Fant 787 publikasjoner. Viser side 2 av 33:
The apportionment of equivalent black carbon (eBC) to combustion sources from liquid fuels (mainly fossil; eBCLF) and solid fuels (mainly non-fossil; eBCSF) is commonly performed using data from Aethalometer instruments (AE approach). This study evaluates the feasibility of using AE data to determine the absorption Ångström exponents (AAEs) for liquid fuels (AAELF) and solid fuels (AAESF), which are fundamental parameters in the AE approach. AAEs were derived from Aethalometer data as the fit in a logarithmic space of the six absorption coefficients (470–950 nm) versus the corresponding wavelengths. The findings indicate that AAELF can be robustly determined as the 1st percentile (PC1) of AAE values from fits with R2 > 0.99. This R2-filtering was necessary to remove extremely low and noisy-driven AAE values commonly observed under clean atmospheric conditions (i.e., low absorption coefficients). Conversely, AAESF can be obtained from the 99th percentile (PC99) of unfiltered AAE values. To optimize the signal from solid fuel sources, winter data should be used to calculate PC99, whereas summer data should be employed for calculating PC1 to maximize the signal from liquid fuel sources. The derived PC1 (AAELF) and PC99 (AAESF) values ranged from 0.79 to 1.08, and 1.45 to 1.84, respectively. The AAESF values were further compared with those constrained using the signal at mass-to-charge 60 (m/z 60), a tracer for fresh biomass combustion, measured using aerosol chemical speciation monitor (ACSM) and aerosol mass spectrometry (AMS) instruments deployed at 16 sites. Overall, the AAESF values obtained from the two methods showed strong agreement, with a coefficient of determination (R2) of 0.78. However, uncertainties in both approaches may vary due to site-specific sources, and in certain environments, such as traffic-dominated sites, neither approach may be fully applicable.
Elsevier
2025
Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds. Results show that these soils can actively function as sinks of these compounds, despite their different physiochemical properties. Upper active layer possessed relatively higher uptake capacities; factors including soil moisture, organic matter, and microbial biomass carbon were identified as the main factors correlating with the uptake rates. Additionally, uptake coefficients for several compounds were calculated for their potential use in future model development. Correlation analysis and the varying coefficients indicate that the sink was likely biotic. The development of a deeper active layer under climate change may enhance the sink capacity and reduce the net emissions of volatile organic compounds from permafrost thaw.
Springer Nature
2025
Aerosol hygroscopicity influenced by seasonal chemical composition variations in the Arctic region
In this study, we quantified aerosol hygroscopicity parameter using aerosol microphysical observation data (κphy), analyzing monthly and seasonal trends in κphy by correlating it with aerosol chemical composition over 6 years from April 2007 to March 2013 at the Zeppelin Observatory in Svalbard, Arctic region. The monthly mean κphy value exhibited distinct seasonal variations, remaining high from winter to spring, reaching its minimum in summer, followed by an increase in fall, and maintaining elevated levels in winter. To verify the reliability of κphy, we employed the hygroscopicity parameter calculated from chemical composition data (κchem). The chemical composition and PM2.5 mass concentration required to calculate κchem was obtained through Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis data and the calculation of κchem assumed that Arctic aerosols comprise only five species: black carbon (BC), organic matter (OM), ammonium sulfate (AS), sea salt aerosol less than a diameter of 2.5 μm (SSA2.5), and dust aerosol less than a diameter of 2.5 μm (Dust2.5). The κchem had no distinct correlation but had a similar seasonal trend compared to κphy. The κchem value followed a trend of SSA2.5 and was much higher by a factor of 1.6 ± 0.3 than κphy on average, due to a large proportion of SSA2.5 mass concentration in MERRA-2 reanalysis data. This may be due to the overestimation of sea salt aerosols in MERRA-2 reanalysis. The relationship between monthly mean κphy and the chemical composition used to calculate κchem was also analyzed. The elevated κphy from October to February resulted from the dominant influence of SSA2.5, while the maximum κphy in March was concurrently influenced by increasing AS and Dust2.5 associated with long-range transport from mid-latitude regions during Arctic haze periods and by SSA mass concentration obtained from in-situ sampling, which remained high from the preceding winter. The relatively low κphy from April to September can be attributed to low SSA2.5 and the dominance of organic compounds in the Arctic summer. Either natural sources such as those of marine and terrestrial biogenic origin or long-range-transported aerosols may contribute to the increase in organic aerosols in summer, potentially influencing the reduction in κphy of atmospheric aerosols. To our knowledge, this is the first study to analyze the monthly and seasonal variation of aerosol hygroscopicity calculated using long-term microphysical data, and this result provides evidence that changes in monthly and seasonal hygroscopicity variation occur depending on chemical composition.
Elsevier
2025
2025
2025
Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.
John Wiley & Sons
2025
Recommendation technologies are widespread in streaming services, e-commerce, social media, news, and content management. Besides recommendation generation, its presentation is also important. Most research and development focus on the technical aspects of recommendation generation; therefore, a gap exists between recommendation generation and its effective presentation and user interaction. This study focuses on how personalized recommendations can be presented and interacted with in a music recommendation system using interactive visual interfaces. Interactive interface modeling with User-Centered Design (UCD) in a recommendation system is essential for creating a user-friendly, engaging, and personalized experience. By involving users in the recommendation process and considering their feedback, the system can deliver more relevant content, foster user trust, and improve overall user satisfaction and engagement. In this study, the visual interface design and development of a personalized music recommendation prototype (MusicReco) are presented using an iterative UCD approach, involving twenty end-users, one researcher, three academic professionals, and four experts. As the study is more inclined toward the recommendation presentation and visual modeling, we used a standard content-based filtering algorithm on the publicly available Spotify dataset for music recommendation generation. End-users helped to mature the MusicReco prototype to a basic working version through continuous feedback and design inputs on their needs, context, preferences, personalization, and effective visualization. Moreover, MusicReco captures the idea of mood-based tailored recommendations to encourage end-users. Overall, this study demonstrates how UCD can enhance the presentation and interaction of mood-based music recommendations, effectively engaging users with advancements in recommendation algorithms as a future focus.
IEEE (Institute of Electrical and Electronics Engineers)
2025
Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer
Heart Rate Variability (HRV) serves as a vital marker of stress levels, with lower HRV indicating higher stress. It measures the variation in the time between heartbeats and offers insights into health. Artificial intelligence (AI) research aims to use HRV data for accurate stress level classification, aiding early detection and well-being approaches. This study’s objective is to create a semantic model of HRV features in a knowledge graph and develop an accurate, reliable, explainable, and ethical AI model for predictive HRV analysis. The SWELL-KW dataset, containing labeled HRV data for stress conditions, is examined. Various techniques like feature selection and dimensionality reduction are explored to improve classification accuracy while minimizing bias. Different machine learning (ML) algorithms, including traditional and ensemble methods, are employed for analyzing both imbalanced and balanced HRV datasets. To address imbalances, various data formats and oversampling techniques such as SMOTE and ADASYN are experimented with. Additionally, a Tree-Explainer, specifically SHAP, is used to interpret and explain the models’ classifications. The combination of genetic algorithm-based feature selection and classification using a Random Forest Classifier yields effective results for both imbalanced and balanced datasets, especially in analyzing non-linear HRV features. These optimized features play a crucial role in developing a stress management system within a Semantic framework. Introducing domain ontology enhances data representation and knowledge acquisition. The consistency and reliability of the Ontology model are assessed using Hermit reasoners, with reasoning time as a performance measure. HRV serves as a significant indicator of stress, offering insights into its correlation with mental well-being. While HRV is non-invasive, its interpretation must integrate other stress assessments for a holistic understanding of an individual’s stress response. Monitoring HRV can help evaluate stress management strategies and interventions, aiding individuals in maintaining well-being.
Nature Portfolio
2025
2025
Nitrous oxide (N2O) is the most important stratospheric ozone-depleting agent based on current emissions and the third largest contributor to increased net radiative forcing. Increases in atmospheric N2O have been attributed primarily to enhanced soil N2O emissions. Critically, contributions from soils in the Northern High Latitudes (NHL, >50°N) remain poorly quantified despite their exposure to rapid rates of regional warming and changing hydrology due to climate change. In this study, we used an ensemble of six process-based terrestrial biosphere models (TBMs) from the Global Nitrogen/Nitrous Oxide Model Intercomparison Project (NMIP) to quantify soil N2O emissions across the NHL during 1861–2016. Factorial simulations were conducted to disentangle the contributions of key driving factors, including climate change, nitrogen inputs, land use change, and rising atmospheric CO2 concentration, to the trends in emissions. The NMIP models suggests NHL soil N2O emissions doubled from 1861 to 2016, increasing on average by 2.0 ± 1.0 Gg N/yr (p
Elsevier
2025
2025
Atmospheric ammonia (NH3) is a key transboundary air pollutant that contributes to the impacts of nitrogen and acidity on terrestrial ecosystems. Ammonia also contributes to the atmospheric aerosol that affects air quality. Emission inventories indicate that NH3 was predominantly emitted by agriculture over the 19th and 20th centuries but, up to now, these estimates have not been compared to long-term observations. To document past atmospheric NH3 pollution in south-eastern Europe, ammonium (NH) was analysed along an ice core extracted from Mount Elbrus in the Caucasus, Russia. The NH ice-core record indicates a 3.5-fold increase in concentrations between 1750 and 1990 CE. Remaining moderate prior to 1950 CE, the increase then accelerated to reach a maximum in 1989 CE. Comparison between ice-core trends and estimated past emissions using state-of-the-art atmospheric transport modelling of submicron-scale aerosols (FLEXPART (FLEXible PARTicle dispersion) model) indicates good agreement with the course of estimated NH3 emissions from south-eastern Europe since ∼ 1750 CE, with the main contributions from south European Russia, Türkiye, Georgia, and Ukraine. Examination of ice deposited prior to 1850 CE, when agricultural activities remained limited, suggests an NH ice concentration related to natural soil emissions representing ∼ 20 % of the 1980–2009 CE NH level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soil. These findings on historical NH3 emission trends represent a significant contribution to the understanding of ammonia emissions in Europe over the last 250 years.
2025
This study examines the environmental impacts of urban growth in Warsaw since 2006 and models the implications of future urban development for traffic pollutant emissions and pollution levels. Our findings demonstrate that, over the past two decades, urban sprawl has resulted in decreases in accessibility to public transport, social services, and natural areas. We analyse CO2 traffic emissions, NO2 concentrations, and population exposure across urban areas in future scenarios of further sprawling or alternative compacting land-use development. Results indicate that a compact future scenario reduces transport CO2 emissions and urban NO2 levels, though increases in population density raise exposure to air pollution. A sprawl future scenario increases CO2 and NOx emissions due to longer commutes and congestion, and NO2 levels increase up to 25% in parts of the city. Several traffic abatement strategies were simulated, and in all simulations a compact city consistently yields the largest reductions in CO2 emissions and NO2 levels, implying that the best abatement strategy for combating negative consequences of sprawl is to reduce sprawling. In both city layouts, network-wide improvements of public transport travel times gave significantly reduced emissions. Combined, our findings highlight the importance of co-beneficial urban planning strategies to balance CO2 emissions reduction, and air pollution exposure in expanding cities.
Elsevier
2025
We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication of smoke source–strength, (2) identify regions where the common emission dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss rate from each model. The results point to a need for increased numbers of available BB cases for study in some regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates and of detailed particle microphysical and optical properties; this would both better constrain models and help distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional efforts at constraining aerosol source strength and other model attributes with multi-platform observations.
2025
The complex and dynamic nature of airborne fine particulate matter (PM2.5) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM2.5 samples (n = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry. More than 50,000 nontarget features were detected, and by consensus of in silico tools, we assigned a molecular formula to 13,907 features. Oxygenated compounds were most prominent, followed by mixed nitrogenated/oxygenated compounds, organic sulfates, and sulfonates. Spectral matching enabled identification or structural annotation of 43 substances, and a workflow involving SIRIUS and MS-DIAL software enabled annotation of 74 unknown per- and polyfluoroalkyl substances with primary source regions in China and the Korean Peninsula. Multivariate modeling revealed seasonal variations in chemistry, attributable to the combination of warmer temperatures and maritime source regions in summer and to cooler temperatures and source regions of China in winter.
2025
2025
Indian Land Carbon Sink Estimated from Surface and GOSAT Observations
The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.
MDPI
2025
This study evaluated galvanostatic three-dimensional electrolysis using ceramic carbon foam anodes for the removal of emerging pollutants from wastewater and assessed transformation product formation. Five pollutants (paracetamol, triclosan, bisphenol A, caffeine, and diclofenac) were selected based on their detection in wastewater treatment plant effluents. Electrochemical oxidation was carried out on artificial wastewater spiked with these compounds under galvanostatic conditions (50, 125, and 250 mA) using a stainless steel tube electrolyzer with three ceramic carbon foam anodes and a stainless steel cathode. Decreasing pollutant concentrations were observed in all of the experiments. Nontarget chemical analysis using liquid chromatography coupled to a high-resolution mass spectrometer detected 338 features with increasing intensity including 12 confirmed transformation products (TPs). Real wastewater effluent spiked with the pollutants was then electrolyzed, again showing pollutant removal, with 9 of the 12 previously identified TPs present and increasing. Two TPs (benzamide and 2,4-dichlorophenol) are known toxicants, indicating the formation of a potential toxic by-product during electrolysis. Furthermore, electrolysis of unspiked real wastewater revealed the removal of five pharmaceuticals and a drug metabolite. While demonstrating electrolysis’ ability to degrade pollutants in wastewater, the study underscores the need to investigate transformation product formation and toxicity implications of the electrolysis process.
American Chemical Society (ACS)
2025
Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs. In this study, the TOP assay was applied to samples from the East Asian-Australian Flyway, a critical migratory route for millions of shorebirds. Samples included shellfish from China's coastal mudflats, key stopover sites for these birds, and blood and liver samples from shorebirds overwintering in Australia. The results showed a substantial increase in perfluorocarboxylic acids (PFCAs) across all sample types following the TOP assay, with the most significant increases in shorebird livers (Sum PFCAs increased by 18,156 %). Intriguingly, the assay also revealed unexpected increases in perfluorosulfonic acids (PFSAs), suggesting the presence of unidentified precursors. These findings highlight the need for further research into these unknown precursors, their sources, and their ecological impacts on shorebirds, other wildlife, and potential human exposure. This study also provides crucial insights into the TOP assay’s strengths and limitations in studying PFAS precursor dynamics in biological matrices.
Elsevier
2025
Methane emissions from the Nord Stream subsea pipeline leaks
The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates1,2,3,4,5,6,7,8 with measurement-based (top-down) estimates8,9,10,11,12,13,14,15,16,17,18. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates9,10 to model the evolution of atmospheric emissions from the leaks. We verify our modelled atmospheric emissions by comparing them with top-down point-in-time emission-rate estimates and cumulative emission estimates derived from airborne11, satellite8,12,13,14 and tall tower data. We obtain consistency between our modelled atmospheric emissions and top-down estimates and find that 465 ± 20 thousand metric tons of methane were emitted to the atmosphere. Although, to our knowledge, this represents the largest recorded amount of methane released from a single transient event, it is equivalent to 0.1% of anthropogenic methane emissions for 2022. The impact of the leaks on the global atmospheric methane budget brings into focus the numerous other anthropogenic methane sources that require mitigation globally. Our analysis demonstrates that diverse, complementary measurement approaches are needed to quantify methane emissions in support of the Global Methane Pledge19.
2025
CompSafeNano project: NanoInformatics approaches for safe-by-design nanomaterials
The CompSafeNano project, a Research and Innovation Staff Exchange (RISE) project funded under the European Union's Horizon 2020 program, aims to advance the safety and innovation potential of nanomaterials (NMs) by integrating cutting-edge nanoinformatics, computational modelling, and predictive toxicology to enable design of safer NMs at the earliest stage of materials development. The project leverages Safe-by-Design (SbD) principles to ensure the development of inherently safer NMs, enhancing both regulatory compliance and international collaboration. By building on established nanoinformatics frameworks, such as those developed in the H2020-funded projects NanoSolveIT and NanoCommons, CompSafeNano addresses critical challenges in nanosafety through development and integration of innovative methodologies, including advanced in vitro models, in silico approaches including machine learning (ML) and artificial intelligence (AI)-driven predictive models and 1st-principles computational modelling of NMs properties, interactions and effects on living systems. Significant progress has been made in generating atomistic and quantum-mechanical descriptors for various NMs, evaluating their interactions with biological systems (from small molecules or metabolites, to proteins, cells, organisms, animals, humans and ecosystems), and in developing predictive models for NMs risk assessment. The CompSafeNano project has also focused on implementing and further standardising data reporting templates and enhancing data management practices, ensuring adherence to the FAIR (Findable, Accessible, Interoperable, Reusable) data principles. Despite challenges, such as limited regulatory acceptance of New Approach Methodologies (NAMs) currently, which has implications for predictive nanosafety assessment, CompSafeNano has successfully developed tools and models that are integral to the safety evaluation of NMs, and that enable the extensive datasets on NMs safety to be utilised for the re-design of NMs that are inherently safer, including through prediction of the acquired biomolecule coronas which provide the biological or environmental identities to NMs, promoting their sustainable use in diverse applications. Future efforts will concentrate on further refining these models, expanding the NanoPharos Database, and working with regulatory stakeholders thereby fostering the widespread adoption of SbD practices across the nanotechnology sector. CompSafeNano's integrative approach, multidisciplinary collaboration and extensive stakeholder engagement, position the project as a critical driver of innovation in NMs SbD methodologies and in the development and implementation of computational nanosafety.
Elsevier
2025
Using a citizen science approach to assess nanoplastics pollution in remote high-altitude glaciers
Nature Portfolio
2025
2025
Recent methane surges reveal heightened emissions from tropical inundated areas
Record breaking atmospheric methane growth rates were observed in 2020
and 2021 (15.2±0.5 and 17.8±0.5 parts per billion per year), the highest since the
early 1980s. Here we use an ensemble of atmospheric inversions informed by
surface or satellite methane observations to infer emission changes during
these two years relative to 2019. Results show global methane emissions
increased by 20.3±9.9 and 24.8±3.1 teragrams per year in 2020 and 2021,
dominated by heightened emissions from tropical and boreal inundated areas,
aligning with rising groundwater storage and regional warming. Current
process-based wetland models fail to capture the tropical emission surges
revealed by atmospheric inversions, likely due to inaccurate representation of
wetland extents and associated methane emissions. Our findings underscore
the critical role of tropical inundated areas in the recent methane emission
surges and highlight the need to integrate multiple data streams and modeling
tools for better constraining tropical wetland emissions.
Springer Nature
2024