Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 794 publikasjoner. Viser side 16 av 34:

Publikasjon  
År  
Kategori

Ecological unequal exchange: quantifying emissions of toxic chemicals embodied in the global trade of chemicals, products, and waste

Tong, Kate; Li, Li; Breivik, Knut; Wania, Frank

Ecologically unequal exchange arises if more developed economies ('core') shift the environmental burden of their consumption and capital accumulation to less developed economies ('periphery'/'semi-core'). Here we demonstrate that human populations in core regions can benefit from the use of products containing toxic chemicals while transferring to the periphery the risk of human and ecological exposure to emissions associated with manufacturing and waste disposal. We use a global scale substance flow analysis approach to quantify the emissions of polybrominated diphenyl ethers (PBDEs), a group of flame retardants added to consumer products, that are embodied in the trade of chemicals, products and wastes between seven world regions over the 2000–2020 time period. We find that core regions have off-loaded PBDE emissions, mostly associated with the disposal of electrical and electronic waste (e-waste), to semi-core and peripheral regions in mainland China and the Global South. In core regions this results in small emissions that mostly occur during the product use phase, whereas in peripheral regions emissions are much higher and dominated by end of life disposal. The transfer of toxic chemical emissions between core and periphery can be quantified and should be accounted for when appraising the costs and benefits of global trade relationships.

2022

Estimation of the historical dry deposition of air pollution indoors to the monumental paintings by Edvard Munch in the University Aula, in Oslo, Norway

Grøntoft, Terje; Frøysaker, Tine

The historical (1835–2020) deposition of major air pollutants (SO2, NOx, O3 and PM2.5) indoors, as represented by the monumental Edvard Munch paintings (c. 220 m2) installed in 1916 in the Oslo University Aula in Norway, were approximated from the outdoor air concentrations, indoor to outdoor concentration ratios and dry deposition velocities. The annual deposition of the pollutants to the paintings was found to have been 4–25 times lower than has been reported to buildings outdoors in the urban background in the centre of Oslo. It reflected the outdoor deposition but varied less, from 0.3 to 1.2 g m−2 a−1. The accumulated deposition since 1916, and then not considering the regularly performed cleaning of the paintings, was found to have been 43 ± 13 g m−2, and 110 ± 40 g m−2 in a similar situation since 1835. The ozone deposition, and the PM2.5 deposition before the 1960s, were a relatively larger part of the accumulated total indoor (to the paintings) than reported outdoor deposition. About 18 and 33 times more O3 than NOx and PM2.5 deposition was estimated to the paintings in 2020, as compared to the about similar reported outdoor dry deposition of O3 and NOx. The deposition of PM2.5 to the paintings was probably reduced with about 62% (50–80%) after installation of mechanical filtration in 1975 and was estimated to be 0.011 (± 0.006) g m−2 in 2020.

BioMed Central (BMC)

2022

Odds and ends of atmospheric mercury in Europe and over the North Atlantic Ocean: temporal trends of 25 years of measurements

Custódio, Danilo; Pfaffhuber, Katrine Aspmo; Spain, T. Gerard; Pankratov, Fidel F.; Strigunova, Iana; Molepo, Koketso; Skov, Henrik; Bieser, Johannes; Ebinghaus, Ralf

The global monitoring plan of the Minamata Convention on Mercury was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After 25 years of monitoring (since 1995), Mace Head is one of the atmospheric monitoring stations with the longest mercury record and has produced sufficient data for the analysis of temporal trends of total gaseous mercury (TGM) in Europe and the North Atlantic. Using concentration-weighted trajectories for atmospheric mercury measured at Mace Head as well as another five locations in Europe, Amderma, Andøya, Villum, Waldhof and Zeppelin, we identify the regional probabilistic source contribution factor and its changes for the period of 1996 to 2019. Temporal trends indicate that concentrations of mercury in the atmosphere in Europe and the North Atlantic have declined significantly over the past 25 years at a non-monotonic rate averaging 0.03  . Concentrations of TGM at remote marine sites were shown to be affected by continental long-range transport, and evaluation of reanalysis back trajectories displays a significant decrease in TGM in continental air masses from Europe in the last 2 decades. In addition, using the relationship between mercury and other atmospheric trace gases that could serve as a source signature, we perform factorization regression analysis, based on positive rotatable factorization to solve probabilistic mass functions. We reconstructed atmospheric mercury concentration and assessed the contribution of the major natural and anthropogenic sources. The results reveal that the observed downward trend in the atmospheric mercury is mainly associated with a factor with a high load of long-lived anthropogenic species.

2022

Development of a Novel Framework for the Assessment and Improvement of Climate Adaptation and Mitigation Actions in Europe

Ottaviani Aalmo, Giovanna; Gioli, Beniamino; Rodriguez, Divina Gracia P.; Tuomasjukka, Diana; Liu, Hai-Ying; Pastore, Maria Chiara; Salbitano, Fabio; Bogetoft, Peter; Sæbø, Arne; Konijnendijk, Cecil

The greenhouse gases (GHG) emissions in the European Union (EU) are mainly caused by human activity from five sectors—power, industry, transport, buildings, and agriculture. To tackle all these challenges, the EU actions and policies have been encouraging initiatives focusing on a holistic approach but these initiatives are not enough coordinated and connected to reach the much needed impact. To strengthen the important role of regions in climate actions, and stimulate wide stakeholders’ engagement including citizens, a conceptual framework for enabling rapid and far-reaching climate actions through multi-sectoral regional adaptation pathways is hereby developed. The target audience for this framework is composed by regional policy makers, developers and fellow scientists. The scale of the framework emphasizes the regional function as an important meeting point and delivery arena for European and national climate strategies and objectives both at urban and rural level. The framework is based on transformative and no-regret measures, prioritizing the Key Community Systems (KCS) that most urgently need to be protected from climate impacts and risks.

Frontiers Media S.A.

2022

What caused a record high PM10 episode in northern Europe in October 2020?

Zwaaftink, Christine Groot; Aas, Wenche; Eckhardt, Sabine; Evangeliou, Nikolaos; Hamer, Paul David; Johnsrud, Mona; Kylling, Arve; Platt, Stephen Matthew; Stebel, Kerstin; Uggerud, Hilde Thelle; Yttri, Karl Espen

In early October 2020, northern Europe experienced an episode with poor air quality due to high concentrations of particulate matter (PM). At several sites in Norway, recorded weekly values exceeded historical maximum PM10 concentrations from the past 4 to 10 years. Daily mean PM10 values at Norwegian sites were up to 97 µg m−3 and had a median value of 59 µg m−3. We analysed this severe pollution episode caused by long-range atmospheric transport based on surface and remote sensing observations and transport model simulations to understand its causes. Samples from three sites in mainland Norway and the Arctic remote station Zeppelin (Svalbard) showed strong contributions from mineral dust to PM10 (23 %–36 % as a minimum and 31 %–45 % as a maximum) and biomass burning (8 %–16 % to 19 %–21 %). Atmospheric transport simulations indicate that Central Asia was the main source region for mineral dust observed in this episode. The biomass burning fraction can be attributed to forest fires in Ukraine and southern Russia, but we cannot exclude other sources contributing, like fires elsewhere, because the model underestimates observed concentrations. The combined use of remote sensing, surface measurements, and transport modelling proved effective in describing the episode and distinguishing its causes.

2022

Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration

Eilertsen, Hans Christian; Eriksen, Gunilla; Bergum, John-Steinar; Strømholt, Jo; Elvevoll, Edel O.; Eilertsen, Karl-Erik; Heimstad, Eldbjørg Sofie; Giæver, Ingeborg Hulda; Israelsen, Linn; Svenning, Jon Brage; Dalheim, Lars; Osvik, Renate Døving; Hansen, Espen Holst; Ingebrigtsen, Richard Andre; Aspen, Terje M; Wintervoll, Geir-Henning

From 2015 to 2021, we optimized mass cultivation of diatoms in our own developed vertical column airlift photobioreactors using natural and artificial light (LEDs). The project took place at the ferrosilicon producer Finnfjord AS in North Norway as a joint venture with UiT—The Arctic University of Norway. Small (0.1–6–14 m3) reactors were used for initial experiments and to produce inoculum cultures while upscaling experiments took place in a 300 m3 reactor. We here argue that species cultivated in reactors should be large since biovolume specific self-shadowing of light can be lower for large vs. small cells. The highest production, 1.28 cm3 L−1 biovolume (0.09–0.31 g DW day−1), was obtained with continuous culture at ca. 19% light utilization efficiency and 34% CO2 uptake. We cultivated 4–6 months without microbial contamination or biofouling, and this we argue was due to a natural antifouling (anti-biofilm) agent in the algae. In terms of protein quality all essential amino acids were present, and the composition and digestibility of the fatty acids were as required for feed ingredients. Lipid content was ca. 20% of ash-free DW with high EPA levels, and omega-3 and amino acid content increased when factory fume was added. The content of heavy metals in algae cultivated with fume was well within the accepted safety limits. Organic pollutants (e.g., dioxins and PCBs) were below the limits required by the European Union food safety regulations, and bioprospecting revealed several promising findings.

MDPI

2022

Impact of 3D cloud structures on the atmospheric trace gas products from UV–Vis sounders – Part 1: Synthetic dataset for validation of trace gas retrieval algorithms

Emde, Claudia; Yu, Huan; Kylling, Arve; Van Roozendael, Michel; Stebel, Kerstin; Veihelmann, Ben

Retrievals of trace gas concentrations from satellite observations are mostly performed for clear regions or regions with low cloud coverage. However, even fully clear pixels can be affected by clouds in the vicinity, either by shadowing or by scattering of radiation from clouds in the clear region. Quantifying the error of retrieved trace gas concentrations due to cloud scattering is a difficult task. One possibility is to generate synthetic data by three-dimensional (3D) radiative transfer simulations using realistic 3D atmospheric input data, including 3D cloud structures. Retrieval algorithms may be applied on the synthetic data, and comparison to the known input trace gas concentrations yields the retrieval error due to cloud scattering.

In this paper we present a comprehensive synthetic dataset which has been generated using the Monte Carlo radiative transfer model MYSTIC (Monte Carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres). The dataset includes simulated spectra in two spectral ranges (400–500 nm and the O2A-band from 755–775 nm). Moreover it includes layer air mass factors (layer-AMFs) calculated at 460 nm. All simulations are performed for a fixed background atmosphere for various sun positions, viewing directions and surface albedos.

Two cloud setups are considered: the first includes simple box clouds with various geometrical and optical thicknesses. This can be used to systematically investigate the sensitivity of the retrieval error on solar zenith angle, surface albedo and cloud parameters. Corresponding 1D simulations are also provided. The second includes realistic three-dimensional clouds from an ICON large eddy simulation (LES) for a region covering Germany and parts of surrounding countries. The scene includes cloud types typical of central Europe such as shallow cumulus, convective cloud cells, cirrus and stratocumulus. This large dataset can be used to quantify the trace gas concentration retrieval error statistically.

Along with the dataset, the impact of horizontal photon transport on reflectance spectra and layer-AMFs is analysed for the box-cloud scenarios. Moreover, the impact of 3D cloud scattering on the NO2 vertical column density (VCD) retrieval is presented for a specific LES case. We find that the retrieval error is largest in cloud shadow regions, where the NO2 VCD is underestimated by more than 20 %.

The dataset is available for the scientific community to assess the behaviour of trace gas retrieval algorithms and cloud correction schemes in cloud conditions with 3D structure.

2022

Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund

Platt, Stephen Matthew; Hov, Øystein; Berg, Torunn; Breivik, Knut; Eckhardt, Sabine; Eleftheriadis, Konstantinos; Evangeliou, Nikolaos; Fiebig, Markus; Fisher, Rebecca; Hansen, Georg Heinrich; Hansson, Hans-Christen; Heintzenberg, Jost; Hermansen, Ove; Heslin-Rees, Dominic; Holmén, Kim; Hudson, Stephen; Kallenborn, Roland; Krejci, Radovan; Krognes, Terje; Larssen, Steinar; Lowry, David; Myhre, Cathrine Lund; Lunder, Chris Rene; Nisbet, Euan; Bohlin-Nizzetto, Pernilla; Park, Ki-Tae; Pedersen, Christina Alsvik; Pfaffhuber, Katrine Aspmo; Röckmann, Thomas; Schmidbauer, Norbert; Solberg, Sverre; Stohl, Andreas; Ström, Johan; Svendby, Tove Marit; Tunved, Peter; Tørnkvist, Kjersti Karlsen; van der Veen, Carina; Vratolis, Stergios; Jun Yoon, Young; Yttri, Karl Espen; Zieger, Paul; Aas, Wenche; Tørseth, Kjetil

The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.

2022

Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling: From global emissions to deposition

Evangeliou, Nikolaos; Tichý, Ondřej; Eckhardt, Sabine; Zwaaftink, Christine Groot; Brahney, Janice

We combine observations from Western USA and inverse modelling to constrain global atmospheric emissions of microplastics (MPs) and microfibers (MFs). The latter are used further to model their global atmospheric dynamics. Global annual MP emissions were calculated as 9.6 ± 3.6 Tg and MF emissions as 6.5 ± 2.9 Tg. Global average monthly MP concentrations were 47 ng m-3 and 33 ng m-3 for MFs, at maximum. The largest deposition of agricultural MPs occurred close to the world’s largest agricultural regions. Road MPs mostly deposited in the East Coast of USA, Central Europe, and Southeastern Asia; MPs resuspended with mineral dust near Sahara and Middle East. Only 1.8% of the emitted mass of oceanic MPs was transferred to land, and 1.4% of land MPs to ocean; the rest were deposited in the same environment. Previous studies reported that 0.74–1.9 Tg y-1 of land-based atmospheric MPs/MFs (

2022

Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface

Moschos, Vaios; Schmale, Julia; Aas, Wenche; Becagli, Silvia; Calzolai, Giulia; Eleftheriadis, Konstantinos; Moffett, Claire E.; Schnelle-Kreis, Jürgen; Severi, Mirko; Sharma, Sangeeta; Skov, Henrik; Vestenius, Mika; Zhang, Wendy; Hakola, Hannele; Hellén, Heidi; Huang, Lin; Jaffrezo, Jean-Luc; Massling, Andreas; Nøjgaard, Jacob Klenø; Petäjä, Tuukka; Popovicheva, Olga; Sheesley, Rebecca J.; Traversi, Rita; Yttri, Karl Espen; Prévôt, André S. H.; Baltensperger, Urs; El Haddad, Imad

The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to available aerosol. The composition and sources of the climate-relevant aerosols, affecting Arctic cloud formation and altering their microphysics, remain largely elusive due to a lack of harmonized concurrent multi-component, multi-site, and multi-season observations. Here, we present a dataset on the overall chemical composition and seasonal variability of the Arctic total particulate matter (with a size cut at 10 μm, PM10, or without any size cut) at eight observatories representing all Arctic sectors. Our holistic observational approach includes the Russian Arctic, a significant emission source area with less dedicated aerosol monitoring, and extends beyond the more traditionally studied summer period and black carbon/sulfate or fine-mode pollutants. The major airborne Arctic PM components in terms of dry mass are sea salt, secondary (non-sea-salt, nss) sulfate, and organic aerosol (OA), with minor contributions from elemental carbon (EC) and ammonium. We observe substantial spatiotemporal variability in component ratios, such as EC/OA, ammonium/nss-sulfate and OA/nss-sulfate, and fractional contributions to PM. When combined with component-specific back-trajectory analysis to identify marine or terrestrial origins, as well as the companion study by Moschos et al 2022 Nat. Geosci. focusing on OA, the composition analysis provides policy-guiding observational insights into sector-based differences in natural and anthropogenic Arctic aerosol sources. In this regard, we first reveal major source regions of inner-Arctic sea salt, biogenic sulfate, and natural organics, and highlight an underappreciated wintertime source of primary carbonaceous aerosols (EC and OA) in West Siberia, potentially associated with the oil and gas sector. The presented dataset can assist in reducing uncertainties in modelling pan-Arctic aerosol-climate interactions, as the major contributors to yearly aerosol mass can be constrained. These models can then be used to predict the future evolution of individual inner-Arctic atmospheric PM components in light of current and emerging pollution mitigation measures and improved region-specific emission inventories.

2022

Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols

Moschos, Vaios; Dzepina, Katja; Bhattu, Deepika; Lamkaddam, Houssni; Casotto, Roberto; Daellenbach, Kaspar R.; Canonaco, Francesco; Rai, Pragati; Aas, Wenche; Becagli, Silvia; Calzolai, Giulia; Eleftheriadis, Konstantinos; Moffett, Claire E.; Schnelle-Kreis, Jürgen; Seviri, Mirko; Sharma, Sangeeta; Skov, Henrik; Vestenius, Mika; Zhang, Wendy; Hakola, Hannele; Hellén, Heidi; Huang, Lin; Jaffrezo, Jean-Luc; Massling, Andreas; Nøjgaard, Jacob Klenø; Petäjä, Tuukka; Popovicheva, Olga; Sheesley, Rebecca J.; Traversi, Rita; Yttri, Karl Espen; Schmale, Julia; Prévôt, André S. H.; Baltensperger, Urs; El Haddad, Imad

Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.

2022

The influence of photochemistry on outdoor to indoor NO2 in some European museums

Grøntoft, Terje

This paper reports 1 year of monthly average NO2 indoor to outdoor (I/O) concentrations measured in 10 European museums, and a simple steady-state box model that explains the annual variation. The measurements were performed in the EU FP5 project Master (EVK-CT-2002-00093). The work provides extensive documentation of the annual variation of NO2 I/O concentration ratios, with ratios above unity in the summer, in situations with no indoor emissions of NO2. The modelling included the most relevant production and removal processes of NO2 and showed that the outdoor photolysis was the probable main explanation of the annual trends in the NO2 I/O concentration ratios.

John Wiley & Sons

2022

Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines

Fahim, Muhammad; Sharma, Vishal; Cao, Tuan-Vu; Canberk, Berk; Duong, Trung Q.

Wind turbines are one of the primary sources of renewable energy, which leads to a sustainable and efficient energy solution. It does not release any carbon emissions to pollute our planet. The wind farms monitoring and power generation prediction is a complex problem due to the unpredictability of wind speed. Consequently, it limits the decision power of the management team to plan the energy consumption in an effective way. Our proposed model solves this challenge by utilizing a 5G-Next Generation-Radio Access Network (5G-NG-RAN) assisted cloud-based digital twins’ framework to virtually monitor wind turbines and form a predictive model to forecast wind speed and predict the generated power. The developed model is based on Microsoft Azure digital twins infrastructure as a 5-dimensional digital twins platform. The predictive modeling is based on a deep learning approach, temporal convolution network (TCN) followed by a non-parametric k-nearest neighbor (kNN) regression. Predictive modeling has two components. First, it processes the univariate time series data of wind to predict its speed. Secondly, it estimates the power generation for each quarter of the year ranges from one week to a whole month (i.e., medium-term prediction) To evaluate the framework the experiments are performed on onshore wind turbines publicly available datasets. The obtained results confirm the applicability of the proposed framework. Furthermore, the comparative analysis with the existing classical prediction models shows that our designed approach obtained better results. The model can assist the management team to monitor the wind farms remotely as well as estimate the power generation in advance.

IEEE (Institute of Electrical and Electronics Engineers)

2022

Expectations of Future Natural Hazards in Human Adaptation to Concurrent Extreme Events in the Colorado River Basin

Boero, Riccardo; Talsma, Carl James; Oliveto, Julia Andre; Bennet, Katrina Eleanor

Human adaptation to climate change is the outcome of long-term decisions continuously made and revised by local communities. Adaptation choices can be represented by economic investment models in which the often large upfront cost of adaptation is offset by the future benefits of avoiding losses due to future natural hazards. In this context, we investigate the role that expectations of future natural hazards have on adaptation in the Colorado River basin of the USA. We apply an innovative approach that quantifies the impacts of changes in concurrent climate extremes, with a focus on flooding events. By including the expectation of future natural hazards in adaptation models, we examine how public policies can focus on this component to support local community adaptation efforts. Findings indicate that considering the concurrent distribution of several variables makes quantification and prediction of extremes easier, more realistic, and consequently improves our capability to model human systems adaptation. Hazard expectation is a leading force in adaptation. Even without assuming increases in exposure, the Colorado River basin is expected to face harsh increases in damage from flooding events unless local communities are able to incorporate climate change and expected increases in extremes in their adaptation planning and decision making.

MDPI

2022

Improving Estimates of Sulfur, Nitrogen, and Ozone Total Deposition through Multi-Model and Measurement-Model Fusion Approaches

Fu, Joshua S.; Carmichael, Gregory R.; Dentener, Frank; Aas, Wenche; Vestøl, Anna Camilla Andersson; Barrie, Leonard A.; Cole, AS; Galy-Lacaux, Corinne; Geddes, Jeffrey; Itahashi, Syuichi; Kanakidou, Maria; Labrador, Lorenzo; Paulot, Fabien; Schwede, Donna; Tan, Jiani; Vet, Robert

Earth system and environmental impact studies need high quality and up-to-date estimates of atmospheric deposition. This study demonstrates the methodological benefits of multimodel ensemble and measurement-model fusion mapping approaches for atmospheric deposition focusing on 2010, a year for which several studies were conducted. Global model-only deposition assessment can be further improved by integrating new model-measurement techniques, including expanded capabilities of satellite observations of atmospheric composition. We identify research and implementation priorities for timely estimates of deposition globally as implemented by the World Meteorological Organization.

2022

Hitting the hotspots – Targeted deployment of air source heat pump technology to deliver clean air communities and climate progress: A case study of Ireland

Ó Broin, Eion; Kelly, J. Andrew; Sousa Santos, Gabriela; Grythe, Henrik; Svendby, Tove Marit; Solberg, Sverre; Kelleher, Luke; Clinch, J. Peter

Electrification of residential heating and investment in building energy efficiency are central pillars of many national strategies to reduce carbon emissions from the built environment sector. Ireland has a strong dependence on oil use for central heating and a substantial share of homes still using solid fuels. The current national strategy calls for the retrofitting of 400,000 home heating systems with heat pumps by 2030, principally replacing oil fired heating systems. Displacing natural gas, oil and solid fuel boilers with heat pumps will have a favourable impact on climate outcomes. However, the impact on air pollutant outcomes is far more favourable when solid fuels are replaced, and the positive impact on ambient air quality is much enhanced where concentrated clusters of solid-fuel use are targeted. This research spatially analyses emissions and air pollutant concentration outcomes for both targeted and non-targeted deployments of heat pumps and shows that a focused deployment of just 3% of the national heat pump target on solid-fuel homes could offer similar progress on climate goals but with a substantial impact in terms of reducing air pollution hot spots. For the Irish residential heating season (October–March), the targeted solid fuel scenario delivers average PM2.5 concentration decreases of 20–34%. This paper shows that these targeted communities are often in areas of relative deprivation, and as such, direct support for fabric retrofitting and heat pump technology installation offers the potential to simultaneously advance climate, air and just transition policy ambitions.

Elsevier

2022

Pharmacokinetics of PEGylated Gold Nanoparticles: In Vitro—In Vivo Correlation

Dubaj, Tibor; Kozics, Katarina; Srámková, Monika; Manova, Alena; Bastus, Neus G.; Moriones, Oscar H.; Kohl, Yvonne; Dusinska, Maria; Rundén-Pran, Elise; Puntes, Victor; Nelson, Andrew; Gábelová, Alena; Simon, Peter

Data suitable for assembling a physiologically-based pharmacokinetic (PBPK) model for nanoparticles (NPs) remain relatively scarce. Therefore, there is a trend in extrapolating the results of in vitro and in silico studies to in vivo nanoparticle hazard and risk assessment. To evaluate the reliability of such approach, a pharmacokinetic study was performed using the same polyethylene glycol-coated gold nanoparticles (PEG-AuNPs) in vitro and in vivo. As in vitro models, human cell lines TH1, A549, Hep G2, and 16HBE were employed. The in vivo PEG-AuNP biodistribution was assessed in rats. The internalization and exclusion of PEG-AuNPs in vitro were modeled as first-order rate processes with the partition coefficient describing the equilibrium distribution. The pharmacokinetic parameters were obtained by fitting the model to the in vitro data and subsequently used for PBPK simulation in vivo. Notable differences were observed in the internalized amount of Au in individual cell lines compared to the corresponding tissues in vivo, with the highest found for renal TH1 cells and kidneys. The main reason for these discrepancies is the absence of natural barriers in the in vitro conditions. Therefore, caution should be exercised when extrapolating in vitro data to predict the in vivo NP burden and response to exposure.

MDPI

2022

Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models

Buociková, Verona; Longhin, Eleonora Marta; Pilalis, Eleftherios; Mastrokalou, Chara; Miklíková, Svetlana; Cihova, Marina; Poturnayova, Alexandra; Mackova, Katarina; Bábelová, Andrea; Trnkova, Lenka; El Yamani, Naouale; Zheng, Congying; Mondragon, Ivan Rios; Labudova, Martina; Csaderova, Lucia; Kuracinova, Kristina Mikus; Makovicky, Peter; Kučerová, Lucia; Matuskova, Miroslava; Cimpan, Mihaela-Roxana; Dusinska, Maria; Babal, Pavel; Chatziioannou, Aristotelis; Gábelová, Alena; Rundén-Pran, Elise; Smolkova, Bozena

Acquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX). Three cell lines representing different molecular BC subtypes, JIMT-1, MDA-MB-231 and T-47D, were used to evaluate the synergy of sequential DAC + DOX treatment in vitro. The cytotoxicity, genotoxicity, apoptosis, and migration capacity were tested in 2D and 3D cultures. Moreover, genome-wide DNA methylation and transcriptomic analyses were employed to understand the differences underlying DAC responsiveness. The ability of DAC to sensitize trastuzumab-resistant HER2-positive JIMT-1 cells to DOX was examined in vivo in an orthotopic xenograft mouse model. DAC and DOX synergistic effect was identified in all tested cell lines, with JIMT-1 cells being most sensitive to DAC. Based on the whole-genome data, we assume that the aggressive behavior of JIMT-1 cells can be related to the enrichment of epithelial-to-mesenchymal transition and stemness-associated pathways in this cell line. The four-week DAC + DOX sequential administration significantly reduced the tumor growth, DNMT1 expression, and global DNA methylation in xenograft tissues. The efficacy of combination therapy was comparable to effect of pegylated liposomal DOX, used exclusively for the treatment of metastatic BC. This work demonstrates the potential of epigenetic drugs to modulate cancer cells' sensitivity to other forms of anticancer therapy.

Elsevier

2022

Modified Target Diagram to check compliance of low-cost sensors with the Data Quality Objectives of the European air quality directive

Yatkin, Sinan; Gerboles, Michel; Borowiak, Annette; Davila, Silvije; Spinelle, Laurent; Bartonova, Alena; Dauge, Franck Rene; Schneider, Philipp; Van Poppel, Martine; Peters, Jan; Matheeussen, Christina; Signorini, Marco

The modified Target Diagram (MTD) was developed to evaluate the performance of low-cost sensors (LCS) for air quality monitoring in comparison with reference methods by reporting relative expanded uncertainty and its contributors. An MTD provides several pieces of information, including compliance with regulation, sources of error and how to diminish them, completeness and validity of LCS calibration etc. It allows the user to examine the effect of selecting different regression types and residual fitting on the LCS measurement uncertainty. The ordinary least squared regression with fitted residuals and dynamic between reference analyser uncertainty rather than constant ones yielded more realistic LCS measurement uncertainty compared to other options. The MTD is a fast visual tool to extract several pieces of information on evaluation of any candidate method against reference method.

Elsevier

2022

Six-week inhalation of lead oxide nanoparticles in mice affects antioxidant defense, immune response, kidneys, intestine and bones

Tulinska, Jana; Krivosikova, Zora; Liskova, Aurelia; Mikusova, Miroslava Lehotska; Masanova, Vlasta; Rollerova, Eva; Stefikova, Kornelia; Wsolova, Ladislava; Bábelová, Andrea; Tothova, Lubomira; Busova, Milena; Babickova, Janka; Uhnakova, Iveta; Alacova, Radka; Dusinska, Maria; Horvathova, Mira; Szabova, Michaela; Vecera, Zbynek; Mikuska, Pavel; Coufalik, Pavel; Krumal, Kamil; Alexa, Lukas; Piler, Pavel; Thon, Vojtech; Docekal, Bohumil

Royal Society of Chemistry (RSC)

2022

Machine learning-based stocks and flows modeling of road infrastructure

Ebrahimi, Babak; Rosado, Leonardo; Wallbaum, Holger

This paper introduces a new method to account for the stocks and flows of road infrastructure at the national level based on material flow accounting (MFA). The proposed method closes some of the current shortcomings in road infrastructures that were identified through MFA: (1) the insufficient implementation of prospective analysis, (2) heavy use of archetypes as a way to represent road infrastructure, (3) inadequate attention to the inclusion of dissipative flows, and (4) limited coverage of the uncertainties. The proposed dynamic bottom-up MFA method was tested on the Norwegian road network to estimate and predict the material stocks and flows between 1980 and 2050. Here, a supervised machine learning model was introduced to estimate the road infrastructure instead of archetypical mapping of different roads. The dissipation of materials from the road infrastructure based on tire–pavement interaction was incorporated. Moreover, this study utilizes iterative classified and regression trees, lifetime distributions, randomized material intensities, and sensitivity analyses to quantify the uncertainties.

John Wiley & Sons

2022

Effects of extreme meteorological conditions in 2018 on European methane emissions estimated using atmospheric inversions

Thompson, Rona Louise; Zwaaftink, Christine Groot; Brunner, D; Tsuruta, Aki; Aalto, T; Raivonen, M; Crippa, M.; Solazzo, Efisio; Guizzardi, D.; Regnier, P.; Maisonnier, M.

The effect of the 2018 extreme meteorological conditions in Europe on methane (CH4) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005–2018. For most of Europe, we find no anomaly in 2018 compared to the 2005–2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September–October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 ± 38% higher than the 2005–2017 mean. These results indicate that CH4 emissions from areas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005–2018 was small, and there was negligible impact on the annual CH4 emissions in 2018 despite the extreme meteorological conditions.

This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.

2021

Safety assessment of titanium dioxide (E171) as a food additive

Younes, Maged; Aquilina, Gabriele; Castle, Laurence; Engel, Karl-Heinz; Fowler, Paul; Fernandez, Maria Jose Frutos; Fürst, Peter; Gundert-Remy, Ursula; Gürtler, Rainer; Husøy, Trine; Manco, Melania; Mennes, Wim; Moldeus, Peter; Passamonti, Sabina; Shah, Romina; Waalkens-Berendsen, Ine; Wölfle, Detlef; Corsini, Emanuela; Cubadda, Francesco; De Groot, Didima; FitzGerald, Rex; Gunnare, Sara; Gutleb, Arno C.; Mast, Jan; Mortensen, Alicja; Oomen, Agnes; Piersma, Aldert; Plichta, Veronika; Ulbrich, Beate; Van Loveren, Henk; Benford, Diane; Bignami, Margherita; Bolognesi, Claudia; Crebelli, Riccardo; Dusinska, Maria; Marcon, Francesca; Nielsen, Elsa; Schlatter, Josef; Vleminckx, Christiane; Barmaz, Stefania; Carfi, Maria; Civitella, Consuelo; Giarola, Alessandra; Rincon, Ana Maria; Serafimova, Rositsa; Smeraldi, Camilla; Tarazona, Jose; Tard, Alexandra; Wright, Matthew

The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.

2021

Increasing Trends of Legacy and Emerging Organic Contaminants in a Dated Sediment Core From East-Africa

Nipen, Maja; Vogt, Rolf David; Bohlin-Nizzetto, Pernilla; Borgå, Katrine; Mwakalapa, Eliezer Brown; Borgen, Anders Røsrud; Schlabach, Martin; Christensen, Guttorm; Mmochi, Aviti John; Breivik, Knut

Temporal trends of industrial organic contaminants can show how environmental burdens respond to changes in production, regulation, and other anthropogenic and environmental factors. Numerous studies have documented such trends from the Northern Hemisphere, while there is very limited data in the literature from sub-Saharan Africa. We hypothesized that the temporal trends of legacy and contemporary industrial contaminants in sub-Saharan Africa could greatly differ from the regions in which many of these chemicals were initially produced and more extensively used. For this purpose, a dated sediment core covering six decades from a floodplain system in urban Dar es Salaam, Tanzania, was analysed. The samples were analysed for selected legacy persistent organic pollutants (POPs) [polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs)] and chemicals of emerging concern (CECs) [alternative brominated flame retardants (aBFRs), chlorinated paraffins (CPs), and dechloranes]. All groups of chemicals showed a steep increase in concentrations towards the uppermost sediment layers reflecting the more recent years. Concentrations of the individual compound groups in surface sediment were found in the order CPs >> aBFRs ∼ ∑25PBDEs > dechloranes ∼ ∑32PCBs. Time trends for the individual compounds and compound groups differed, with ∑32PCBs showing presence in sediments since at least the early 1960s, while some CECs first occurred in sediments corresponding to the last decade. Investigations into potential drivers for the observed trends showed that socioeconomic factors related to growth in population, economy, and waste generation have contributed to increasing concentrations of PBDEs, aBFRs, CPs, and Dechlorane Plus. Further monitoring of temporal trends of industrial organic contaminants in urban areas in the Global South is recommended.

Frontiers Media S.A.

2022

Publikasjon
År
Kategori