Fant 842 publikasjoner. Viser side 16 av 36:
2025
A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial–temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.
2024
A pooled analysis of host factors that affect nucleotide excision repair in humans
Nucleotide excision repair (NER) is crucial for repairing bulky lesions and crosslinks in DNA caused by exogenous and endogenous genotoxins. The number of studies that have considered DNA repair as a biomarker is limited, and therefore one of the primary objectives of the European COST Action hCOMET (CA15132) was to assemble and analyse a pooled database of studies with data on NER activity. The database comprised 738 individuals, gathered from 5 laboratories that ran population studies using the comet-based in vitro DNA repair assay. NER activity data in peripheral blood mononuclear cells were normalized and correlated with various host-related factors, including sex, age, body mass index (BMI), and smoking habits. This multifaceted analysis uncovered significantly higher NER activity in female participants compared to males (1.08 ± 0.74 vs. 0.92 ± 0.71; P = .002). Higher NER activity was seen in older subjects (>30 years), and the effect of age was most pronounced in the oldest females, particularly those over 70 years (P = .001). Females with a normal BMI (<25 kg/m2) exhibited the highest levels of NER, whereas the lowest NER was observed in overweight males (BMI ≥ 25 kg/m2). No independent effect of smoking was found. After stratification by sex and BMI, higher NER was observed in smoking males (P = .017). The biological implication of higher or lower repair capacity remains unclear; the inclusion of DNA repair as a biomarker in molecular epidemiological trials should elucidate the link between health and disease status.
2025
Rising carbon inequality and its driving factors from 2005 to 2015
Carbon inequality is the gap in carbon footprints between the rich and the poor, reflecting an uneven distribution of wealth and mitigation responsibility. Whilst much is known about the level of inequality surrounding responsibility for greenhouse gas (GHG) emissions, little is known about the evolution in carbon inequality and how the carbon footprints of socio-economic groups have developed over time. Inequality can be reduced either by improving the living standards of the poor or by reducing the overconsumption of the rich, but the choice has very different implications for climate change mitigation. Here, we investigate the carbon footprints of income quintile groups for major 43 economies from 2005 to 2015. We find that most developed economies had declining carbon footprints but expanding carbon inequality, whereas most developing economies had rising footprints but divergent trends in carbon inequality. The top income group in developing economies grew fastest, with its carbon footprint surpassing the top group in developed economies in 2014. Developments are driven by a reduction in GHG intensity in all regions, which is partly offset by income growth in developed countries but more than offset by the rapid growth in selected emerging economies. The top income group in developed economies has achieved the least progress in climate change mitigation, in terms of decline rate, showing resistance of the rich. It shows mitigation efforts could raise carbon inequality. We highlight the necessity of raising the living standard of the poor and consistent mitigation effort is the core of achieving two targets.
2023
Implementing Citizen Science in Primary Schools: Engaging Young Children in Monitoring Air Pollution
Most European cities have air pollution levels that exceed the threshold for human health protection. Children are sensitive to air pollution and thus it is important to ensure they are not exposed to high concentrations of air pollutants. In order to make a positive change toward cleaner air, a joint effort is needed, involving all civil society actors. Schools and local communities have a decisive role, and can, for example, become engaged in citizen science initiatives and knowledge coproduction. In 2019, with the aim of raising awareness for air quality, NILU developed a citizen science toolbox to engage primary schools in monitoring air quality using a simple and affordable measuring method based on paper and petroleum jelly. This is a very visual method, where the students can clearly see differences from polluted and non-polluted places by looking at “how dirty” is the paper. In addition to the qualitative analysis, we have developed an air meter scale making possible for the students to obtain an indicative measurement of the air pollution level. The comparison between the paper and petroleum jelly method against reference PM10 data collected at two official air quality stations showed a good agreement. The method is a strong candidate for dust monitoring in citizen science projects, making participation possible and empowering people with simple tools at hand. The toolbox is targeted at primary schools and children aged 6–12 years, although it can easily be adapted to other age groups. The main objective of the toolbox is to involve young children who are usually not targeted in air quality citizen science activities, to develop research skills and critical thinking, as well as increase their awareness about the air they breathe. The toolbox is designed to engage students in hands-on activities, that challenge them to create hypotheses, design scientific experiments, draw conclusions and find creative solutions to the air pollution problem. The toolbox includes all the necessary material for the teachers, including guidance, background information and templates facilitating the incorporation in the school curricula. The toolbox was launched as part of the Oslo European Green Capital in March 2019 and was later included as part of the European Clean Air Day initiative coordinated by the European Citizen Science Association (ECSA) working group on air quality. A total of 30 schools and 60 4th grade classes (aged 8–9 years) participated in the Oslo campaign. The citizen science approach employed in the schools, combined the four key elements that promote knowledge integration: elicit ideas, add new ideas, distinguish among ideas and reflect and sort out ideas. Although the main goal of the study was to provide simple but robust tools for engaging young children in air quality monitoring, we also carried out ex-ante and ex-post evaluations in 12 of the participating classes using a 10-question multiple choice test to have an indication of the contribution of the activity to knowledge integration. The results show that there is an increase in the number of correct answers, as well as a reduction in the misconceptions after conducting the activity. These results indicate that applying a citizen science approach improved science instruction and helped knowledge integration by including students' views and taking advantage of the diverse ideas students generated. Citizen science gives learners an insight into the ways that scientists generate solutions for societal problems. But more important, citizen science provides a way to differ from the classic view of the learner as an absorber of information, by considering the social context of instruction and making the topic personally relevant.
2021
Decitabine (DAC), a DNA methyltransferase (DNMT) inhibitor, is tested in combination with conventional anticancer drugs as a treatment option for various solid tumors. Although epigenome modulation provides a promising avenue in treating resistant cancer types, more studies are required to evaluate its safety and ability to normalize the aberrant transcriptional profiles. As deoxycytidine kinase (DCK)-mediated phosphorylation is a rate-limiting step in DAC metabolic activation, we hypothesized that its intracellular overexpression could potentiate DAC’s effect on cell methylome and thus increase its therapeutic efficacy. Therefore, two breast cancer cell lines, JIMT-1 and T-47D, differing in their molecular characteristics, were transfected with a DCK expression vector and exposed to low-dose DAC (approximately IC20). Although transfection resulted in a significant DCK expression increase, further enhanced by DAC exposure, no transfection-induced changes were found at the global DNA methylation level or in cell viability. In parallel, an integrative approach was applied to decipher DAC-induced, methylation-mediated, transcriptomic reprogramming. Besides large-scale hypomethylation, accompanied by up-regulation of gene expression across the entire genome, DAC also induced hypermethylation and down-regulation of numerous genes in both cell lines. Interestingly, TET1 and TET2 expression halved in JIMT-1 cells after DAC exposure, while DNMTs’ changes were not significant. The protein digestion and absorption pathway, containing numerous collagen and solute carrier genes, ranking second among membrane transport proteins, was the top enriched pathway in both cell lines when hypomethylated and up-regulated genes were considered. Moreover, the calcium signaling pathway, playing a significant role in drug resistance, was among the top enriched in JIMT-1 cells. Although low-dose DAC demonstrated its ability to normalize the expression of tumor suppressors, several oncogenes were also up-regulated, a finding, that supports previously raised concerns regarding its broad reprogramming potential. Importantly, our research provides evidence about the involvement of active demethylation in DAC-mediated transcriptional reprogramming.
2022
Understanding the global distribution of atmospheric black carbon (BC) is essential for unveiling its climatic effect. However, there are still large uncertainties regarding the simulation of BC transport due to inadequate information about the removal process. We accessed the wet removal rate of BC in East Asia based on long-term measurements over the 2010–2016 period at three representative background sites (Baengnyeong and Gosan in South Korea and Noto in Japan). The average wet removal rate, represented by transport efficiency (TE), i.e., the fraction of undeposited BC particles during transport, was estimated to be 0.73 in East Asia from 2010 to 2016. According to the relationship between accumulated precipitation along trajectory and TE, the wet removal efficiency was lower in East and North China but higher in South Korea and Japan, implying the importance of the aging process and frequency of exposure to below- and in-cloud scavenging conditions during air mass transport. Moreover, the wet scavenging in winter and summer showed the highest and lowest efficiency, respectively, although the lowest removal efficiency in summer was primarily associated with a reduced BC aging process because the in-cloud scavenging condition was dominant. The average half-life and e-folding lifetime of BC were 2.8 and 7.1 d, respectively, which is similar to previous studies, but those values differed according to the geographical location and meteorological conditions of each site. Next, by comparing TE from the FLEXible PARTicle (FLEXPART) Lagrangian transport model (version 10.4), we diagnosed the scavenging coefficients (s−1) of the below- and in-cloud scavenging scheme implemented in FLEXPART. The overall median TE from FLEXPART (0.91) was overestimated compared to the measured value, implying the underestimation of wet scavenging coefficients in the model simulation. The median of the measured below-cloud scavenging coefficient showed a lower value than that calculated according to FLEXPART scheme by a factor of 1.7. On the other hand, the overall median of the calculated in-cloud scavenging coefficients from the FLEXPART scheme was highly underestimated by 1 order of magnitude, compared to the measured value. From an analysis of artificial neural networks, the convective available potential energy, which is well known as an indicator of vertical instability, should be considered in the in-cloud scavenging process to improve the representative regional difference in BC wet scavenging over East Asia. For the first time, this study suggests an effective and straightforward evaluation method for wet scavenging schemes (both below and in cloud), by introducing TE along with excluding effects from the inaccurate emission inventories.
2020
Multi-decadal surface ozone trends at globally distributed remote locations
Extracting globally representative trend information from lower tropospheric ozone observations is extremely difficult due to the highly variable distribution and interannual variability of ozone, and the ongoing shift of ozone precursor emissions from high latitudes to low latitudes. Here we report surface ozone trends at 27 globally distributed remote locations (20 in the Northern Hemisphere, 7 in the Southern Hemisphere), focusing on continuous time series that extend from the present back to at least 1995. While these sites are only representative of less than 25% of the global surface area, this analysis provides a range of regional long-term ozone trends for the evaluation of global chemistry-climate models. Trends are based on monthly mean ozone anomalies, and all sites have at least 20 years of data, which improves the likelihood that a robust trend value is due to changes in ozone precursor emissions and/or forced climate change rather than naturally occurring climate variability. Since 1995, the Northern Hemisphere sites are nearly evenly split between positive and negative ozone trends, while 5 of 7 Southern Hemisphere sites have positive trends. Positive trends are in the range of 0.5-2 ppbv decade-1, with ozone increasing at Mauna Loa by roughly 50% since the late 1950s. Two high elevation Alpine sites, discussed by previous assessments, exhibit decreasing ozone trends in contrast to the positive trend observed by IAGOS commercial aircraft in the European lower free-troposphere. The Alpine sites frequently sample polluted European boundary layer air, especially in summer, and can only be representative of lower free tropospheric ozone if the data are carefully filtered to avoid boundary layer air. The highly variable ozone trends at these 27 surface sites are not necessarily indicative of free tropospheric trends, which have been overwhelmingly positive since the mid-1990s, as shown by recent studies of ozonesonde and aircraft observations.
2020
We determine the global emission distribution of the potent greenhouse gas sulfur hexafluoride (SF6) for the period 2005–2021 using inverse modelling. The inversion is based on 50 d backward simulations with the Lagrangian particle dispersion model (LPDM) FLEXPART and on a comprehensive observation data set of SF6 mole fractions in which we combine continuous with flask measurements sampled at fixed surface locations and observations from aircraft and ship campaigns. We use a global-distribution-based (GDB) approach to determine baseline mole fractions directly from global SF6 mole fraction fields at the termination points of the backward trajectories. We compute these fields by performing an atmospheric SF6 re-analysis, assimilating global SF6 observations into modelled global three-dimensional mole fraction fields. Our inversion results are in excellent agreement with several regional inversion studies in the USA, Europe, and China. We find that (1) annual US SF6 emissions strongly decreased from 1.25 Gg in 2005 to 0.48 Gg in 2021; however, they were on average twice as high as the reported emissions to the United Nations. (2) SF6 emissions from EU countries show an average decreasing trend of −0.006 Gg yr−1 during the period 2005 to 2021, including a substantial drop in 2018. This drop is likely a direct result of the EU's F-gas regulation 517/2014, which bans the use of SF6 for recycling magnesium die-casting alloys as of 2018 and requires leak detection systems for electrical switch gear. (3) Chinese annual emissions grew from 1.28 Gg in 2005 to 5.16 Gg in 2021, with a trend of 0.21 Gg yr−1, which is even higher than the average global total emission trend of 0.20 Gg yr−1. (4) National reports for the USA, Europe, and China all underestimated their SF6 emissions. (5) Our results indicate increasing emissions in poorly monitored areas (e.g. India, Africa, and South America); however, these results are uncertain due to weak observational constraints, highlighting the need for enhanced monitoring in these areas. (6) Global total SF6 emissions are comparable to estimates in previous studies but are sensitive to a priori estimates due to the low network sensitivity in poorly monitored regions. (7) Monthly inversions indicate that SF6 emissions in the Northern Hemisphere were on average higher in summer than in winter throughout the study period.
2024
2018
At the same time Arctic ecosystems experiences rapid climate change, at a rate four times faster than the global average, they remain burdened by long-range transported pollution, notably with legacy polychlorinated biphenyls (PCBs). The present study investigates the potential impact of climate change on seabird exposure to PCB-153 using the established Nested Exposure Model (NEM), here expanded with three seabird species, i.e. common eider (Somateria mollissima), black-legged kittiwake (Rissa tridactyla) and glaucous gull (Larus hyperboreus), as well as the filter feeder blue mussel (Mytulis edulis). The model's performance was evaluated using empirical time trends of the seabird species in Kongsfjorden, Svalbard, and using tissue concentrations from filter feeders along the northern Norwegian coast. NEM successfully replicated empirical PCB-153 concentrations, confirming its ability to simulate PCB-153 bioaccumulation in the studied seabird species within an order of magnitude. Based on global PCB-153 emission estimates, simulations run until the year 2100 predicted seabird blood concentrations 99% lower than in year 2000. Model scenarios with climate change-induced altered dietary composition and lipid dynamics showed to have minimal impact on future PCB-153 exposure, compared to temporal changes in primary emissions of PCB-153. The present study suggests the potential of mechanistic modelling in assessing POP exposure in Arctic seabirds within a multiple stressor context.
2025
Disentangling Aerosol and Cloud effects on Dimming and Brightening in Observations and CMIP6
Periods of dimming and brightening have been recorded in observational datasets of surface solar radiation (SSR) between the mid-20th century and present day. Atmospheric components affect SSR, including aerosols and clouds, though studies disagree somewhat about the relative effect of each component in different regions. Current Earth system models (ESMs) are unable to simulate observed trends in SSR. This study includes an investigation into observed SSR variations between 1961 and 2014 and an evaluation of the effects of cloud cover variations and impacts of aerosol extinction, using timeseries of SSR and cloud cover from in-situ measurements. Historical simulations by 42 ESMs participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) have also been studied and compared to observations. The observational study indicates that cloud cover has had a dampening effect on the variations of SSR and that emissions of aerosol and aerosol precursors are the main cause of the general trends in observed SSR in four regions—China, Japan, Europe and the United States—during 1961-2014. The study of simulated SSR in CMIP6 yields the conclusion that current ESMs remain unable to simulate the magnitude of observed dimming and brightening in China, Japan and the United States, but that the European SSR trends between 1961 and 2014 are fairly well reproduced in the ESMs. A rough quantification of the regional surface radiation extinction efficiency of aerosol and precursor emissions in the simulations is found to agree with observed values in Europe, but not in the other three regions.
2022
Query-driven Qualitative Constraint Acquisition
Many planning, scheduling or multi-dimensional packing problems involve the design of subtle logical combinations of temporal or spatial constraints. Recently, we introduced GEQCA-I, which stands for Generic Qualitative Constraint Acquisition, as a new active constraint acquisition method for learning qualitative constraints using qualitative queries. In this paper, we revise and extend GEQCA-I to GEQCA-II with a new type of query, universal query, for qualitative constraint acquisition, with a deeper query-driven acquisition algorithm. Our extended experimental evaluation shows the efficiency and usefulness of the concept of universal query in learning randomly-generated qualitative networks, including both temporal networks based on Allen’s algebra and spatial networks based on region connection calculus. We also show the effectiveness of GEQCA-II in learning the qualitative part of real scheduling problems.
2024
Monitoring aerosol optical depth during the Arctic night: Instrument development and first results
Moon-photometric measurements were made at two locations in the Arctic during winter nights using two different modified Sun photometers; a Carter Scott SP02 and a Precision Filter Radiometer (PFR) developed at PMOD/WRC. Values of aerosol optical depth (AOD) were derived from spectral irradiance measurements made at four wavelengths for each of the devices. The SP02 was located near Barrow, Alaska and recorded data from November 2012 to March 2013, spanning five lunar cycles, while the PFR was deployed to Ny-Ålesund, Svalbard each winter from February 2014 to February 2019 for a total of 56 measurement periods. A methodology was developed to process the raw data, involving calibration of the instruments and normalizing measured spectral irradiance values in accordance with site-specific determinations of the extraterrestrial atmospheric irradiance (ETI) as Moon phase cycled. Uncertainties of the derived AOD values were also evaluated and found to be in the range, 0.006–0.030, depending on wavelength and which device was evaluated.
The magnitudes of AOD determined for the two sites were in general agreement with those reported in the literature for sunlit periods just before and after the dark periods of Arctic night. Those for the PFR were also compared with data obtained using star photometers and a Cimel CE318-T, recently deployed to Ny-Ålesund, showing that Moon photometry is viable as a means to monitor AOD during the Arctic night. Such data are valuable for more complete assessments of the role aerosols play in modulating climate, the validation of AOD derived using various remote sensing techniques, and applications related to climate modeling.
2024
Plastic pollution has long been identified as one of the biggest challenges of the 21st century. To tackle this problem, governments are setting stringent recycling targets to keep plastics in a closed loop. Yet, knowledge of the stocks and flows of plastic has not been well integrated into policies. This study presents a dynamic probabilistic economy-wide material flow analysis (MFA) of seven plastic polymers (HDPE, LDPE, PP, PS, PVC, EPS, and PET) in Norway from 2000 to 2050. A total of 40 individual product categories aggregated into nine industrial sectors were examined. An estimated 620 ± 23 kt or 114 kg/capita of these seven plastic polymers was put on the Norwegian market in 2020. Packaging products contributed to the largest share of plastic put on the market (∼40%). The accumulated in-use stock in 2020 was about 3400 ± 56 kt with ∼60% remaining in buildings and construction sector. In 2020, about 460 ± 22 kt of plastic waste was generated in Norway, with half originating from packaging. Although ∼50% of all plastic waste is collected separately from the waste stream, only around 25% is sorted for recycling. Overall, ∼50% of plastic waste is incinerated, ∼15% exported, and ∼10% landfilled. Under a business-as-usual scenario, the plastic put on the market, in-use stock, and waste generation will increase by 65%, 140%, and 90%, respectively by 2050. The outcomes of this work can be used as a guideline for other countries to establish the stocks and flows of plastic polymers from various industrial sectors which is needed for the implementation of necessary regulatory actions and circular strategies. The systematic classification of products suitable for recycling or be made of recyclate will facilitate the safe and sustainable recycling of plastic waste into new products, cap production, lower consumption, and prevent waste generation.
2023
In 2005, the European Commission funded the NORMAN project to promote a permanent network of reference laboratories and research centers, including academia, industry, standardization bodies, and NGOs. Since then, NORMAN has (i) facilitated a more rapid and wide-scope exchange of data on the occurrence and effects of contaminants of emerging concern (CECs), (ii) improved data quality and comparability via validation and harmonization of common sampling and measurement methods (chemical and biological), (iii) provided more transparent information and monitoring data on CECs, and (iv) established an independent and competent forum for the technical/scientific debate on issues related to emerging substances. NORMAN plays a significant role as an independent organization at the interface between science and policy, with the advantage of speaking to the European Commission and other public institutions with the “bigger voice” of more than 70 members from 20 countries. This article provides a summary of the first 10 years of the NORMAN network. It takes stock of the work done so far and outlines NORMAN’s vision for a Europe-wide collaboration on CECs and sustainable links from research to policy-making. It contains an overview of the state of play in prioritizing and monitoring emerging substances with reference to several innovative technologies and monitoring approaches. It provides the point of view of the NORMAN network on a burning issue—the regulation of CECs—and presents the positions of various stakeholders in the field (DG ENV, EEA, ECHA, and national agencies) who participated in the NORMAN workshop in October 2016. The main messages and conclusions from the round table discussions are briefly presented.
2018
2018
Poland continues to rely heavily on coal and fossil fuels for household heating, despite efforts to reduce Particulate Matter (PM) levels. The availability of reliable air quality data is essential for policymakers, environmentalists, and citizens to advocate for cleaner energy sources. However, Polish air quality monitoring is challenging due to the limited coverage of reference stations and outdated equipment. Here, we report the results of a study on the spatio-temporal variability of Particulate Matter in Legionowo, Poland, using residents’ network of low-cost sensors. Along with identifying the hotspots of household-emitted PM, (1) we propose a data quality assurance scheme for PM sensors, (2) suggest an approach for estimating the Relative Humidity-induced uncertainty in the sensors without co-location with reference instruments, and (3) develop an interpretable Machine Learning (ML) model, a Generalized Additive Model (RMSE = 6.16 μg m−3, and R2 = 0.88), for unveiling the underlying relations between PM2.5 levels and other environmental parameters. The results in Legionowo suggest that as air temperature and wind speed increase by 1 °C and 1 km h−1, PM2.5 would respectively decrease by 0.26 μg m−3 and 0.14 μg m−3 while PM2.5 increases by 0.03 μg m−3 as RH increases by 1%.
2023
2020
Atmospheric ammonia (NH3) is a key transboundary air pollutant that contributes to the impacts of nitrogen and acidity on terrestrial ecosystems. Ammonia also contributes to the atmospheric aerosol that affects air quality. Emission inventories indicate that NH3 was predominantly emitted by agriculture over the 19th and 20th centuries but, up to now, these estimates have not been compared to long-term observations. To document past atmospheric NH3 pollution in south-eastern Europe, ammonium (NH) was analysed along an ice core extracted from Mount Elbrus in the Caucasus, Russia. The NH ice-core record indicates a 3.5-fold increase in concentrations between 1750 and 1990 CE. Remaining moderate prior to 1950 CE, the increase then accelerated to reach a maximum in 1989 CE. Comparison between ice-core trends and estimated past emissions using state-of-the-art atmospheric transport modelling of submicron-scale aerosols (FLEXPART (FLEXible PARTicle dispersion) model) indicates good agreement with the course of estimated NH3 emissions from south-eastern Europe since ∼ 1750 CE, with the main contributions from south European Russia, Türkiye, Georgia, and Ukraine. Examination of ice deposited prior to 1850 CE, when agricultural activities remained limited, suggests an NH ice concentration related to natural soil emissions representing ∼ 20 % of the 1980–2009 CE NH level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soil. These findings on historical NH3 emission trends represent a significant contribution to the understanding of ammonia emissions in Europe over the last 250 years.
2025
The present study examined how climate changes may impact the concentrations of lipophilic organochlorines (OCs) in the blood of fasting High Arctic common eiders (Somateria mollissima) during incubation. Polychlorinated biphenyls (PCBs), 1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p′-DDE), hexachlorobenzene (HCB) and four chlordane compounds (oxychlordane, trans-chlordane and trans- and cis-nonachlor) were measured in females at chick hatching (n = 223) over 11 years (2007–2017). Firstly, median HCB and p,p′-DDE concentrations increased ~75 % over the study period, whereas median chlordane concentrations doubled (except for oxychlordane). PCB concentrations, in contrast, remained stable over the study period. Secondly, both body mass and clutch size were negatively associated with OC levels, suggesting that females with high lipid metabolism redistributed more OCs from adipose tissue, and that egg production is an important elimination route for OCs. Thirdly, the direct climate effects were assessed using the mean effective temperature (ET: air temperature and wind speed) during incubation, and we hypothesized that a low ET would increase redistribution of OCs. Contrary to expectation, the ET was positively correlated to most OCs, suggesting that a warmer climate may lead to higher OCs levels, and that the impact of ET may not be direct. Finally, potential indirect impacts were examined using the Arctic Oscillation (AO) in the three preceding winters (AOwinter 1–3) as a proxy for potential long-range transport of OCs, and for local spring climate conditions. In addition, we used chlorophyll a (Chla) as a measure of spring primary production. There were negative associations between AOwinter 1 and HCB, trans-chlordane and trans-nonachlor, whereas oxychlordane and cis-chlordane were negatively associated with Chla. This suggests that potential indirect climate effects on eiders were manifested through the food chain and not through increased long-range transport, although these relationships were relatively weak.
2023
Human adaptation to climate change is the outcome of long-term decisions continuously made and revised by local communities. Adaptation choices can be represented by economic investment models in which the often large upfront cost of adaptation is offset by the future benefits of avoiding losses due to future natural hazards. In this context, we investigate the role that expectations of future natural hazards have on adaptation in the Colorado River basin of the USA. We apply an innovative approach that quantifies the impacts of changes in concurrent climate extremes, with a focus on flooding events. By including the expectation of future natural hazards in adaptation models, we examine how public policies can focus on this component to support local community adaptation efforts. Findings indicate that considering the concurrent distribution of several variables makes quantification and prediction of extremes easier, more realistic, and consequently improves our capability to model human systems adaptation. Hazard expectation is a leading force in adaptation. Even without assuming increases in exposure, the Colorado River basin is expected to face harsh increases in damage from flooding events unless local communities are able to incorporate climate change and expected increases in extremes in their adaptation planning and decision making.
2022
Cross-modal representation learning aims to learn a shared representation space where data from multiple modalities can be effectively compared, fused, and understood. This paper investigates the role of increased diversity in the similarity score matrix in enhancing the performance of the CLIP (Contrastive Language-Image Pretraining), a multi-modal learning model that establishes a connection between images and text within a joint embedding space. Two transforming approaches, sine and sigmoid (including two versions), are incorporated into the CLIP model to amplify larger values and diminish smaller values within the similarity matrix (logits). Hardware limitations are addressed using a more compact text encoder (DistilBERT) and a pre-trained ResNet50 image encoder. The proposed adaptations are evaluated on various benchmarks, including image classification and image/text retrieval tasks, using 10 benchmark datasets such as Food101, Flickr30k, and COCO. The performance of the adapted models is compared to the base CLIP model using Accuracy, mean per class, and Recall@k metrics. The results demonstrate improvements in Accuracy (up to 5.32% enhancement for the PatchCamelyon dataset), mean per class (up to 14.48% enhancement for the FGVCAircraft dataset), and retrieval precision (with an increase of up to 45.20% in Recall@1 for the COCO dataset), compared to the baseline algorithm (CLIP).
2023
Measurements of total ozone column and effective cloud transmittance have been performed since 1995 at the three Norwegian sites Oslo/Kjeller, Andøya/Tromsø, and in Ny-Ålesund (Svalbard). These sites are a subset of nine stations included in the Norwegian UV monitoring network, which uses ground-based ultraviolet (GUV) multi-filter instruments and is operated by the Norwegian Radiation and Nuclear Safety Authority (DSA) and the Norwegian Institute for Air Research (NILU). The network includes unique data sets of high-time-resolution measurements that can be used for a broad range of atmospheric and biological exposure studies. Comparison of the 25-year records of GUV (global sky) total ozone measurements with Brewer direct sun (DS) measurements shows that the GUV instruments provide valuable supplements to the more standardized ground-based instruments. The GUV instruments can fill in missing data and extend the measuring season at sites with reduced staff and/or characterized by harsh environmental conditions, such as Ny-Ålesund. Also, a harmonized GUV can easily be moved to more remote/unmanned locations and provide independent total ozone column data sets. The GUV instrument in Ny-Ålesund captured well the exceptionally large Arctic ozone depletion in March/April 2020, whereas the GUV instrument in Oslo recorded a mini ozone hole in December 2019 with total ozone values below 200 DU. For all the three Norwegian stations there is a slight increase in total ozone from 1995 until today. Measurements of GUV effective cloud transmittance in Ny-Ålesund indicate that there has been a significant change in albedo during the past 25 years, most likely resulting from increased temperatures and Arctic ice melt in the area surrounding Svalbard.
2021