Fant 2718 publikasjoner. Viser side 27 av 272:
Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. ...
2023
Procellariiform seabirds like northern fulmars (Fulmarus glacialis) are prone to ingest and accumulate floating plastic pieces. In the North Sea region, there is a long tradition to use beached fulmars as biomonitors for marine plastic pollution. Monitoring data revealed consistently lower plastic burdens in adult fulmars compared to younger age classes. Those findings were hypothesized to partly result from parental transfer of plastic to chicks. However, no prior study has examined this mechanism in fulmars by comparing plastic burdens in fledglings and older fulmars shortly after the chick-rearing period. Therefore, we investigated plastic ingestion in 39 fulmars from Kongsfjorden (Svalbard), including 21 fledglings and 18 older fulmars (adults/older immatures). We found that fledglings (50–60 days old) had significantly more plastic than older fulmars. While plastic was found in all fledglings, two older fulmars contained no and several older individuals barely any plastic. These findings supported that fulmar chicks from Svalbard get fed high quantities of plastic by their parents. Adverse effects of plastic on fulmars were indicated by one fragment that perforated the stomach and possibly one thread perforating the intestine. Negative correlations between plastic mass and body fat in fledglings and older fulmars were not significant.
2023
Method for retrieval of aerosol optical depth from multichannel irradiance measurements
We present, to the best of our knowledge, a new method for retrieval of aerosol optical depth from multichannel irradiance measurements. A radiative transfer model is used to simulate measurements to create the new aerosol optical depth retrieval method. A description of the algorithm, simulations, proof of principle, merits, possible future developments and implementations is provided. As a demonstration, measurements in the New York City area are simulated based on the specific channel configuration of an existing multichannel irradiance instrument. Verification of the method with irradiance measurement data is also provided.
2023
Top-down approaches, such as atmospheric inversions, are a promising tool for evaluating emission estimates based on activity-data. In particular, there is a need to examine carbon budgets at subnational scales (e.g. state/province), since this is where the climate mitigation policies occur. In this study, the subnational scale anthropogenic CO2 emissions are estimated using a high-resolution global CO2 inverse model. The approach is distinctive with the use of continuous atmospheric measurements from regional/urban networks along with background monitoring data for the period 2015–2019 in global inversion. The measurements from several urban areas of the U.S., Europe and Japan, together with recent high-resolution emission inventories and data-driven flux datasets were utilized to estimate the fossil emissions across the urban areas of the world. By jointly optimizing fossil fuel and natural fluxes, the model is able to contribute additional information to the evaluation of province–scale emissions, provided that sufficient regional network observations are available. The fossil CO2 emission estimates over the U.S. states such as Indiana, Massachusetts, Connecticut, New York, Virginia and Maryland were found to have a reasonable agreement with the Environmental Protection Agency (EPA) inventory, and the model corrects the emissions substantially towards the EPA estimates for California and Indiana. The emission estimates over the United Kingdom, France and Germany are comparable with the regional inventory TNO–CAMS. We evaluated model estimates using independent aircraft observations, while comparison with the CarbonTracker model fluxes confirms ability to represent the biospheric fluxes. This study highlights the potential of the newly developed inverse modeling system to utilize the atmospheric data collected from the regional networks and other observation platforms for further enhancing the ability to perform top-down carbon budget assessment at subnational scales and support the monitoring and mitigation of greenhouse gas emissions.
2023
Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. ...
2023
Low-cost air quality sensor systems can be deployed at high density, making them a significant candidate of complementary tools for improved air quality assessment. However, they still suffer from poor or unknown data quality. In this paper, we report on a unique dataset including the raw sensor data of quality-controlled sensor networks along with co-located reference data sets. Sensor data are collected using the AirSensEUR sensor system, including sensors to monitor NO, NO2, O3, CO, PM2.5, PM10, PM1, CO2 and meteorological parameters. In total, 85 sensor systems were deployed throughout a year in three European cities (Antwerp, Oslo and Zagreb), resulting in a dataset comprising different meteorological and ambient conditions. The main data collection included two co-location campaigns in different seasons at an Air Quality Monitoring Station (AQMS) in each city and a deployment at various locations in each city (also including locations at other AQMSs). The dataset consists of data files with sensor and reference data, and metadata files with description of locations, deployment dates and description of sensors and reference instruments.
2023
The choice of the minimum ventilation rate (Vmin) in a demand-controlled ventilation strategy can influence energy demand but also introduce outdoor air pollutants. The latter may have direct health effects, as well as affect indoor chemical reactions. In this paper, we evaluate the effect of ventilation rates and operation hours on the level of CO2, nitrogen dioxide (NO2), and ozone (O3) in a classroom during normal use. We compared the baseline ventilation scenario (S0) with a Vmin of 430 m3/h with S1; Vmin of 150 m3/h for normal ventilation operation time (6:30-17:00) and continuous ventilation for 24h (S2). We found that S1 with reduced Vmin would lower the ozone concentration by 35% during the hours before occupancy compared to S0. Moreover, continuous ventilation during night time with a low Vmin resulted in almost as high O3 concentrations as the baseline ventilation scenario. As O3 reacts easily with certain VOCs to produce secondary organic aerosols, the level of Vmin and the ventilation duration would impact the indoor air quality upon entering the classroom.
2023
2023
Impact of 2020 COVID-19 lockdowns on particulate air pollution across Europe
To fight against the first wave of coronavirus disease 2019 (COVID-19) in 2020, lockdown measures were implemented in most European countries. These lockdowns had well-documented effects on human mobility. We assessed the impact of the lockdown implementation and relaxation on air pollution by comparing daily particulate matter (PM), nitrogen dioxide (NO2) and ozone (O3) concentrations, as well as particle number size distributions (PNSDs) and particle light absorption coefficient in situ measurement data, with values that would have been expected if no COVID-19 epidemic had occurred at 28 sites across Europe for the period 17 February–31 May 2020. Expected PM, NO2 and O3 concentrations were calculated from the 2020 Copernicus Atmosphere Monitoring Service (CAMS) ensemble forecasts, combined with 2019 CAMS ensemble forecasts and measurement data. On average, lockdown implementations did not lead to a decrease in PM2.5 mass concentrations at urban sites, while relaxations resulted in a +26 ± 21 % rebound. The impacts of lockdown implementation and relaxation on NO2 concentrations were more consistent (−29 ± 17 and +31 ± 30 %, respectively). The implementation of the lockdown measures also induced statistically significant increases in O3 concentrations at half of all sites (+13 % on average). An enhanced oxidising capacity of the atmosphere could have boosted the production of secondary aerosol at those places. By comparison with 2017–2019 measurement data, a significant change in the relative contributions of wood and fossil fuel burning to the concentration of black carbon during the lockdown was detected at 7 out of 14 sites. The contribution of particles smaller than 70 nm to the total number of particles significantly also changed at most of the urban sites, with a mean decrease of −7 ± 5 % coinciding with the lockdown implementation. Our study shows that the response of PM2.5 and PM10 mass concentrations to lockdown measures was not systematic at various sites across Europe for multiple reasons, the relationship between road traffic intensity and particulate air pollution being more complex than expected.
2023
HERIe was used to model the effect of changes to indoor climate on the risk of humidity-induced mechanical damage (cracking and plastic deformation) to wooden panels painted with stiff gesso in two Norwegian medieval stone churches: Kinn (mean relative humidity (RH, %) = 79%) on the humid west coast, and Ringsaker (mean RH = 49%) in the drier eastern part of the country. The risk involved in moving cultural heritage objects (paint on wood) between the churches and a conservation studio with more “ideal”, stable conditions was also modeled. A hypothetical reduction in RH to ~65% and, proportionally, of the climate fluctuations in Kinn, and an increase in the RH in Ringsaker to a more stable value of ~63% via conservation heating, were found to improve (Kinn) and uphold (Ringsaker) the conformity to relevant standards and significantly reduce the risk of damage, except in the scenario of moving objects from Ringsaker to a conservation studio, when the risk would increase. The use of conservation heating could save ~50% of the heating cost. The estimated risk reductions may be less relevant for objects kept in situ, where cracks in the original paint and gesso have developed historically. They may be more relevant when moving original objects away from their proofed climate into a conservation studio for treatment.
2023