Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 2593 publikasjoner. Viser side 50 av 260:

Publikasjon  
År  
Kategori

A Synthesis Inversion to Constrain Global Emissions of Two Very Short Lived Chlorocarbons: Dichloromethane, and Perchloroethylene

Claxton, Tom; Hossaini, R.; Wilson, C.; Montzka, Stephen A.; Chipperfield, Martyn P.; Wild, Oliver; Bednarz, Ewa M.; Carpenter, Lucy J.; Andrews, Stephen J.; Hackenberg, Sina C.; Mühle, Jens; Oram, David; Park, Sunyoung; Park, Mi-Kyung; Atlas, Elliot; Navarro, Maria; Schauffler, Sue; Sherry, David; Vollmer, Martin K.; Schuck, Tanja; Engel, Andreas; Krummel, Paul B.; Maione, Michela; Arduini, Jgor; Saito, Takuya; Yokouchi, Yoko; O'Doherty, Simon; Young, Dickon; Lunder, Chris Rene

Dichloromethane (CH2Cl2) and perchloroethylene (C2Cl4) are chlorinated very short lived substances (Cl‐VSLS) with anthropogenic sources. Recent studies highlight the increasing influence of such compounds, particularly CH2Cl2, on the stratospheric chlorine budget and therefore on ozone depletion. Here, a multiyear global‐scale synthesis inversion was performed to optimize CH2Cl2 (2006–2017) and C2Cl4 (2007–2017) emissions. The approach combines long‐term surface observations from global monitoring networks, output from a three‐dimensional chemical transport model (TOMCAT), and novel bottom‐up information on prior industry emissions. Our posterior results show an increase in global CH2Cl2 emissions from 637 ± 36 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 in 2017, with Asian emissions accounting for 68% and 89% of these totals, respectively. In absolute terms, Asian CH2Cl2 emissions increased annually by 51 Gg yr−1 over the study period, while European and North American emissions declined, indicating a continental‐scale shift in emission distribution since the mid‐2000s. For C2Cl4, we estimate a decrease in global emissions from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. The time‐varying posterior emissions offer significant improvements over the prior. Utilizing the posterior emissions leads to modeled tropospheric CH2Cl2 and C2Cl4 abundances and trends in good agreement to those observed (including independent observations to the inversion). A shorter C2Cl4 lifetime, from including an uncertain Cl sink, leads to larger global C2Cl4 emissions by a factor of ~1.5, which in some places improves model‐measurement agreement. The sensitivity of our findings to assumptions in the inversion procedure, including CH2Cl2 oceanic emissions, is discussed.

American Geophysical Union (AGU)

2020

Trophic and fitness correlates of mercury and organochlorine compound residues in egg-laying Antarctic petrels

Carravieri, Alice; Warner, Nicholas Alexander; Herzke, Dorte; Brault-Favrou, Maud; Tarroux, Arnaud; Fort, Jérôme; Bustamante, Paco; Descamps, Sebastien

Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 μg g−1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 μg g−1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g−1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g−1 ww) and p, p’-DDE (1.02 ± 1.49 ng g−1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g−1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.

Elsevier

2020

An overview of the uses of per- And polyfluoroalkyl substances (PFAS)

Glüge, Juliane; Scheringer, Martin; Cousins, Ian T.; Dewitt, Jamie C.; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Ng, Carla A.; Trier, Xenia; Wang, Zhanyun

Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.

Royal Society of Chemistry (RSC)

2020

The high persistence of PFAS is sufficient for their management as a chemical class

Cousins, Ian T.; Dewitt, Jamie C.; Glüge, Juliane; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Ng, Carla A.; Scheringer, Martin; Wang, Zhanyun

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources.

Royal Society of Chemistry (RSC)

2020

Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product

Lakkala, Kaisa; Kujanpää, Jukka; Brogniez, Colette; Henriot, Nicolas; Arola, Antti; Aun, Margit; Auriol, Frédérique; Bais, Alkiviadis F.; Bernhard, Germar; De Bock, Veerle; Catalfamo, Maxime; Deroo, Christine; Diémoz, Henri; Egli, Luca; Forestier, Jean-Baptiste; Fountoulakis, Ilias; Garane, Katerina; Garcia, Rosa Delia; Gröbner, Julian; Hassinen, Seppo; Heikkilä, Anu; Henderson, Stuart; Hülsen, Gregor; Johnsen, Bjørn; Kalakoski, Niilo; Karanikolas, Angelos; Karppinen, Tomi; Lamy, Kevin; León-Luis, Sergio F.; Lindfors, Anders V.; Metzger, Jean-Marc; Minvielle, Fanny; Muskatel, Harel B.; Portafaix, Thierry; Redondas, Alberto; Sanchez, Ricardo; Siani, Anna Maria; Svendby, Tove Marit; Tamminen, Johanna

The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a Sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7.2×3.5 km2 (5.6×3.5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development of the TROPOMI UV algorithm and the processing of the TROPOMI surface ultraviolet (UV) radiation product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and Antarctic areas were used for validation of the TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate/UV index, and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60 %–80 % of TROPOMI data was within ±20 % of ground-based data for snow-free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow-free surface daily doses were within ±10 % and ±5 % at two-thirds and at half of the sites, respectively. At several sites more than 90 % of cloud-free TROPOMI data was within ±20 % of ground-based measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values (i.e. satellite data < ground-based measurement), but at high latitudes where non-homogeneous topography and albedo or snow conditions occurred, the negative bias was exceptionally high: from −30 % to −65 %. Positive biases of 10 %–15 % were also found for mountainous sites due to challenging topography. The TROPOMI surface UV radiation product includes quality flags to detect increased uncertainties in the data due to heterogeneous surface albedo and rough terrain, which can be used to filter the data retrieved under challenging conditions.

2020

Record‐Breaking Increases in Arctic Solar Ultraviolet Radiation Caused by Exceptionally Large Ozone Depletion in 2020

Bernhard, Germar H.; Fioletov, Vitali E.; Grooss, Jens-Uwe; Ialongo, Iolanda; Johnsen, Bjørn; Lakkala, Kaisa; Manney, Gloria L.; Müller, Rolf; Svendby, Tove Marit

Measurements of solar ultraviolet radiation (UVR) performed between January and June 2020 at 10 Arctic and subarctic locations are compared with historical observations. Differences between 2020 and prior years are also assessed with total ozone column and UVR data from satellites. Erythemal (sunburning) UVR is quantified with the UV Index (UVI) derived from these measurements. UVI data show unprecedently large anomalies, occurring mostly between early March and mid‐April 2020. For several days, UVIs observed in 2020 exceeded measurements of previous years by up to 140%. Historical means were surpassed by more than six standard deviations at several locations in the Arctic. In northern Canada, the average UVI for March was about 75% larger than usual. UVIs in April 2020 were elevated on average by about 25% at all sites. However, absolute anomalies remained below 3.0 UVI units because the enhancements occurred during times when the solar elevation was still low.

American Geophysical Union (AGU)

2020

Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study.

Florini, Styliano; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Khudur, Leadin S.; Mudge, Stephen Michael; Smith, David J.; Ball, Andrew S.

This work aimed to identify the major source(s) of faecal pollution impacting Salcott Creek oyster fisheries in the UK through the examination of the sterol profiles. The concentration of the major sewage biomarker, coprostanol, in water overlying the oysters varied between 0.01 µg L−1 and 1.20 µg L−1. The coprostanol/epicoprostanol ratio ranged from 1.32 (September) to 33.25 (February), suggesting that human sewage represents the key input of faecal material into the estuary. However, a correlation between the sterol profile of water above the oysters with that of water that enters from Tiptree Sewage Treatment Works (r = 0.82), and a sample from a site (Quinces Corner) observed to have a high population of Brent geese (r = 0.82), suggests that both sources contribute to the faecal pollution affecting the oysters. In identifying these key faecal inputs, sterol profiling has allowed targeted management practices to be employed to ensure that oyster quality is optimised.

MDPI

2020

Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere

Nara, Seidai; Sato, Tomohiro O.; Yamada, Takayoshi; Fujinawa, Tamaki; Kuribayashi, Kota; Manabe, Takeshi; Froidevaux, Lucien; Livesey, Nathaniel J.; Walker, Kaley A.; Xu, Jian; Schreier, Franz; Orsolini, Yvan J.; Limpasuvan, Varavut; Kuno, Nario; Kasai, Yasuko

Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the upper stratosphere. The HCl molecule is observed to obtain long-term quantitative estimations of the total budget of the stratospheric chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from space. The HCl vertical profile from the upper troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparison with other measurements and via theoretical error analysis. We used the SMILES level-2 research product version 3.0.0. The period of the SMILES HCl observation was from 12 October 2009 to 21 April 2010, and the latitude coverage was 40∘ S–65∘ N. The average HCl vertical profile showed an increase with altitude up to the stratopause (∼ 45 km), approximately constant values between the stratopause and the upper mesosphere (∼ 80 km), and a decrease from the mesopause to the lower thermosphere (∼ 100 km). This behavior was observed in all latitude regions and reproduced by the Whole Atmosphere Community Climate Model in the specified dynamics configuration (SD-WACCM). We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from Microwave Limb Sounder (MLS) on the Aura satellite, as well as from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT and the TErahertz and submillimeter LImb Sounder (TELIS) (balloon borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES agreed well with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km (within 10 % between 30 and 40 km; there is a larger discrepancy below 30 km), respectively. The SMILES HCl concentration was smaller than those of MLS and ACE-FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv (12 %–15 %) at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The Jacobian for the temperature explains the negative bias of the SMILES HCl concentrations at 50–60 km.

2020

Safe(r) by design implementation in the nanotechnology industry

Jiménes, Araceli Sánchez; Puelles, Raquel; Pérez-Fernández, Marta; Gómez-Fernández, Paloma; Barruetabena, Leire; Jacobsen, Nicklas Raun; Suarez-Merino, Blanca; Micheletti, Christian; Manier, Nicolas; Trouiller, Benedicte; Navas, José Maria; Kalman, Judit; Salieri, Beatrice; Hischier, Roland; Handzhiyski, Yordan; Apostolova, Margarita D.; Hadrup, Niels; Bouillard, Jaques; Oudart, Yohan; Merino, Cesar; Garcia, Erika; Liguori, Biase; Sabella, Stefania; Rose, Jerome; Maison, Armand; Galea, Karen S.; Kelly, Sean; Stepankova, Sandra; Mouneyrac, Catherine; Barrick, Andrew; Chatel, Amelie; Dusinska, Maria; Rundén-Pran, Elise; Mariussen, Espen; Bressot, Christophe; Aguerre-Chariol, Olivier; Shandilya, Neeraj; Goede, Henk; Gomez-Cordon, Julio; Simar, Sophie; Nesslany, Fabrice; Jensen, Keld Alstrup; van Tongeren, Martie; Llopis, Isabel Rodriguez

Elsevier

2020

On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART

Tichý, Ondřej; Ulrych, Lukas; Šmídl, Václav; Evangeliou, Nikolaos; Stohl, Andreas

Estimation of the temporal profile of an atmospheric release, also called the source term, is an important problem in environmental sciences. The problem can be formalized as a linear inverse problem wherein the unknown source term is optimized to minimize the difference between the measurements and the corresponding model predictions. The problem is typically ill-posed due to low sensor coverage of a release and due to uncertainties, e.g., in measurements or atmospheric transport modeling; hence, all state-of-the-art methods are based on some form of regularization of the problem using additional information. We consider two kinds of additional information: the prior source term, also known as the first guess, and regularization parameters for the shape of the source term. While the first guess is based on information independent of the measurements, such as the physics of the potential release or previous estimations, the regularization parameters are often selected by the designers of the optimization procedure. In this paper, we provide a sensitivity study of two inverse methodologies on the choice of the prior source term and regularization parameters of the methods. The sensitivity is studied in two cases: data from the European Tracer Experiment (ETEX) using FLEXPART v8.1 and the caesium-134 and caesium-137 dataset from the Chernobyl accident using FLEXPART v10.3.

2020

Publikasjon
År
Kategori