME280). The platforms were tested during the driving test, which was conducted across various roads, including highways, expressways, and national and regional routes, as well as major cities and the countryside, to analyse the environmental conditions as much as possible (Poland, 2024). The correlation coefficient r was more than 0.8, and RMSE (root mean squared error) was in the 3.3–4.3 μg/m3 range during the calibration process. The results obtained during the driving tests showed R2 of 0.9–1.0, which proves the ability of HAPADS platforms to work in the hard environmental conditions (including high rain and snow, as well as sun and a wide range of temperatures and humidity).
2026
Rethinking Global Soil Degradation: Drivers, Impacts, and Solutions
Abstract The increasing threat of soil degradation presents significant challenges to soil health, especially within agroecosystems that are vital for food security, climate regulation, and economic stability. This growing concern arises from intricate interactions between land use practices and climatic conditions, which, if not addressed, could jeopardize sustainable development and environmental resilience. This review offers a comprehensive examination of soil degradation, including its definitions, global prevalence, underlying mechanisms, and methods of measurement. It underscores the connections between soil degradation and land use, with a focus on socio‐economic consequences. Current assessment methods frequently depend on insufficient data, concentrate on singular factors, and utilize arbitrary thresholds, potentially resulting in misclassification and misguided decisions. We analyze these shortcomings and investigate emerging methodologies that provide scalable and objective evaluations, offering a more accurate representation of soil vulnerability. Additionally, the review assesses both physical and biological indicators, as well as the potential of technologies such as remote sensing, artificial intelligence, and big data analytics for enhanced monitoring and forecasting. Key factors driving soil degradation, including unsustainable agricultural practices, deforestation, industrial activities, and extreme climate events, are thoroughly examined. The review emphasizes the importance of healthy soils in achieving the United Nations Sustainable Development Goals, particularly concerning food and water security, ecosystem health, poverty alleviation, and climate action. It suggests future research directions that prioritize standardized metrics, interdisciplinary collaboration, and predictive modeling to facilitate more integrated and effective management of soil degradation in the context of global environmental changes.
2025
Measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) combined with a global 12-box model of the atmosphere have long been used to estimate global emissions and surface mean mole fraction trends of atmospheric trace gases. Here, we present annually updated estimates of these global emissions and mole fraction trends for 42 compounds through 2023 measured by the AGAGE network, including chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, nitrogen trifluoride, methane, nitrous oxide, and selected other compounds. The data sets are available at https://doi.org/10.5281/zenodo.15372480 (Western et al., 2025). We describe the methodology to derive global mole fraction and emissions trends, which includes the calculation of semihemispheric monthly mean mole fractions, the mechanics of the 12-box model and the inverse method that is used to estimate emissions from the observations and model. Finally, we present examples of the emissions and mole fraction data sets for the 42 compounds.
2025
2025
PikMe: a flexible prioritization tool for chemicals of emerging concern
Abstract Identifying new contaminants of emerging concern remains a complex task due to the sheer number of chemical substances potentially released into the environment, the scattered sources of information, and often the lack of adequate data. Environmental screening and monitoring programs are designed to map the presence, sources, and potential environmental impacts of contaminants, yet prioritizing which chemicals to include in such efforts remains resource-intensive and technically challenging. PikMe is a modular, open-access prioritization tool that integrates information from major data bases and evaluates the concern and reliability of the data for more than one million substances. PikMe is built in a modular way so that prioritization can be done based on specific chemical properties relevant to a given scenario (i.e., drinking water contaminants or bioaccumulation in biota) rather than assigning only a global risk score. PikMe scores substances based on persistence, bioaccumulation, mobility, environmental toxicity, and human toxicity, assigning individual score per property. Additionally, PikMe is designed for flexibility by allowing the integration of external lists of chemicals and supporting optional add-ons. Different scenarios of use are described in this article, including the selection of chemicals for environmental monitoring and screening in Norway and the assessment of the implications of the new classifications according to the regulation for classification, labelling and packaging of substances and mixtures on persistent chemicals.
2025
Abstract. Establishing interlaboratory compatibility among measurements of stable isotope ratios of atmospheric methane (δ13C-CH4 and δD-CH4) is challenging. Significant offsets are common because laboratories have different ties to the VPDB or SMOW-SLAP scales. Umezawa et al. (2018) surveyed numerous comparison efforts for CH4 isotope measurements conducted from 2003 to 2017 and found scale offsets of up to 0.5 ‰ for δ13C-CH4 and 13 ‰ for δD-CH4 between laboratories. This exceeds the World Meteorological Organisation Global Atmospheric Watch (WMO-GAW) network compatibility targets of 0.02 ‰ and 1 ‰ considerably. We employ a method to establish scale offsets between laboratories using their reported CH4 isotope measurements on atmospheric samples. Our study includes data from eight laboratories with experience in high-precision isotope ratio mass spectrometry (IRMS) measurements for atmospheric CH4. The analysis relies exclusively on routine atmospheric measurements conducted by these laboratories at high-latitude stations in the Northern and Southern Hemispheres, where we assume each measurement represents sufficiently well-mixed air at the latitude for direct comparison. We use two methodologies for interlaboratory comparisons: (I) assessing differences between time-adjacent observation data and (II) smoothing the observed data using polynomial and harmonic functions before comparison. The results of both methods are consistent, and with a few exceptions, the overall average offsets between laboratories align well with those reported by Umezawa et al. (2018). This indicates that interlaboratory offsets remain robust over multi-year periods. The evaluation of routine measurements allows us to calculate the interlaboratory offsets from hundreds, in some cases thousands of measurements. Therefore, the uncertainty in the mean interlaboratory offset is not limited by the analytical error of a single analysis but by real atmospheric variability between the sampling dates and stations. Using the same method, we assess this uncertainty by investigating measurements from four high-latitude sites analysed by the INSTAAR laboratory. After applying the derived interlaboratory offsets, we present a harmonised time series for δ13C-CH4 and δD-CH4 at high northern and southern latitudes, covering the period from 1988 to 2023.
2025
Etablering av vindkraftverk på land kan medføre en risiko for drikkevann når installasjonene ligger i eller nær vanntilsigsområder til drikkevannskilder. Denne rapporten, utarbeidet av VKM på oppdrag fra Mattilsynet, gir Mattilsynet et kunnskapsbasert grunnlag for å stille krav til konsekvensutredninger og detaljplan for å beskytte drikkevannet.
Rapporten identifiserer potensielle farer for kjemisk og fysisk forurensning av drikkevann gjennom hele livsløpet til et vindkraftverk – fra planlegging og anleggsfase, til drift og avvikling. Den beskriver relevante lover og forskrifter, sentrale aktører og deres roller, og legger vekt på når og hvordan Mattilsynet kan involveres og komme med innspill i den kommunale planprosessen etter plan- og bygningsloven og i konsesjonsprosessen etter energiloven som forvaltes av NVE. Det er av stor betydning at Mattilsynet varsles og involveres tidlig i prosessen. Tiltakshaver må sørge for at risiko for forurensning av drikkevann og vanntilsigsområde utredes på en etterprøvbar måte, slik at Mattilsynet kan gi tydelige innspill til utredningen for å sikre at drikkevannshensyn er ivaretatt.
2025
Abstract. Airborne microplastics are a recently identified atmospheric aerosol species with potential air quality and climate impacts, yet they are not currently represented in global climate models. Here, we describe the addition of microplastics to the aerosol scheme of the UK Earth System Model (UKESM1.1): the Global Model of Aerosol Processes (GLOMAP). Microplastics are included as both fragments and fibres across a range of aerosol size modes, enabling interaction with existing aerosol processes such as ageing and wet and dry deposition. Simulated microplastics have higher concentrations over land, but can be transported into remote regions including Antarctica despite no assumed emissions from these regions. Lifetimes range between ∼17 d to ∼1 h, with smaller, hydrophilic microplastics having longer lifetimes. Microplastics are present throughout the troposphere, and the smallest particles are simulated to reach the lower stratosphere in small numbers. Dry deposition is the dominant microplastic removal pathway, but greater wet deposition occurs for smaller hydrophilic microplastic, due to interactions with clouds. Although microplastics currently contribute a minor fraction of the total aerosol burden, their concentration is expected to increase in future if plastic production continues to increase, and as existing plastic waste in the environment degrades to form new microplastic. Incorporating microplastics into UKESM1.1 is a key step toward quantifying their current atmospheric impact and offers a framework for simulating future emission scenarios for an assessment of their long term impacts on air quality and climate.
2025
Airborne microplastics on the move: Urban Europe as a source to remote regions
This study presents a comprehensive assessment of unique parallel measurements of surface airborne and deposited microplastics (AMPs) across urban and remote sites in Norway, employing pyrolysis-GC/MS for polymer-specific analysis. MPs were detected in nearly all samples, with significantly higher concentrations and fluxes observed in urban areas like Oslo, where tire wear particles (TWP) dominated (>90 % of AMP mass). Seasonal peaks in TWP coincided with the transition to winter tires, while remote sites showed consistent but lower AMP levels, indicating long-range transport (LRT) from European source regions. Parallel measurements of suspended and deposited AMPs revealed consistent polymer signatures, highlighting common sources and transport pathways. Although urban TWP contributions to PM2.5 were generally low, episodic events reached up to 30 %, raising concerns about human exposure. The dual dataset enabled a robust cross-validation of atmospheric loading estimates and facilitated integration into advanced transport models for remote sites. Our findings confirm AMPs as significant components of urban air pollution and subsequent carriers of chemical and biological contaminants to remote regions, emphasizing the need for targeted monitoring and mitigation strategies.
2025