Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 751 publikasjoner. Viser side 19 av 32:

Publikasjon  
År  
Kategori

Ingested plastics in northern fulmars (Fulmarus glacialis): A pathway for polybrominated diphenyl ether (PBDE) exposure?

Neumann, Svenja; Harju, Mikael; Herzke, Dorte; Anker-Nilssen, Tycho; Christensen-Dalsgaard, Signe; Langset, Magdalene; Gabrielsen, Geir W.

Although it has been suggested that plastic may act as a vector for pollutants into the tissue of seabirds, the bioaccumulation of harmful contaminants, such as polybrominated diphenyl ethers (PBDEs), released from ingested plastics is poorly understood. Plastic ingestion by the procellariiform species northern fulmar (Fulmarus glacialis) is well documented. In this study, we measured PBDEs levels in liver tissue of northern fulmars without and with (0.13–0.43 g per individual) stomach plastics. PBDE concentrations in the plastic sampled from the same birds were also quantified. Birds were either found dead on beaches in southern Norway or incidentally caught in longline fisheries in northern Norway. PBDEs were detected in all birds but high concentrations were only found in liver samples from beached birds, peaking at 2900 ng/g lipid weight. We found that body condition was a significant factor explaining the elevated concentration levels in livers of beached birds. BDE209 was found in ingested plastic particles and liver tissue of birds with ingested plastics but was absent in the livers of birds without ingested plastics. This strongly suggests a plastic-derived transfer and accumulation of BDE209 to the tissue of fulmars, levels of which might prove useful as a general indicator of plastic ingestion in seabirds.

Elsevier

2021

Pan-European rural monitoring network shows dominance of NH3 gas and NH4NO3 aerosol in inorganic atmospheric pollution load

Tang, Y. Sim; Flechard, Chris R.; Dämmgen, Ulrich; Vidic, Sonja; Djuricic, Vesna; Mitosinkova, Marta; Uggerud, Hilde Thelle; Sanz, Maria J.; Simmons, Ivan; Dragosits, Ulrike; Nemitz, Eiko; Twigg, Marsailidh; van Dijk, Netty; Fauvel, Yannick; Sanz, Francisco; Ferm, Martin; Perrino, Cinzia; Catrambone, Maria; Leaver, David; Braban, Christine F.; Cape, J. Neil; Heal, Mathew R.; Sutton, Mark A.

A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl), and aerosols (NH+4, NO−3, SO2−4, Cl−, Na+, Ca2+, Mg2+) is presented and analysed. Speciated measurements were made with a low-volume denuder and filter pack method (DEnuder for Long-Term Atmospheric sampling, DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 countries (2006–2010), coordinated between seven European laboratories. Bulk wet-deposition measurements were carried out at 16 co-located sites (2008–2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment of comparability between laboratories.

The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped sites according to country, European regions, and four main ecosystem types (crops, grassland, forests, and semi-natural). The smallest concentrations (with the exception of SO2−4 and Na+) were in northern Europe (Scandinavia), with broad elevations of all components across other regions. SO2 concentrations were highest in central and eastern Europe, with larger SO2 emissions, but particulate SO2−4 concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single measured component at the majority of sites, with the largest variability in concentrations across the network. The largest concentrations of NH3, NH+4, and NO−3 were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in Italy), and the smallest were at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 to drive the formation of both NH+4 and NO−3 aerosol. In the aerosol phase, NH+4 was highly correlated with both NO−3 and SO2−4, with a near-1:1 relationship between the equivalent concentrations of NH+4 and sum (NO−3+ SO2−4),of which around 60 % was as NH4NO3.

Distinct seasonality was also observed in the data, influenced by changes in emissions, chemical interactions, and the influence of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence of temperature and rainfall on emissions, deposition, and gas–aerosol-phase equilibrium. Seasonality in SO2 was mainly driven by emissions (combustion), with concentrations peaking in winter, except in southern Europe, where the peak occurred in summer. Particulate SO2−4 showed large peaks in concentrations in summer in southern and eastern Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO2−4 coincided with peaks in NH3 concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic and industrial emissions, photochemistry, and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in the summer in eastern and southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with the higher springtime concentrations of NH+4 and NO−3. The seasonal profile of NO−3 was mirrored by NH+4, illustrating the influence of gas–aerosol partitioning of NH4NO3 in the seasonality of these components.

Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the NEU network. With the current and projected trends in SO2, NOx, and NH3 emissions, concentrations of NH3 and NH4NO3 can be expected to continue to dominate...

2021

Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons

Vollmer, Martin K; Mühle, Jens; Henne, Stephan; Young, Dickon; Rigby, Matthew; Mitrevski, Blagoj; Park, Sunyoung; Lunder, Chris Rene; Rhee, Tae Siek; Harth, Christina M.; Hill, Matthias; Langenfelds, Ray L.; Guillevic, Myriam; Schlauri, Paul M.; Hermansen, Ove; Arduini, Jgor; Wang, Ray H. J.; Salameh, Peter K.; Maione, Michela; Krummel, Paul B.; Reimann, Stefan; O'Doherty, Simon; Simmonds, Peter G.; Fraser, Paul J.; Prinn, Ronald G.; Weiss, Ray F.; Steele, L. Paul

Global and regional atmospheric measurements and modeling can play key roles in discovering and quantifying unexpected nascent emissions of environmentally important substances. We focus here on three hydrochlorofluorocarbons (HCFCs) that are restricted by the Montreal Protocol because of their roles in stratospheric ozone depletion. Based on measurements of archived air samples and on in situ measurements at stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, we report global abundances, trends, and regional enhancements for HCFC-132b (CH2ClCClF2), which is newly discovered in the atmosphere, and updated results for HCFC-133a (CH2ClCF3) and HCFC-31 (CH2ClF). No purposeful end-use is known for any of these compounds. We find that HCFC-132b appeared in the atmosphere 20 y ago and that its global emissions increased to 1.1 Gg⋅y−1 by 2019. Regional top-down emission estimates for East Asia, based on high-frequency measurements for 2016–2019, account for ∼95% of the global HCFC-132b emissions and for ∼80% of the global HCFC-133a emissions of 2.3 Gg⋅y−1 during this period. Global emissions of HCFC-31 for the same period are 0.71 Gg⋅y−1. Small European emissions of HCFC-132b and HCFC-133a, found in southeastern France, ceased in early 2017 when a fluorocarbon production facility in that area closed. Although unreported emissive end-uses cannot be ruled out, all three compounds are most likely emitted as intermediate by-products in chemical production pathways. Identification of harmful emissions to the atmosphere at an early stage can guide the effective development of global and regional environmental policy.

2021

DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population

Niazi, Yasmeen; Thomsen, Hauke; Smolkova, Bozena; Vodickova, Ludmila; Vodenkova, Sona; Kroupa, Michal; Vymetalkova, Veronika; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Staruchova, Marta; Hoffmann, Per; Nöthen, Markus M; Dusinska, Maria; Musak, Ludovit; Vodicka, Pavel; Försti, Asta; Hemminki, Kari

Elsevier

2021

Changes in black carbon emissions over Europe due to COVID-19 lockdowns

Evangeliou, Nikolaos; Platt, Stephen Matthew; Eckhardt, Sabine; Myhre, Cathrine Lund; Laj, Paolo; Alados-Arboledas, Lucas; Backman, John; Brem, Benjamin T.; Fiebig, Markus; Flentje, Harald; Marinoni, Angela; Pandolfi, Marco; Yus-Diez, Jesus; Prats, Natalia; Putaud, Jean-Philippe; Sellegri, Karine; Sorribas, Mar; Eleftheriadis, Konstantinos; Vratolis, Stergios; Wiedensohler, Alfred; Stohl, Andreas

Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the rest of the world, the World Health Organization declared a global pandemic in March 2020. Without effective treatment in the initial pandemic phase, social distancing and mandatory quarantines were introduced as the only available preventative measure. In contrast to the detrimental societal impacts, air quality improved in all countries in which strict lockdowns were applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, using in situ observations from 17 European stations in a Bayesian inversion framework. BC emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany, 34 % in Spain, 22 % in France) during lockdowns compared to the same period in the previous 5 years, which is partially attributed to COVID-19 measures. BC temporal variation in the countries enduring the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential combustion was the dominant BC source. Accordingly, in central and Eastern Europe, which experienced lower than average temperatures, BC was elevated compared to the previous 5 years. Nevertheless, an average decrease of 11 % was seen for the whole of Europe compared to the start of the lockdown period, with the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain (11 %) and Italy (8 %). Such a decrease was not seen in the previous years, which also confirms the impact of COVID-19 on the European emissions of BC.

2021

SIOS’s Earth Observation (EO), Remote Sensing (RS), and operational activities in response to COVID-19

Jawak, Shridhar D.; Andersen, Bo Nyborg; Pohjola, Veijo A; Godøy, Øystein ; Hübner, Christiane; Jennings, Inger; Ignatiuk, Dariusz; Holmen, Kim; Sivertsen, Agnar ; Hann, Richard; Tømmervik, Hans; Kääb, Andreas; Błaszczyk, Małgorzata; Salzano, Roberto; Luks, Bartłomiej ; Høgda, Kjell Arild; Storvold, Rune; Nilsen, Lennart; Salvatori, Rosamaria; Krishnan, Kottekkatu Padinchati; Chatterjee, Sourav; Lorentzen, Dag A; Erlandsson, Rasmus; Lauknes, Tom Rune; Malnes, Eirik; Karlsen, Stein Rune; Enomoto, Hiroyuki; Fjæraa, Ann Mari; Zhang, Jie; Marty, Sabine; Nygård, Knut; Lihavainen, Heikki

Svalbard Integrated Arctic Earth Observing System (SIOS) is an international partnership of research institutions studying the environment and climate in and around Svalbard. SIOS is developing an efficient observing system, where researchers share technology, experience, and data, work together to close knowledge gaps, and decrease the environmental footprint of science. SIOS maintains and facilitates various scientific activities such as the State of the Environmental Science in Svalbard (SESS) report, international access to research infrastructure in Svalbard, Earth observation and remote sensing services, training courses for the Arctic science community, and open access to data. This perspective paper highlights the activities of SIOS Knowledge Centre, the central hub of SIOS, and the SIOS Remote Sensing Working Group (RSWG) in response to the unprecedented situation imposed by the global pandemic coronavirus (SARS-CoV-2) disease 2019 (COVID-19). The pandemic has affected Svalbard research in several ways. When Norway declared a nationwide lockdown to decrease the rate of spread of the COVID-19 in the community, even more strict measures were taken to protect the Svalbard community from the potential spread of the disease. Due to the lockdown, travel restrictions, and quarantine regulations declared by many nations, most physical meetings, training courses, conferences, and workshops worldwide were cancelled by the first week of March 2020. The resumption of physical scientific meetings is still uncertain in the foreseeable future. Additionally, field campaigns to polar regions, including Svalbard, were and remain severely affected. In response to this changing situation, SIOS initiated several operational activities suitable to mitigate the new challenges resulting from the pandemic. This article provides an extensive overview of SIOS’s Earth observation (EO), remote sensing (RS) and other operational activities strengthened and developed in response to COVID-19 to support the Svalbard scientific community in times of cancelled/postponed field campaigns in Svalbard. These include (1) an initiative to patch up field data (in situ) with RS observations, (2) a logistics sharing notice board for effective coordinating field activities in the pandemic times, (3) a monthly webinar series and panel discussion on EO talks, (4) an online conference on EO and RS, (5) the SIOS’s special issue in the Remote Sensing (MDPI) journal, (6) the conversion of a terrestrial remote sensing training course into an online edition, and (7) the announcement of opportunity (AO) in airborne remote sensing for filling the data gaps using aerial imagery and hyperspectral data. As SIOS is a consortium of 24 research institutions from 9 nations, this paper also presents an extensive overview of the activities from a few research institutes in pandemic times and highlights our upcoming activities for the next year 2021. Finally, we provide a critical perspective on our overall response, possible broader impacts, relevance to other observing systems, and future directions. We hope that our practical services, experiences, and activities implemented in these difficult times will motivate other similar monitoring programs and observing systems when responding to future challenging situations. With a broad scientific audience in mind, we present our perspective paper on activities in Svalbard as a case study.
Earth observation; Remote sensing; COVID-19; Svalbard; Earth System Science; SIOS

MDPI

2021

Climatological Westward‐Propagating Semidiurnal Tides and Their Composite Response to Sudden Stratospheric Warmings in SuperDARN and SD‐WACCM‐X

Zhang, J.; Limpasuvan, Varavut; Orsolini, Yvan J.; Espy, Patrick Joseph; Hibbins, Robert

Using the Super Dual Auroral Radar Network observations (clustered around 60°N) and NCAR CESM2.0 extended Whole Atmosphere Community Climate Model nudged with reanalyzes, we examine the climatology of semidiurnal tides in meridional wind associated with the migrating component (SW2) and non‐migrating components of wavenumbers 1 (SW1) and 3 (SW3). We then illustrate their composite response to major sudden stratospheric warmings (SSWs). Peaking in late summer and winter, the climatological SW2 amplitude exceeds SW1 and SW3 except around late Fall and Spring. The winter climatological peak is absent in the model perhaps due to the zonal wind bias at the observed altitudes. The observed SW2 amplitude declines after SSW onset before enhancing ∼10 days later, along with SW1 and SW3. Within the observed region, the simulated SW2 only amplifies after SSW onset, with minimal SW1 and SW3 responses. The model reveals a stronger SW2 response above the observed location, with diminished amplitude before and enhancement after SSW globally. This enhancement appears related to increased equatorial ozone heating and background wind symmetry. The strongest SW1 and SW3 growth occurs in the Southern Hemisphere before SSW. SW2 and quasi‐stationary planetary wave activities are temporally collocated during SSW suggesting that their interactions excite SW1 and SW3. After SSW, the model also reveals (1) semidiurnal‐tide‐like perturbations generated possibly by the interactions between SW2 and westward‐traveling disturbances and (2) the enhancement of migrating semidiurnal lunar tide in the Northern Hemisphere that exceeds non‐migrating tidal and semidiurnal‐tide‐like responses. The simulated eastward‐propagating semidiurnal tides are briefly examined.

American Geophysical Union (AGU)

2021

Characterization of inhalation exposure to gaseous elemental mercury during artisanal gold mining and e-waste recycling through combined stationary and personal passive sampling

Snow, Melanie A.; Darko, Godfred; Gyamfi, Opoku; Ansah, Eugene; Breivik, Knut; Hoang, Christopher; Lei, Ying Duan; Wania, Frank

Royal Society of Chemistry (RSC)

2021

Evaluation and optimization of ICOS atmosphere station data as part of the labeling process

Yver-Kwok, Camille; Philippon, Camille; Bergamaschi, Peter; Biermann, Tobias; Calzolari, Francescopiero; Chen, Huilin; Conil, Sébastien; Cristofanelli, Paolo; Delmotte, Marc; Hatakka, Juha; Heliasz, Michal; Hermansen, Ove; Kominkova, Katerina; Kubistin, Dagmar; Kumps, Nicolas; Laurent, Olivier; Laurila, Tuomas; Lehner, Irene; Levula, Janne; Lindauer, Matthias; Lopez, Morgan; Mammarella, Ivan; Manca, Giovanni; Marklund, Per; Metzger, Jean-Marc; Mölder, Meelis; Platt, Stephen Matthew; Ramonet, Michel; Rivier, Leonard; Scheeren, Bert; Sha, Mahesh Kumar; Smith, Paul; Steinbacher, Martin; Vitkova, Gabriela; Wyss, Simon

The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmosphere network through the 23 stations that were labeled between November 2017 and November 2019. We describe the labeling steps, as well as the quality controls, used to verify that the ICOS data (CO2, CH4, CO and meteorological measurements) attain the expected quality level defined within ICOS. To ensure the quality of the greenhouse gas data, three to four calibration gases and two target gases are measured: one target two to three times a day, the other gases twice a month. The data are verified on a weekly basis, and tests on the station sampling lines are performed twice a year. From these high-quality data, we conclude that regular calibrations of the CO2, CH4 and CO analyzers used here (twice a month) are important in particular for carbon monoxide (CO) due to the analyzer's variability and that reducing the number of calibration injections (from four to three) in a calibration sequence is possible, saving gas and extending the calibration gas lifespan. We also show that currently, the on-site water vapor correction test does not deliver quantitative results possibly due to environmental factors. Thus the use of a drying system is strongly recommended. Finally, the mandatory regular intake line tests are shown to be useful in detecting artifacts and leaks, as shown here via three different examples at the stations.

2021

Quantifying the Impact of the Covid-19 Lockdown Measures on Nitrogen Dioxide Levels throughout Europe

Solberg, Sverre; Walker, Sam-Erik; Schneider, Philipp; Guerreiro, Cristina

In this paper, the effect of the lockdown measures on nitrogen dioxide (NO2) in Europe is analysed by a statistical model approach based on a generalised additive model (GAM). The GAM is designed to find relationships between various meteorological parameters and temporal metrics (day of week, season, etc.) on the one hand and the level of pollutants on the other. The model is first trained on measurement data from almost 2000 monitoring stations during 2015–2019 and then applied to the same stations in 2020, providing predictions of expected concentrations in the absence of a lockdown. The difference between the modelled levels and the actual measurements from 2020 is used to calculate the impact of the lockdown measures adjusted for confounding effects, such as meteorology and temporal trends. The study is focused on April 2020, the month with the strongest reductions in NO2, as well as on the gradual recovery until the end of July. Significant differences between the countries are identified, with the largest NO2 reductions in Spain, France, Italy, Great Britain and Portugal and the smallest in eastern countries (Poland and Hungary). The model is found to perform best for urban and suburban sites. A comparison between the found relative changes in urban surface NO2 data during the lockdown and the corresponding changes in tropospheric vertical NO2 column density as observed by the TROPOMI instrument on Sentinel-5P revealed good agreement despite substantial differences in the observing method.

MDPI

2021

Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening

Kohl, Yvonne; Biehl, Margit; Spring, Sarah; Hesler, Michelle; Ogourtsov, Vladimir; Todorovic, Miomir; Owen, Joshua; Elje, Elisabeth; Kopecka, Kristina; Moriones, Oscar Hernando; Bastus, Neus G.; Simon, Peter; Dubaj, Tibor; Rundén-Pran, Elise; Puntes, Victor; William, Nicola; von Briesen, Hagen; Wagner, Sylvia; Kapur, Nikil; Mariussen, Espen; Nelson, Andrew; Gabelova, A; Dusinska, Maria; Velten, Thomas; Knoll, Thorsten

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal‐free risk assessment of new chemicals and drugs. Microfluidic cell‐based devices allow high‐throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal‐free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo‐like in vitro cell cultivation. It is equipped with a wafer‐based silicon chip including integrated electrodes and a microcavity. A proof‐of‐concept using different relevant cell models shows its suitability for label‐free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label‐free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole‐body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.

Wiley-VCH

2021

Fluorescent Nanocomposites: Hollow Silica Microspheres with Embedded Carbon Dots

Delic, Asmira; Mariussen, Espen; Roede, Erik Dobloug; Krivokapic, Alexander; Erbe, Andreas; Lindgren, Mikael; Benelmekki, Maria; Einarsrud, Mari-Ann

Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m2/g. High absolute zeta potential (−44 mV) at neutral pH demonstrates the high electrosteric stability of the nanocomposites in aqueous solution. Their fluorescence emission at 445 nm is remarkably stable in aqueous dispersion under a wide pH range (3–12) and in the dried state. The biocompatibility of the composite particles is excellent, as the particles were found to show low genotoxicity at exposures up to 10 μg/cm2.

Wiley-VCH

2021

Toxic effects of gunshot fumes from different ammunitions for small arms on lung cells exposed at the air liquid interface

Mariussen, Espen; Fjellbø, Lise Marie; Frømyr, Tomas Roll; Johnsen, Ida Vaa; Karsrud, Tove Engen; Voie, Øyvind Albert

Concerns have been raised as to whether gunshot fumes induce prolonged reduced lung capacity or even cancer due to inhalation. Gunshot fumes from three different types of ammunition calibre 5.56 mm × 45 NATO were investigated. SS109 has a soft lead (Pb) core, while NM255 and NM229 have a harder steel core. Emissions from ammunitions were characterized with respect to particle number- and mass-size, and mass distribution, heavy metal content, and different gases. Lung epithelial cells were exposed to the fumes at the air liquid interface to elucidate cytotoxicity and genotoxicity. Irrespectively of ammunition type, the largest mass fraction of generated particulate matter (PM) had a size between 1 and 3 μm. The highest number of particles generated was in the size range of 30 nm. Fumes from NM255 and NM229 induced cytotoxic effects of which the emission from NM229 induced the highest effect. Fumes from NM229 induced a dose-related increase in DNA-damage. Significant effects were only achieved at the highest exposure level, which led to approximately 40% reduced cell viability after 24 h. The effect probably relates to the mass of emitted particles where the size may be of importance, in addition to emission of Cu and Zn. A complex mixture of chemical substances and PM may increase the toxicity of the fumes and should encourage measures to reduce exposure.

Elsevier

2021

A Synthesis Inversion to Constrain Global Emissions of Two Very Short Lived Chlorocarbons: Dichloromethane, and Perchloroethylene

Claxton, Tom; Hossaini, R.; Wilson, C.; Montzka, Stephen A.; Chipperfield, Martyn P.; Wild, Oliver; Bednarz, Ewa M.; Carpenter, Lucy J.; Andrews, Stephen J.; Hackenberg, Sina C.; Mühle, Jens; Oram, David; Park, Sunyoung; Park, Mi-Kyung; Atlas, Elliot; Navarro, Maria; Schauffler, Sue; Sherry, David; Vollmer, Martin K.; Schuck, Tanja; Engel, Andreas; Krummel, Paul B.; Maione, Michela; Arduini, Jgor; Saito, Takuya; Yokouchi, Yoko; O'Doherty, Simon; Young, Dickon; Lunder, Chris Rene

Dichloromethane (CH2Cl2) and perchloroethylene (C2Cl4) are chlorinated very short lived substances (Cl‐VSLS) with anthropogenic sources. Recent studies highlight the increasing influence of such compounds, particularly CH2Cl2, on the stratospheric chlorine budget and therefore on ozone depletion. Here, a multiyear global‐scale synthesis inversion was performed to optimize CH2Cl2 (2006–2017) and C2Cl4 (2007–2017) emissions. The approach combines long‐term surface observations from global monitoring networks, output from a three‐dimensional chemical transport model (TOMCAT), and novel bottom‐up information on prior industry emissions. Our posterior results show an increase in global CH2Cl2 emissions from 637 ± 36 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 in 2017, with Asian emissions accounting for 68% and 89% of these totals, respectively. In absolute terms, Asian CH2Cl2 emissions increased annually by 51 Gg yr−1 over the study period, while European and North American emissions declined, indicating a continental‐scale shift in emission distribution since the mid‐2000s. For C2Cl4, we estimate a decrease in global emissions from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. The time‐varying posterior emissions offer significant improvements over the prior. Utilizing the posterior emissions leads to modeled tropospheric CH2Cl2 and C2Cl4 abundances and trends in good agreement to those observed (including independent observations to the inversion). A shorter C2Cl4 lifetime, from including an uncertain Cl sink, leads to larger global C2Cl4 emissions by a factor of ~1.5, which in some places improves model‐measurement agreement. The sensitivity of our findings to assumptions in the inversion procedure, including CH2Cl2 oceanic emissions, is discussed.

American Geophysical Union (AGU)

2020

Expression of DNA repair genes in arctic char (Salvelinus alpinus) from Bjørnøya in the Norwegian Arctic

Inderberg, Helene; Neerland, Eirik D.; Mcpartland, Molly; Sparstad, Torfinn; Bytingsvik, Jenny; Nikiforov, Vladimir; Evenset, Anita; Krøkje, Åse

High levels of organochlorines (OCs) have been measured in arctic char (Salvelinus alpinus) from Lake Ellasjøen on Bjørnøya, Norway (74.30°N, 19.0°E). In a nearby lake, Laksvatn, the OC-levels in arctic char were low. A previous study has shown that char from Ellasjøen had significantly higher levels of DNA double strand breaks (DSBs) than char from Lake Laksvatn. Even though there is increasing evidence of the genotoxic effects of OCs, little is known about the effects of OCs on the DNA repair system. The aim of the present study was to determine if the two main DNA DSB repair mechanisms, homologous recombination (HR) and non-homologous end-joining (NHEJ), are affected by the higher OC and DSB level in char from Ellasjøen. This was analysed by comparing the transcript level of 11 genes involved in DNA DSB repair in char liver samples from Ellasjøen (n = 9) with char from Laksvatn (n = 12). Six of the investigated genes were significantly upregulated in char from Ellasjøen. As the expression of DNA DSB repair genes was increased in the contaminant-exposed char, it is likely that the DNA DSB repair capacity is induced in these individuals. This induction was positively correlated with the DNA DSB and negatively correlated with one or several OCs for four of these genes. However, the strongest predictor variable for DNA repair genes was habitat, indicating genetic differences in repair capacity between populations. As char from Ellasjøen still had significantly higher levels of DSBs compared to char from Laksvatn, it is possible that chronic exposure to OCs and continued production of DSB has caused selective pressure within the population for fixation of adaptive alleles. It is also possible that DSB production was exceeding the repair capacity given the prevailing conditions, or that the OC or DSB level was above the threshold value of inhibition of the DNA repair system resulting in the rate of DNA damage exceeding the rate of repair.

Elsevier

2021

Trophic and fitness correlates of mercury and organochlorine compound residues in egg-laying Antarctic petrels

Carravieri, Alice; Warner, Nicholas Alexander; Herzke, Dorte; Brault-Favrou, Maud; Tarroux, Arnaud; Fort, Jérôme; Bustamante, Paco; Descamps, Sebastien

Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 μg g−1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 μg g−1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g−1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g−1 ww) and p, p’-DDE (1.02 ± 1.49 ng g−1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g−1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.

Elsevier

2020

AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations

Gliss, Jonas; Mortier, Augustin; Schulz, Michael; Andrews, Elisabeth; Balkanski, Yves; Bauer, Susanne E.; Benedictow, Anna Maria Katarina; Bian, Huisheng; Checa-Garcia, Ramiro; Chin, Mian; Ginoux, Paul; Griesfeller, Jan; Heckel, Andreas; Kipling, Zak; Kirkevåg, Alf; Kokkola, Harri; Laj, Paolo G.; Sager, Philippe Le; Lund, Marianne Tronstad; Myhre, Cathrine Lund; Matsui, Hitoshi; Myhre, Gunnar; Neubauer, David; Noije, Twan van; North, Peter; Oliviè, Dirk Jan Leo; Remy, Samuel; Sogacheva, Larisa; Takemura, Toshihiko; Tsigaridis, Kostas; Tsyro, Svetlana

Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes.
Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1.
Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc.
Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment.
Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models.
Considerable ...

2021

An overview of the uses of per- And polyfluoroalkyl substances (PFAS)

Glüge, Juliane; Scheringer, Martin; Cousins, Ian T.; Dewitt, Jamie C.; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Ng, Carla A.; Trier, Xenia; Wang, Zhanyun

Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses. Despite being non-exhaustive, our study clearly demonstrates that PFAS are used in almost all industry branches and many consumer products. In total, more than 200 use categories and subcategories are identified for more than 1400 individual PFAS. In addition to well-known categories such as textile impregnation, fire-fighting foam, and electroplating, the identified use categories also include many categories not described in the scientific literature, including PFAS in ammunition, climbing ropes, guitar strings, artificial turf, and soil remediation. We further discuss several use categories that may be prioritised for finding PFAS-free alternatives. Besides the detailed description of use categories, the present study also provides a list of the identified PFAS per use category, including their exact masses for future analytical studies aiming to identify additional PFAS.

Royal Society of Chemistry (RSC)

2020

Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product

Lakkala, Kaisa; Kujanpää, Jukka; Brogniez, Colette; Henriot, Nicolas; Arola, Antti; Aun, Margit; Auriol, Frédérique; Bais, Alkiviadis F.; Bernhard, Germar; De Bock, Veerle; Catalfamo, Maxime; Deroo, Christine; Diémoz, Henri; Egli, Luca; Forestier, Jean-Baptiste; Fountoulakis, Ilias; Garane, Katerina; Garcia, Rosa Delia; Gröbner, Julian; Hassinen, Seppo; Heikkilä, Anu; Henderson, Stuart; Hülsen, Gregor; Johnsen, Bjørn; Kalakoski, Niilo; Karanikolas, Angelos; Karppinen, Tomi; Lamy, Kevin; León-Luis, Sergio F.; Lindfors, Anders V.; Metzger, Jean-Marc; Minvielle, Fanny; Muskatel, Harel B.; Portafaix, Thierry; Redondas, Alberto; Sanchez, Ricardo; Siani, Anna Maria; Svendby, Tove Marit; Tamminen, Johanna

The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor (S5P) satellite was launched on 13 October 2017 to provide the atmospheric composition for atmosphere and climate research. The S5P is a Sun-synchronous polar-orbiting satellite providing global daily coverage. The TROPOMI swath is 2600 km wide, and the ground resolution for most data products is 7.2×3.5 km2 (5.6×3.5 km2 since 6 August 2019) at nadir. The Finnish Meteorological Institute (FMI) is responsible for the development of the TROPOMI UV algorithm and the processing of the TROPOMI surface ultraviolet (UV) radiation product which includes 36 UV parameters in total. Ground-based data from 25 sites located in arctic, subarctic, temperate, equatorial and Antarctic areas were used for validation of the TROPOMI overpass irradiance at 305, 310, 324 and 380 nm, overpass erythemally weighted dose rate/UV index, and erythemally weighted daily dose for the period from 1 January 2018 to 31 August 2019. The validation results showed that for most sites 60 %–80 % of TROPOMI data was within ±20 % of ground-based data for snow-free surface conditions. The median relative differences to ground-based measurements of TROPOMI snow-free surface daily doses were within ±10 % and ±5 % at two-thirds and at half of the sites, respectively. At several sites more than 90 % of cloud-free TROPOMI data was within ±20 % of ground-based measurements. Generally median relative differences between TROPOMI data and ground-based measurements were a little biased towards negative values (i.e. satellite data < ground-based measurement), but at high latitudes where non-homogeneous topography and albedo or snow conditions occurred, the negative bias was exceptionally high: from −30 % to −65 %. Positive biases of 10 %–15 % were also found for mountainous sites due to challenging topography. The TROPOMI surface UV radiation product includes quality flags to detect increased uncertainties in the data due to heterogeneous surface albedo and rough terrain, which can be used to filter the data retrieved under challenging conditions.

2020

Record‐Breaking Increases in Arctic Solar Ultraviolet Radiation Caused by Exceptionally Large Ozone Depletion in 2020

Bernhard, Germar H.; Fioletov, Vitali E.; Grooss, Jens-Uwe; Ialongo, Iolanda; Johnsen, Bjørn; Lakkala, Kaisa; Manney, Gloria L.; Müller, Rolf; Svendby, Tove Marit

Measurements of solar ultraviolet radiation (UVR) performed between January and June 2020 at 10 Arctic and subarctic locations are compared with historical observations. Differences between 2020 and prior years are also assessed with total ozone column and UVR data from satellites. Erythemal (sunburning) UVR is quantified with the UV Index (UVI) derived from these measurements. UVI data show unprecedently large anomalies, occurring mostly between early March and mid‐April 2020. For several days, UVIs observed in 2020 exceeded measurements of previous years by up to 140%. Historical means were surpassed by more than six standard deviations at several locations in the Arctic. In northern Canada, the average UVI for March was about 75% larger than usual. UVIs in April 2020 were elevated on average by about 25% at all sites. However, absolute anomalies remained below 3.0 UVI units because the enhancements occurred during times when the solar elevation was still low.

American Geophysical Union (AGU)

2020

Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study.

Florini, Styliano; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Khudur, Leadin S.; Mudge, Stephen Michael; Smith, David J.; Ball, Andrew S.

This work aimed to identify the major source(s) of faecal pollution impacting Salcott Creek oyster fisheries in the UK through the examination of the sterol profiles. The concentration of the major sewage biomarker, coprostanol, in water overlying the oysters varied between 0.01 µg L−1 and 1.20 µg L−1. The coprostanol/epicoprostanol ratio ranged from 1.32 (September) to 33.25 (February), suggesting that human sewage represents the key input of faecal material into the estuary. However, a correlation between the sterol profile of water above the oysters with that of water that enters from Tiptree Sewage Treatment Works (r = 0.82), and a sample from a site (Quinces Corner) observed to have a high population of Brent geese (r = 0.82), suggests that both sources contribute to the faecal pollution affecting the oysters. In identifying these key faecal inputs, sterol profiling has allowed targeted management practices to be employed to ensure that oyster quality is optimised.

MDPI

2020

Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere

Nara, Seidai; Sato, Tomohiro O.; Yamada, Takayoshi; Fujinawa, Tamaki; Kuribayashi, Kota; Manabe, Takeshi; Froidevaux, Lucien; Livesey, Nathaniel J.; Walker, Kaley A.; Xu, Jian; Schreier, Franz; Orsolini, Yvan J.; Limpasuvan, Varavut; Kuno, Nario; Kasai, Yasuko

Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the upper stratosphere. The HCl molecule is observed to obtain long-term quantitative estimations of the total budget of the stratospheric chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from space. The HCl vertical profile from the upper troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparison with other measurements and via theoretical error analysis. We used the SMILES level-2 research product version 3.0.0. The period of the SMILES HCl observation was from 12 October 2009 to 21 April 2010, and the latitude coverage was 40∘ S–65∘ N. The average HCl vertical profile showed an increase with altitude up to the stratopause (∼ 45 km), approximately constant values between the stratopause and the upper mesosphere (∼ 80 km), and a decrease from the mesopause to the lower thermosphere (∼ 100 km). This behavior was observed in all latitude regions and reproduced by the Whole Atmosphere Community Climate Model in the specified dynamics configuration (SD-WACCM). We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from Microwave Limb Sounder (MLS) on the Aura satellite, as well as from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT and the TErahertz and submillimeter LImb Sounder (TELIS) (balloon borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES agreed well with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km (within 10 % between 30 and 40 km; there is a larger discrepancy below 30 km), respectively. The SMILES HCl concentration was smaller than those of MLS and ACE-FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv (12 %–15 %) at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The Jacobian for the temperature explains the negative bias of the SMILES HCl concentrations at 50–60 km.

2020

Safe(r) by design implementation in the nanotechnology industry

Jiménes, Araceli Sánchez; Puelles, Raquel; Pérez-Fernández, Marta; Gómez-Fernández, Paloma; Barruetabena, Leire; Jacobsen, Nicklas Raun; Suarez-Merino, Blanca; Micheletti, Christian; Manier, Nicolas; Trouiller, Benedicte; Navas, José Maria; Kalman, Judit; Salieri, Beatrice; Hischier, Roland; Handzhiyski, Yordan; Apostolova, Margarita D.; Hadrup, Niels; Bouillard, Jaques; Oudart, Yohan; Merino, Cesar; Garcia, Erika; Liguori, Biase; Sabella, Stefania; Rose, Jerome; Maison, Armand; Galea, Karen S.; Kelly, Sean; Stepankova, Sandra; Mouneyrac, Catherine; Barrick, Andrew; Chatel, Amelie; Dusinska, Maria; Rundén-Pran, Elise; Mariussen, Espen; Bressot, Christophe; Aguerre-Chariol, Olivier; Shandilya, Neeraj; Goede, Henk; Gomez-Cordon, Julio; Simar, Sophie; Nesslany, Fabrice; Jensen, Keld Alstrup; van Tongeren, Martie; Llopis, Isabel Rodriguez

Elsevier

2020

On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART

Tichý, Ondřej; Ulrych, Lukas; Šmídl, Václav; Evangeliou, Nikolaos; Stohl, Andreas

Estimation of the temporal profile of an atmospheric release, also called the source term, is an important problem in environmental sciences. The problem can be formalized as a linear inverse problem wherein the unknown source term is optimized to minimize the difference between the measurements and the corresponding model predictions. The problem is typically ill-posed due to low sensor coverage of a release and due to uncertainties, e.g., in measurements or atmospheric transport modeling; hence, all state-of-the-art methods are based on some form of regularization of the problem using additional information. We consider two kinds of additional information: the prior source term, also known as the first guess, and regularization parameters for the shape of the source term. While the first guess is based on information independent of the measurements, such as the physics of the potential release or previous estimations, the regularization parameters are often selected by the designers of the optimization procedure. In this paper, we provide a sensitivity study of two inverse methodologies on the choice of the prior source term and regularization parameters of the methods. The sensitivity is studied in two cases: data from the European Tracer Experiment (ETEX) using FLEXPART v8.1 and the caesium-134 and caesium-137 dataset from the Chernobyl accident using FLEXPART v10.3.

2020

Publikasjon
År
Kategori