Fant 65 publikasjoner. Viser side 2 av 3:
Information on the global production and environmental releases of persistent organic pollutants (POPs) is of critical importance for regulating and eliminating these chemical substances of worldwide environmental and health concerns. Here, we conduct an extensive literature review to collect and curate quantitative information on the historical global production and multimedia environmental releases of 25 intentionally produced POPs. Our assembled data indicate that as of 2020, a cumulative total of 31 306 kilotonnes (kt) of the 25 POPs had been synthesized and commercialized worldwide, resulting in cumulative releases of 20 348 kt into the global environment. As of 2020, short-chain chlorinated paraffins were the most produced POP, with a historical global cumulative tonnage amounting to 8795 kt, whereas α-hexachlorocyclohexane (HCH) had the largest historical global cumulative environmental releases of 6567 kt among these 25 POPs. The 1970s witnessed the peak in the annual global production of the 25 investigated POPs. The United States and Europe used to be the hotspots of environmental releases of the 25 investigated POPs, notably in the 1960s and 1970s. By contrast, global environmental releases occurred primarily in China in the 2000s–2010s. Preliminary efforts are also made to integrate the production volume information with “hazard” attributes (persistence, bioaccumulation, toxicity, and long-range transport potential) in the evaluation of potential environmental impacts of the 25 POPs. The results show that dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) are potentially associated with higher environmental impacts than other POPs because they are among the top rankings in both the global cumulative production and hazard indicators. This work for the first time reveals the astonishing magnitudes of POP production and environmental releases in contemporary human history. It also underscores the importance of tonnage information in assessments of POPs, POP candidates, and other chemicals of emerging concern.
Royal Society of Chemistry (RSC)
2023
Plastic pollution (including microplastics) has been reported in a variety of biotic and abiotic compartments across the circumpolar Arctic. Due to their environmental ubiquity, there is a need to understand not only the fate and transport of physical plastic particles, but also the fate and transport of additive chemicals associated with plastic pollution. Further, there is a fundamental research gap in understanding long-range transport of chemical additives to the Arctic via plastics as well as their behavior under environmentally relevant Arctic conditions. Here, we comment on the state of the science of plastic as carriers of chemical additives to the Arctic, and highlight research priorities going forward. We suggest further research on the transport pathways of chemical additives via plastics from both distant and local sources and laboratory experiments to investigate chemical behavior of plastic additives under Arctic conditions, including leaching, uptake, and bioaccumulation. Ultimately, chemical additives need to be included in strategic monitoring efforts to fully understand the contaminant burden of plastic pollution in Arctic ecosystems.
2023
VKM has performed a risk-benefit assessment of sunscreen use and six UV filters. This task
was undertaken on the initiative of a VKM Panel in response to the apparent paradox
between the need for protective measures, such as use of sunscreens, to reduce Norway’s
high incidence and mortality of skin cancer and a consumer concern for the safety of
sunscreens. Concerns include safety of ingredients and sunscreens’ effect on vitamin D
synthesis. Sunscreen products are legally regulated as cosmetic products in the EU, and only
approved UV filters up to a maximum determined concentration are allowed in the ready-foruse preparation.
VKM used a systematic approach to assess risks and benefits of sunscreen use and risks of
six selected UV filters: bis-ethyl-hexyloxyphenol methoxyphenyl triazine (BEMT), butyl
methoxydibenzoyl methane (BMDBM), 2-ethylhexyl salicylate (EHS), ethylhexyl triazone
(EHT), octocrylene (OC), and titanium dioxide in nanoform (NP-TiO2). These UV filters are
among the most frequently used in sunscreens on the Norwegian market. Sunscreen sprays
and lip products were not included. Scientific publications and reports up to 2020 were
retrieved to assess adverse and protective effects of sunscreen and adverse effects of UV
filters. We assessed risk of bias in the studies and evidence for health outcomes with the aid
of validity tools, and estimated exposure to each UV filter using probabilistic methods.
The evidence showed that sunscreens were beneficial in protecting against certain skin
cancers. Insufficient evidence precluded determination of the hazard associated with
sunscreen use.
The UV filters occurred in concentrations similar to or below the limits set in the EU
cosmetics regulative. VKM considered that little to no hazard was associated with use of the
six evaluated UV filters.
VKM concludes that the risks related to use of the six evaluated UV filters are negligible since
the real-life use of these UV filters is several-fold lower than the amounts that may cause
any adverse health effect. The evidence for harmful health effects of sunscreens is
insufficient to determine risk. Sunscreen use protects against certain skin cancers and is
beneficial for the general Norwegian population.
2022
2022
2021
2021
2021
The role of nature-based solutions for improving environmental quality, health and well-being
Nature-based solutions (NbS) have been positioned and implemented in urban areas as solutions for enhancing urban resilience in the face of a wide range of urban challenges. However, there is a lack of recommendations of optimal NbS and appropriate typologies fitting to different contexts and urban design. The analytical frameworks for NbS implementation and impact evaluation, that integrate NbS into local policy frameworks, socio-economic transition pathways, and spatial planning, remain fragmented. In this article, the NbS concept and its related terminologies are first discussed. Second, the types of NbS implemented in Europe are reviewed and their benefits over time are explored, prior to categorizing them and highlighting the key methods, criteria, and indicators to identify and assess the NbS’s impacts, co-benefits, and trade-offs. The latter involved a review of the websites of 52 projects and some relevant publications funded by EU Research and Innovation programs and other relevant publications. The results show that there is a shared understanding that the NbS concept encompasses benefits of restoration and rehabilitation of ecosystems, carbon neutrality, improved environmental quality, health and well-being, and evidence for such benefits. This study also shows that most NbS-related projects and activities in Europe use hybrid approaches, with NbS typically developed, tested, or implemented to target specific types of environmental–social–economic challenges. The results of this study indicate that NbS as a holistic concept would be beneficial in the context of climate action and sustainable solutions to enhance ecosystem resilience and adaptive capacity within cities. As such, this article provides a snapshot of the role of NbS in urban sustainability development, a guide to the state-of-the-art, and key messages and recommendations of this rapidly emerging and evolving field.
MDPI
2021
2021
2021
Oceanic long-range transport of organic additives present in plastic products: an overview
Most plastics are made of persistent synthetic polymer matrices that contain chemical additives in significant amounts. Millions of tonnes of plastics are produced every year and a significant amount of this plastic enters the marine environment, either as macro- or microplastics. In this article, an overview is given of the presence of marine plastic debris globally and its potential to reach remote locations in combination with an analysis of the oceanic long-range transport potential of organic additives present in plastic debris. The information gathered shows that leaching of hydrophobic substances from plastic is slow in the ocean, whereas more polar substances leach faster but mostly from the surface layers of the particle. Their high content used in plastic of several percent by weight allows also these chemicals to be transported over long distances without being completely depleted along the way. It is therefore likely that various types of additives reach remote locations with plastic debris. As a consequence, birds or other wildlife that ingest plastic debris are exposed to these substances, as leaching is accelerated in warm-blooded organisms and in hydrophobic fluids such as stomach oil, compared to leaching in water. Our estimates show that approximately 8100–18,900 t of various organic additives are transported with buoyant plastic matrices globally with a significant portion also transported to the Arctic. For many of these chemicals, long-range transport (LRT) by plastic as a carrier is their only means of travelling over long distances without degrading, resulting in plastic debris enabling the LRT of chemicals which otherwise would not reach polar environments with unknown consequences. The transport of organic additives via plastic debris is an additional long-range transport route that should also be considered under the Stockholm Convention.
Springer
2021
Royal Society of Chemistry (RSC)
2021
2021
2021
2021
2021
DNA damage and repair activity are often assessed in blood samples from humans in different types of molecular epidemiology studies. However, it is not always feasible to analyse the s#38les on the day of collection without any type of storage. For instance, certain studies use repeated sampling of cells from the same subject or samples from different subjects collected at different time-points, and it is desirable to analyse all these samples in the same comet assay experiment. In addition, flawless comet assay analyses on frozen samples opens up for the possibility of using this technique on biobank material. In this article we discuss the use of cryopreserved peripheral blood mononuclear cells (PBMCs), buffy coat (BC) and whole blood (WB) for analysis of DNA damage and repair using the comet assay. The published literature and the authors’ experiences indicate that various types of blood samples can be cryopreserved with only minor effect on the basal level of DNA damage. There is evidence to suggest that WB and PBMCs can be cryopreserved for several years without much effect on the level of DNA damage. However, care should be taken when cryopreserving WB and BCs. It is possible to use either fresh or frozen samples of blood cells, but results from fresh and frozen cells should not be used in the same dataset. The article outlines detailed protocols for the cryopreservation of PBMCs, BCs and WB samples.
Oxford University Press
2021
2020
The high persistence of PFAS is sufficient for their management as a chemical class
Royal Society of Chemistry (RSC)
2020
2020
2020
2020
2020
2020