Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2676 publikasjoner. Viser side 22 av 268:

Publikasjon  
År  
Kategori

The challenges of opportunistic sampling when comparing prevalence of plastics in diving seabirds: A multi-species example from Norway

Benjaminsen, Stine Charlotte; Dehnhard, Nina; Herzke, Dorte; Johnsen, Arild; Anker-Nilssen, Tycho; Bourgeon, Sophie; Collard, France; Langset, Magdalene; Christensen-Dalsgaard, Signe; Gabrielsen, Geir W.

There is a need for baseline information about how much plastics are ingested by wildlife and potential negative consequences thereof. We analysed the frequency of occurrence (FO) of plastics >1 mm in the stomachs of five pursuit-diving seabird species collected opportunistically.

Atlantic puffins (Fratercula arctica) found emaciated on beaches in SW Norway had the highest FO of plastics (58.8 %), followed by emaciated common guillemots (Uria aalge; 9.1 %) also found beached in either SW or SE Norway. No plastics were detected in razorbills (Alca torda), great cormorants (Phalacrocorax carbo), and European shags (Gulosus aristotelis) taken as bycatch in northern Norway. This is the first study to report on plastic ingestion of these five species in northern Europe, and it highlights both the usefulness and limitations of opportunistic sampling. Small sample sizes, as well as an unbalanced sample design, complicated the interpretation of the results.

2024

Using dispersion models at microscale to assess long-term air pollution in urban hot spots: A FAIRMODE joint intercomparison exercise for a case study in Antwerp

Martín, F.; Janssen, S.; Rodrigues, V.; Sousa, J.; Santiago, J.L.; Rivas, E.; Stocker, J.; Jackson, R.; Russo, F.; Villani, M.G.; Tinarelli, G.; Barbero, D.; José, R. San; Pérez-Camanyo, J.L.; Santos, Gabriela Sousa; Bartzis, J.; Sakellaris, I.; Horváth, Z.; Környei, L.; Liszkai, B.; Kovács, A.; Jurado, X.; Reiminger, N.; Thunis, P.; Cuvelier, C.

In the framework of the Forum for Air Quality Modelling in Europe (FAIRMODE), a modelling intercomparison exercise for computing NO2 long-term average concentrations in urban districts with a very high spatial resolution was carried out. This exercise was undertaken for a district of Antwerp (Belgium). Air quality data includes data recorded in air quality monitoring stations and 73 passive samplers deployed during one-month period in 2016. The modelling domain was 800 × 800 m2. Nine modelling teams participated in this exercise providing results from fifteen different modelling applications based on different kinds of model approaches (CFD – Computational Fluid Dynamics-, Lagrangian, Gaussian, and Artificial Intelligence). Some approaches consisted of models running the complete one-month period on an hourly basis, but most others used a scenario approach, which relies on simulations of scenarios representative of wind conditions combined with post-processing to retrieve a one-month average of NO2 concentrations.

The objective of this study is to evaluate what type of modelling system is better suited to get a good estimate of long-term averages in complex urban districts. This is very important for air quality assessment under the European ambient air quality directives. The time evolution of NO2 hourly concentrations during a day of relative high pollution was rather well estimated by all models. Relative to high resolution spatial distribution of one-month NO2 averaged concentrations, Gaussian models were not able to give detailed information, unless they include building data and street-canyon parameterizations. The models that account for complex urban geometries (i.e. CFD, Lagrangian, and AI models) appear to provide better estimates of the spatial distribution of one-month NO2 averages concentrations in the urban canopy. Approaches based on steady CFD-RANS (Reynolds Averaged Navier Stokes) model simulations of meteorological scenarios seem to provide good results with similar quality to those obtained with an unsteady one-month period CFD-RANS simulations.

2024

Water quality and pollution source apportionment responses to rainfall in steppe lake estuaries: A case study of Hulun Lake in northern China

Hu, Bingtao; Liu, Yuhong; Chen, Yixue; Hao, Yipeng; Liu, Hai Ying; Wang, Zhongsheng

Hulun Lake, the largest inland steppe lake in China, is encountering severe water quality degradation. Estuaries play important roles in material and energetic exchange between rivers and lakes. The water quality at the estuaries of Hulun Lake directly reflects the impact of both human activities and natural factors on the lake’s overall water quality, especially during rainfall events. From July 28, 2021, to August 4, 2021, water samples from 62 sites were collected in the three estuaries of Hulun Lake before and after a moderate rainfall event. 13 water parameters, including dissolved oxygen (DO), Turbidity (Tur), Total Nitrogen (TN), Total Phosphorus (TP), Total Organic Nitrogen (TON), and Total Organic Phosphorus (TOP) were measured. The spatio-temporal distribution of water quality in the estuaries was assessed based on water quality index (WQI). Besides, an improved approach integrating stepwise linear regression (SLR) and principal component analysis (PCA) was utilized to construct a WQImin model for an effective assessment of water quality in these estuaries. Furthermore, the absolute principal component scores-multiple linear regression (APCS-MLR) model was employed to identify and quantify the environmental drivers underlying the water quality in the estuaries. The results of WQI indicated that the water quality of the sites in the estuaries of Hulun Lake was “medium” or “poor”, both before and after the rainfall, with a general deterioration in water quality in response to the rainfall. The simplified WQImin model consisted of 5 crucial parameters (i.e., TN, TP, ammonium (NH4+-N), Tur, and permanganate index (CODMn)), and it performed well without parameter weights. Spatial differences in some water parameters among the estuaries were detected, which were attributed to the natural factors and human activities upstream. The principal environmental factors affecting the water quality in the estuaries consisted of hydrodynamic processes, internal phosphorus release, external phosphorus input, external nitrogen input, nitrification in the estuaries, and external organic input and internal organic release. Therefore, we propose basin management strategies such as limiting grazing pressure, adopting enclosed pasture, wetland restoration, optimizing water renewal cycle in Hulun Lake, and transboundary water quality management to tackle water contamination in Hulun Lake.

2024

Negative correlation between soil salinity and soil organic carbon variability

Hassani, Amirhossein; Smith, Pete; Shokri, Nima

Soil organic carbon (SOC) is vital for terrestrial ecosystems, affecting biogeochemical processes, and soil health. It is known that soil salinity impacts SOC content, yet the specific direction and magnitude of SOC variability in relation to soil salinity remain poorly understood. Analyzing 43,459 mineral soil samples (SOC < 150 g kg−1) collected across different land covers since 1992, we approximate a soil salinity increase from 1 to 5 dS m−1 in croplands would be associated with a decline in mineral soils SOC from 0.14 g kg−1 above the mean predicted SOC (= 18.47 g kg−1) to 0.46 g kg−1 below (~−430%), while for noncroplands, such decline is sharper, from 0.96 above = 35.96 g kg−1 to 4.99 below (~−620%). Although salinity’s significance in explaining SOC variability is minor (<6%), we estimate a one SD increase in salinity of topsoil samples (0 to 7 cm) correlates with respective declines of ~4.4% and ~9.26%, relative to and. The decline in croplands is greatest in vegetation/cropland mosaics while lands covered with evergreen needle-leaved trees are estimated with the highest decline in noncroplands. We identify soil nitrogen, land cover, and precipitation Seasonality Index as the most significant parameters in explaining the SOC’s variability. The findings provide insights into SOC dynamics under increased soil salinity, improving understanding of SOC stock responses to land degradation and climate warming.

2024

A Machine Learning Approach to Retrieving Aerosol Optical Depth Using Solar Radiation Measurements

Logothetis, Stavros-Andreas; Salamalikis, Vasileios; Kazantzidis, Andreas

Aerosol optical depth (AOD) constitutes a key parameter of aerosols, providing vital information for quantifying the aerosol burden and air quality at global and regional levels. This study demonstrates a machine learning strategy for retrieving AOD under cloud-free conditions based on the synergy of machine learning algorithms (MLAs) and ground-based solar irradiance data. The performance of the proposed methodology was investigated by applying different components of solar irradiance. In particular, the use of direct instead of global irradiance as a model feature led to better performance. The MLA-based AODs were compared to reference AERONET retrievals, which encompassed RMSE values between 0.01 and 0.15, regardless of the underlying climate and aerosol environments. Among the MLAs, artificial neural networks outperformed the other algorithms in terms of RMSE at 54% of the measurement sites. The overall performance of MLA-based AODs against AERONET revealed a high coefficient of determination (R2 = 0.97), MAE of 0.01, and RMSE of 0.02. Compared to satellite (MODIS) and reanalysis (MERRA-2 and CAMSRA) data, the MLA-AOD retrievals revealed the highest accuracy at all stations. The ML-AOD retrievals have the potential to expand and complement the AOD information in non-existing timeframes when solar irradiances are available.

2024

The time for ambitious action is now: Science-based recommendations for plastic chemicals to inform an effective global plastic treaty

Brander, Susanne M.; Senathirajah, Kala; Fernandez, Marina; Weis, Judith S.; Kumar, Eva; Jahnke, Annika; Hartmann, Nanna B.; Alava, Juan José; Farrelly, Trisia; Almroth, Bethanie Carney; Groh, Ksenia J.; Syberg, Kristian; Buerkert, Johanna Sophie; Abeynayaka, Amila; Booth, Andy; Cousin, Xavier; Herzke, Dorte; Monclús, Laura; Morales-Caselles, Carmen; Bonisoli-Alquati, Andrea; Al-jaibachi, Rana; Wagner, Martin

The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential “pillars” necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.

2024

Pioneering an effect-based early warning system for hazardous chemicals in the environment

Niarchos, Georgios; Alygizakis, Nikiforos A.; Garere, Mario; Dulio, Valeria; Engwall, Magnus; Hyötyläinen, Tuulia; Kallenborn, Roland; Karakitsios, Spyros; Karakoltzidis, Achilleas; Kärrman, Anna; Lamoree, Marja H.; Larsson, Maria; Lundqvist, Johan; Mancini, Laura; Mottaghipisheh, Javad; Rostkowski, Pawel; Sarigiannis, Dimesthenis; Vorkamp, Katrin; Ahrens, Lutz

Existing regulatory frameworks often prove inadequate in promptly identifying contaminants of emerging concern (CECs) and determining their impacts on biological systems at an early stage. The establishment of Early Warning Systems (EWSs) for CECs is becoming increasingly relevant for policy-making, aiming to proactively detect chemical hazards and implement effective mitigation measures. Effect-based methodologies, including bioassays and effect-directed analysis (EDA), offer valuable input to EWSs by pinpointing the relevant toxicity drivers and prioritizing the associated risks. This review evaluates the analytical techniques currently available to assess biological effects, and provides a structured plan for their systematic integration into an EWS for hazardous chemicals in the environment. Key scientific advancements in effect-based approaches and EDA are discussed, underscoring their potential for early detection and management of chemical hazards. Additionally, critical challenges such as data integration and regulatory alignment are addressed, emphasizing the need for continuous improvement of the EWS and the incorporation of analytical advancements to safeguard environmental and public health from emerging chemical threats.

2024

Dechloranes and chlorinated paraffins in sediments and biota of two subarctic lakes

Arriola, Aline; Saify, Insam Al; Warner, Nicholas Alexander; Herzke, Dorte; Harju, Mikael; Amundsen, Per-Arne; Evenset, Anita; Möckel, Claudia; Krogseth, Ingjerd Sunde

Our understanding of the environmental behavior, bioaccumulation and concentrations of chlorinated paraffins (CPs) and Dechloranes (Dec) in the Arctic environment is still limited, particularly in freshwater ecosystems. In this descriptive study, short chain (SCCPs) and medium chain (MCCPs) CPs, Dechlorane Plus (DP) and analogues, and polychlorinated biphenyls (PCBs) were measured in sediments, benthic organisms, three-spined stickleback (Gasterosteus aculeatus), Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) in two Sub-Arctic lakes in Northern Norway. Takvannet (TA) is a remote lake, with no known local sources for organic contaminants, while Storvannet (ST) is situated in a populated area. SCCPs and MCCPs were detected in all sediment samples from ST with concentration of 42.26–115.29 ng/g dw and 66.18–136.69 ng/g dw for SCCPs and MCCPs, respectively. Only SCCPs were detected in TA sediments (0.4–5.28 ng/g dw). In biota samples, sticklebacks and benthic organisms showed the highest concentrations of CPs, while concentrations were low or below detection limits in both char and trout. The congener group patterns observed in both lakes showed SCCP profiles dominated by higher chlorinated congener groups while the MCCPs showed consistency in their profiles, with C14 being the most prevalent carbon chain length. Anti- and syn-DP isomers were detected in all sediment, benthic and stickleback samples with higher concentrations in ST than in TA. However, they were only present in a few char and trout samples from ST. Dec 601 and 604 were below detection limits in all samples in both lakes. Dec 603 was detected only in ST sediments, sticklebacks and 2 trout samples, while Dec 602 was the only DP analogue found in all samples from both lakes. While there were clear differences in sediment concentrations of DP and Dec 602 between ST and TA, differences between lakes decreased with increasing δ15N. This pattern was similar to the PCB behavior, suggesting the lake characteristics in ST are playing an important role in the lack of biomagnification of pollutants in this lake. Our results suggest that ST receives pollutants from local sources in addition to atmospheric transport.

2024

Methane in Svalbard (SvalGaSess)

Hodson, Andy; Kleber, Gabby; Platt, Stephen Matthew; Kalenitchenko, Dimitri; Hensgens, Geert; Irvine-Fynn, Tristram; Senger, Kim; Tveit, Alexander; Øverås, Lise; ten Hietbrink, Sophie; Hollander, Jamie; Ammerlaan, Fenna; Damm, Ellen; Römer, Miriam; Fransson, Agneta; Chierici, Melissa

2024

Linking nanomaterial-induced mitochondrial dysfunction to existing adverse outcome pathways for chemicals

Murugadoss, Sivakumar; Vinković Vrček, Ivana; Schaffert, Alexandra; Paparella, Martin; Pem, Barbara; Sosnowska, Anita; Stępnik, Maciej; Martens, Marvin; Willighagen, Egon L.; Puzyn, Tomasz; Cimpan, Mihaela Roxana; Lemaire, Frauke; Mertens, Birgit; Dusinska, Maria; Fessard, Valérie; Hoet, Peter H.

The adverse outcome pathway (AOP) framework plays a crucial role in the paradigm shift of tox­icity testing towards the development and use of new approach methodologies. AOPs developed for chemicals are in theory applicable to nanomaterials (NMs). However, only initial efforts have been made to integrate information on NM-induced toxicity into existing AOPs. In a previous study, we identified AOPs in the AOP-Wiki associated with the molecular initiating events (MIEs) and key events (KEs) reported for NMs in scientific literature. In a next step, we analyzed these AOPs and found that mitochondrial toxicity plays a significant role in several of them at the molecular and cellular levels. In this study, we aimed to generate hypothesis-based AOPs related to NM-induced mitochondrial toxicity. This was achieved by integrating knowledge on NM-induced mitochondrial toxicity into all existing AOPs in the AOP-Wiki, which already includes mitochondrial toxicity as a MIE/KE. Several AOPs in the AOP-Wiki related to the lung, liver, cardiovascular and nervous system, with extensively defined KEs and key event relationships (KERs), could be utilized to develop AOPs that are relevant for NMs. However, the majority of the studies included in our literature review were of poor quality, particularly in reporting NM physicochemical characteristics, and NM-relevant mitochondrial MIEs were rarely reported. This study highlights the potential role of NM-induced mitochondrial toxicity in human-relevant adverse outcomes and identifies useful AOPs in the AOP-Wiki for the development of AOPs for NMs.

Elsevier

2024

Publikasjon
År
Kategori