Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 835 publikasjoner. Viser side 23 av 35:

Publikasjon  
År  
Kategori

High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management

Hollender, Juliane; Bavel, Bert van; Dulio, Valeria; Farmen, Eivind; Furtmann, Klaus; Koschorreck, Jan; Kunkel, Uwe; Krauss, Martin; Munthe, John; Schlabach, Martin; Slobodnik, Jaroslav; Stroomberg, Gerard; Ternes, Thomas; Thomaidis, Nikolaos S; Togola, Anne; Tornero, Victoria

Non-target screening (NTS) including suspect screening with high resolution mass spectrometry has already shown its feasibility in detecting and identifying emerging contaminants, which subsequently triggered exposure mitigating measures. NTS has a large potential for tasks such as effective evaluation of regulations for safe marketing of substances and products, prioritization of substances for monitoring programmes and assessment of environmental quality. To achieve this, a further development of NTS methodology is required, including: (i) harmonized protocols and quality requirements, (ii) infrastructures for efficient data management, data evaluation and data sharing and (iii) sufficient resources and appropriately trained personnel in the research and regulatory communities in Europe. Recommendations for achieving these three requirements are outlined in the following discussion paper. In particular, in order to facilitate compound identification it is recommended that the relevant information for interpretation of mass spectra, as well as about the compounds usage and production tonnages, should be made accessible to the scientific community (via open-access databases). For many purposes, NTS should be implemented in combination with effect-based methods to focus on toxic chemicals.

2019

Optimization of a low flow sampler for improved assessment of gas and particle bound exposure to chlorinated paraffins

Saify, Insam Al; Cioni, Lara; Mourik, Louise M. van; Brandsma, Sicco H.; Warner, Nicholas Alexander

An optimized low volume sampler was developed to determine both gas- and particle bound concentrations of short and medium-chain chlorinated paraffins (S/MCCPs). Background contamination was limited by the sampler design, providing method quantification limits (MQLs) at least two orders of magnitude lower than other studies within the gas (MQL: 500 pg (ΣSCCPs), 1.86 ng (ΣMCCPs)) and particle (MQL: 500 pg (ΣSCCPs), 1.72 ng (ΣMCCPs) phases. Good repeatability was observed between parallel indoor measurements (RSD ≤ 9.3% (gas), RSD ≤ 14% (particle)) with no breakthrough/saturation observed after a week of continuous sampling. For indoor air sampling, SCCPs were dominant within the gas phase (17 ± 4.9 ng/m3) compared to MCCPs (2.7 ± 0.8 ng/m3) while the opposite was observed in the particle bound fraction (0.28 ± 0.11 ng/m3 (ΣSCCPs) vs. 2.7 ± 1.0 ng/m3 (ΣMCCPs)). Only SCCPs in the gas phase could be detected reliably during outdoor sampling and were considerably lower compared to indoor concentrations (0.27 ± 0.10 ng/m3). Separation of the gas and particle bound phase was found to be crucial in applying the appropriate response factors for quantification based on the deconvoluted S/MCCP sample profile, thus avoiding over- (gas phase) or underestimation (particle phase) of reported concentrations. Very short chain chlorinated paraffins (vSCCPs, C5-C9) were also detected at equal or higher abundance compared to SCCP congener groups (C10-C13) congener groups, indicating an additional human indoor inhalation risk.

2021

Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health

Fleming, Zoë L.; Doherty, Ruth M.; Schneidemesser, Erika von; Malley, Christopher S.; Cooper, Owen R.; Pinto, Joseph P.; Colette, Augustin; Xu, Xiaobin; Simpson, David; Schultz, Martin G.; Lefohn, Allen S.; Hamad, Samera; Moolla, Raeesa; Solberg, Sverre; Feng, Zhaozhong

This study quantifies the present-day global and regional distributions (2010–2014) and trends (2000–2014) for five ozone metrics relevant for short-term and long-term human exposure. These metrics, calculated by the Tropospheric Ozone Assessment Report, are: 4th highest daily maximum 8-hour ozone (4MDA8); number of days with MDA8 > 70 ppb (NDGT70), SOMO35 (annual Sum of Ozone Means Over 35 ppb) and two seasonally averaged metrics (3MMDA1; AVGMDA8). These metrics were explored at ozone monitoring sites worldwide, which were classified as urban or non-urban based on population and nighttime lights data.

Present-day distributions of 4MDA8 and NDGT70, determined predominantly by peak values, are similar with highest levels in western North America, southern Europe and East Asia. For the other three metrics, distributions are similar with North–South gradients more prominent across Europe and Japan. Between 2000 and 2014, significant negative trends in 4MDA8 and NDGT70 occur at most US and some European sites. In contrast, significant positive trends are found at many sites in South Korea and Hong Kong, with mixed trends across Japan. The other three metrics have similar, negative trends for many non-urban North American and some European and Japanese sites, and positive trends across much of East Asia. Globally, metrics at many sites exhibit non-significant trends. At 59% of all sites there is a common direction and significance in the trend across all five metrics, whilst 4MDA8 and NDGT70 have a common trend at ~80% of all sites. Sensitivity analysis shows AVGMDA8 trends differ with averaging period (warm season or annual). Trends are unchanged at many sites when a 1995–2014 period is used; although fewer sites exhibit non-significant trends. Over the longer period 1970–2014, most Japanese sites exhibit positive 4MDA8/SOMO35 trends. Insufficient data exist to characterize ozone trends for the rest of Asia and other world regions.

2018

Ingested plastics in northern fulmars (Fulmarus glacialis): A pathway for polybrominated diphenyl ether (PBDE) exposure?

Neumann, Svenja; Harju, Mikael; Herzke, Dorte; Anker-Nilssen, Tycho; Christensen-Dalsgaard, Signe; Langset, Magdalene; Gabrielsen, Geir W.

Although it has been suggested that plastic may act as a vector for pollutants into the tissue of seabirds, the bioaccumulation of harmful contaminants, such as polybrominated diphenyl ethers (PBDEs), released from ingested plastics is poorly understood. Plastic ingestion by the procellariiform species northern fulmar (Fulmarus glacialis) is well documented. In this study, we measured PBDEs levels in liver tissue of northern fulmars without and with (0.13–0.43 g per individual) stomach plastics. PBDE concentrations in the plastic sampled from the same birds were also quantified. Birds were either found dead on beaches in southern Norway or incidentally caught in longline fisheries in northern Norway. PBDEs were detected in all birds but high concentrations were only found in liver samples from beached birds, peaking at 2900 ng/g lipid weight. We found that body condition was a significant factor explaining the elevated concentration levels in livers of beached birds. BDE209 was found in ingested plastic particles and liver tissue of birds with ingested plastics but was absent in the livers of birds without ingested plastics. This strongly suggests a plastic-derived transfer and accumulation of BDE209 to the tissue of fulmars, levels of which might prove useful as a general indicator of plastic ingestion in seabirds.

2021

Modification of local urban aerosol properties by long-range transport of biomass burning aerosol

Stachlewska, Iwona S.; Samson, Mateusz; Zawadzka, Olga; Harenda, Kamila M.; Janicka, Lucja; Poczta, Patryk; Szczepanik, Dominika; Heese, Birgit; Wang, Dongxiang; Borek, Karolina; Tetoni, Eleni; Proestakis, Emmanouil; Siomos, Nikolaos; Nemuc, Anca; Chojnicki, Bogdan H.; Markowicz, Krzysztof M.; Pietruczuk, Aleksander; Szkop, Artur; Althausen, Dietrich; Stebel, Kerstin; Schuettemeyer, Dirk; Zehner, Claus

During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network) urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio) were analysed in terms of air mass transport (HYSPLIT model), aerosol load (CAMS data) and type (NAAPS model) and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks) and aboard satellites (SEVIRI, MODIS, CATS sensors). Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.

2018

Contaminants in Atlantic walruses Part 2: Relationships with endocrine and immune systems

Routti, Heli; Diot, Beatrice; Panti, Cristina; Duale, Nur; Fossi, Maria Cristina; Harju, Mikael; Kovacs, Kit M.; Lydersen, Christian; Scotter, Sophie Ellen; Villanger, Gro Dehli; Bourgeon, Sophie

Marine mammals in the Barents Sea region have among the highest levels of contaminants recorded in the Arctic and the Atlantic walrus (<i>Odobenus rosmarus rosmarus</i>) is one of the most contaminated species within this region. We therefore investigated the relationships bewteen blubber concentrations of lipophilic persistent organic pollutants (POPs) and plasma concentrations of perfluoroalkyl substances (PFASs) and markers of endocrine and immune functions in adult male Atlantic walruses (n = 38) from Svalbard, Norway. To do so, we assessed plasma concentrations of five forms of thyroid hormones and transcript levels of genes related to the endocrine and immune systems as endpoints; transcript levels of seven genes in blubber and 23 genes in blood cells were studied. Results indicated that plasma total thyroxine (TT4) concentrations decreased with increasing blubber concentrations of lipophilic POPs. Blood cell transcript levels of genes involved in the function of T and B cells (FC like receptors 2 and 5, cytotoxic T-lymphocyte associated protein 4 and protein tyrosine phosphatase non-receptor type 22) were increased with plasma PFAS concentrations. These results suggest that changes in thyroid and immune systems in adult male walruses are linked to current levels of contaminant exposure.

2019

Effect of seasonal mesoscale and microscale meteorological conditions in Ny-Ålesund on results of monitoring of long-range transported pollution

Dekhtyareva, Alena; Holmén, Kim; Maturilli, Marion; Hermansen, Ove; Graversen, Rune

Ny-Ålesund is an international research settlement where the thermodynamics and chemical composition of the air are monitored. The present work investigates the effects of micrometeorological conditions, mesoscale dynamics and local air pollution on the data collected at two different locations around the village. Daily filter measurements of sulphur dioxide and non-sea salt sulphate from the temporary Ny-Ålesund station and permanent Zeppelin mountain station have been analysed along with meteorological data. The influence of different factors representing micrometeorological phenomena and local pollution from ships has been statistically investigated. Seasonal variation of the correlation between the data from Ny-Ålesund and Zeppelin stations is revealed, and the seasonal dependence of the relative contribution of different factors has been analysed. The median concentrations of SO42- measured in Ny-Ålesund increased significantly on days with temperature inversions in winter. In spring, concentrations of SO2 and SO42- were higher than normal at both stations on days with temperature inversions, but lower on days with strong humidity inversions. In summer, local ship traffic affects the SO2 data set from Ny-Ålesund, while no statistically significant influence on the Zeppelin data set has been observed. The pollution from ships has an effect on SO42- values at both stations; however, the concentrations in Ny-Ålesund were higher when local pollution accumulated close to the ground in days with strong humidity inversions.

2018

Influence of solar wind energy flux on the interannual variability of ENSO in the subsequent year

He, Shengping; Wang, Hui-Jun; Gao, Yongqi; Li, Fei; Li, Hui; Wang, Chi

Previous studies have tended to adopt the quasi-decadal variability of the solar cycle (e.g. sunspot number (SSN) or solar radio flux at 10.7 cm (F10.7) to investigate the effect of solar activity on El Niño–Southern Oscillation (ENSO). As one of the major terrestrial energy sources, the effect of solar wind energy flux in Earth’s magnetosphere (Ein) on the climate has not drawn much attention, due to the big challenge associated with its quantitative estimation. Based on a new Ein index estimated by three-dimensional magnetohydrodynamic simulations from a previous study, this study reveals that Ein exhibits both quasi-decadal variability (periodic 11-year) and interannual (2–4 years) variability, which has rarely before been detected by SSN and F10.7. A significant interannual relationship between the annual mean Ein and subsequent early-winter ENSO is further revealed. Following high Ein, the sea level pressure in the subsequent early winter shows significant positive anomalies from Asia southward to the Maritime Continent, and significant negative anomalies over the Southeast and Northeast Pacific, resembling the Southern Oscillation. Meanwhile, significant upper-level anomalous convergence and divergence winds appear over the western and eastern Pacific, which is configured with significant lower-level anomalous divergence and convergence, indicating a weakening of the Walker circulation. Consequently, notable surface easterly wind anomalies prevail over the eastern tropical Pacific, leading to El Niño-like sea surface temperature anomalies. It is suggested that better describing the processes in the solar wind–magnetosphere–ionosphere coupled system is essential to understand the solar influence on climate change.

2018

Hazard identification of nanomaterials: In silico unraveling of descriptors for cytotoxicity and genotoxicity

Yamani, Naouale El; Mariussen, Espen; Gromelski, Maciej; Wyrzykowska, Ewelina; Grabarek, Dawid; Puzyn, Tomasz; Tanasescu, Speranta; Dusinska, Maria; Rundén-Pran, Elise

Hazard identification and safety assessment of the huge variety of nanomaterials (NMs), calls for robust and validated toxicity screening tests in combination with cheminformatics approaches to identify factors that can drive toxicity. Cytotoxicity and genotoxicity of seventeen JRC repository NMs, derived from titanium dioxide, zinc oxide, silver and silica, were tested in vitro using human lung alveolar epithelial cells A549. Cytotoxicity was assessed with the AlamarBlue (AB) and colony forming efficiency (CFE) assays, and genotoxicity by the enzyme-linked version of the comet assay. Nanoparticle tracking analysis (NTA) was used to measure size of the NMs in stock and in cell culture medium at different time points. Categorization and ranking of cytotoxic and genotoxic potential were performed (EU-NanoREG2 project approach). Descriptors for prediction of NMs toxicity were identified by quantitative structure-activity relationship (QSAR) analysis. Our results showed that ZnO NMs (NM-110 and NM-111), and Ag NMs (NM-300K and NM-302) were cytotoxic, while the TiO2 and SiO2 NMs were non-cytotoxic. Regarding genotoxicity, TiO2 NM-100, ZnO NM-110, SiO2 NM-203 and Ag NM-300K were categorized as positive. Cheminformatics modeling identified electron properties and overall chemical reactivity as important descriptors for cytotoxic potential, HOMO-LUMO energy parameter, ionization potential, pristine size for the NMs´ genotoxic potential, and presence of surface coating as descriptor for induction of DNA oxidized base lesions.

2022

Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring

Sha, Bo; Johansson, Jana H.; Tunved, Peter; Bohlin-Nizzetto, Pernilla; Cousins, Ian T.; Salter, Matthew E.

The effective enrichment of perfluoroalkyl acids (PFAAs) in sea spray aerosols (SSA) demonstrated in previous laboratory studies suggests that SSA is a potential source of PFAAs to the atmosphere. In order to investigate the influence of SSA on atmospheric PFAAs in the field, 48 h aerosol samples were collected regularly between 2018 and 2020 at two Norwegian coastal locations, Andøya and Birkenes. Significant correlations (p < 0.05) between the SSA tracer ion, Na+, and PFAA concentrations were observed in the samples from both locations, with Pearson’s correlation coefficients (r) between 0.4–0.8. Such significant correlations indicate SSA to be an important source of atmospheric PFAAs to coastal areas. The correlations in the samples from Andøya were observed for more PFAA species and were generally stronger than in the samples from Birkenes, which is located further away from the coast and closer to urban areas than Andøya. Factors such as the origin of the SSA, the distance of the sampling site to open water, and the presence of other PFAA sources (e.g., volatile precursor compounds) can have influence on the contribution of SSA to PFAA in air at the sampling sites and therefore affect the observed correlations between PFAAs and Na+.

2021

Population pharmacokinetic modeling of CSF to blood clearance: prospective tracer study of 161 patients under work-up for CSF disorders

Hovd, Markus Herberg; Mariussen, Espen; Uggerud, Hilde Thelle; Lashkarivand, Aslan; Christensen, Hege; Ringstad, Geir; Eide, Per Kristian

Background
Quantitative measurements of cerebrospinal fluid to blood clearance has previously not been established for neurological diseases. Possibly, variability in cerebrospinal fluid clearance may affect the underlying disease process and may possibly be a source of under- or over-dosage of intrathecally administered drugs. The aim of this study was to characterize the cerebrospinal fluid to blood clearance of the intrathecally administered magnetic resonance imaging contrast agent gadobutrol (Gadovist, Bayer Pharma AG, GE). For this, we established a population pharmacokinetic model, hypothesizing that cerebrospinal fluid to blood clearance differs between cerebrospinal fluid diseases.

Methods
Gadobutrol served as a surrogate tracer for extra-vascular pathways taken by several brain metabolites and drugs in cerebrospinal fluid. We estimated cerebrospinal fluid to blood clearance in patients with different cerebrospinal fluid disorders, i.e. symptomatic pineal and arachnoid cysts, as well as tentative spontaneous intracranial hypotension due to cerebrospinal fluid leakage, idiopathic intracranial hypertension, or different types of hydrocephalus (idiopathic normal pressure hydrocephalus, communicating- and non-communicating hydrocephalus). Individuals with no verified cerebrospinal fluid disturbance at clinical work-up were denoted references.

Results
Population pharmacokinetic modelling based on 1,140 blood samples from 161 individuals revealed marked inter-individual variability in pharmacokinetic profiles, including differences in absorption half-life (time to 50% of tracer absorbed from cerebrospinal fluid to blood), time to maximum concentration in blood and the maximum concentration in blood as well as the area under the plasma concentration time curve from zero to infinity. In addition, the different disease categories of cerebrospinal fluid diseases demonstrated different profiles.

Conclusions
The present observations of considerable variation in cerebrospinal fluid to blood clearance between individuals in general and across neurological diseases, may suggest that defining cerebrospinal fluid to blood clearance can become a useful diagnostic adjunct for work-up of cerebrospinal fluid disorders. We also suggest that it may become useful for assessing clearance capacity of endogenous brain metabolites from cerebrospinal fluid, as well as measuring individual cerebrospinal fluid to blood clearance of intrathecal drugs.

2022

Impact of synthetic space-borne NO2 observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO2 analyses

Timmermans, Renske; Segers, Arjo; Curier, Lyana; Abida, Rachid; Attié, Jean-Luc; Amraoui, Laaziz El; Eskes, Henk; Haan, Johan de; Kujanpää, Jukka; Lahoz, William A.; Nijhuis, Albert Oude; Quesada-Ruiz, Samuel; Ricaud, Philippe; Veefkind, Pepijn; Schaap, Martijn

We present an Observing System Simulation Experiment (OSSE) dedicated to the evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for tropospheric nitrogen dioxide (NO2). Sentinel-4 is a geostationary (GEO) mission covering the European continent, providing observations with high temporal resolution (hourly). Sentinel-5P is a low Earth orbit (LEO) mission providing daily observations with a global coverage. The OSSE experiment has been carefully designed, with separate models for the simulation of observations and for the assimilation experiments and with conservative estimates of the total observation uncertainties. In the experiment we simulate Sentinel-4 and Sentinel-5P tropospheric NO2 columns and surface ozone concentrations at 7 by 7 km resolution over Europe for two 3-month summer and winter periods. The synthetic observations are based on a nature run (NR) from a chemistry transport model (MOCAGE) and error estimates using instrument characteristics. We assimilate the simulated observations into a chemistry transport model (LOTOS-EUROS) independent of the NR to evaluate their impact on modelled NO2 tropospheric columns and surface concentrations. The results are compared to an operational system where only ground-based ozone observations are ingested. Both instruments have an added value to analysed NO2 columns and surface values, reflected in decreased biases and improved correlations. The Sentinel-4 NO2 observations with hourly temporal resolution benefit modelled NO2 analyses throughout the entire day where the daily Sentinel-5P NO2 observations have a slightly lower impact that lasts up to 3–6 h after overpass. The evaluated benefits may be even higher in reality as the applied error estimates were shown to be higher than actual errors in the now operational Sentinel-5P NO2 products. We show that an accurate representation of the NO2 profile is crucial for the benefit of the column observations on surface values. The results support the need for having a combination of GEO and LEO missions for NO2 analyses in view of the complementary benefits of hourly temporal resolution (GEO, Sentinel-4) and global coverage (LEO, Sentinel-5P).

2019

Does contaminant exposure disrupt maternal hormones deposition? A study on per- and polyfluoroalkyl substances in an Arctic seabird

Jouanneau, William; Léandri-Breton, Don-Jean; Herzke, Dorte; Moe, Børge; Nikiforov, Vladimir; Pallud, Marie; Parenteau, Charline; Gabrielsen, Geir Wing; Chastel, Olivier

Maternal effects are thought to be essential tools for females to modulate offspring development. The selective deposition of avian maternal hormones could therefore allow females to strategically adjust the phenotype of their offspring to the environmental situation encountered. However, at the time of egg formation, several contaminants are also transferred to the egg, including per- and polyfluoroalkyl substances (PFAS) which are ubiquitous organic contaminants with endocrine disrupting properties. It is, however, unknown if they can disrupt maternal hormone deposition. In this study we explored relationships between female PFAS burden and maternal deposition in the eggs of steroids (dihydrotestosterone, androstenedione and testosterone), glucocorticoids (corticosterone) and thyroid hormones (triiodothyronine and thyroxine) in a population of the Arctic-breeding black-legged kittiwake (Rissa tridactyla). Egg yolk hormone levels were unrelated to female hormone plasma levels. Second-laid eggs had significantly lower concentrations of androstenedione than first-laid eggs. Triiodothyronine yolk levels were decreasing with increasing egg mass but increasing with increasing females' body condition. Testosterone was the only transferred yolk hormone correlated to maternal PFAS burden: specifically, we found a positive correlation between testosterone in yolks and circulating maternal perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDcA) and perfluoroundecanoic acid (PFUnA) in first-laid eggs. This correlative study provides a first insight into the potential of some long-chain perfluoroalkyl acids to disrupt maternal hormones deposition in eggs and raises the question about the consequences of increased testosterone deposition on the developing embryo.

2023

Arctic tropospheric ozone: assessment of current knowledge and model performance

Whaley, Cynthia; Law, Kathy S.; Hjorth, Jens Liengaard; Skov, Henrik; Arnold, Stephen R.; Langner, Joakim; Pernov, Jakob Boyd; Bergeron, Garance; Bourgeois, Ilann; Christensen, Jesper H.; Chien, Rong-You; Deushi, Makoto; Dong, Xinyi; Effertz, Peter; Faluvegi, Gregory; Flanner, Mark G.; Fu, Joshua S.; Gauss, Michael; Huey, Greg L.; Im, Ulas; Kivi, Rigel; Marelle, Louis; Onishi, Tatsuo; Oshima, Naga; Petropavlovskikh, Irina; Peischl, Jeff; Plummer, David A.; Pozzoli, Luca; Raut, Jean-Christophe; Ryerson, Tom; Skeie, Ragnhild Bieltvedt; Solberg, Sverre; Thomas, Manu Anna; Thompson, Chelsea R.; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; Salzen, Knut von; Tarasick, David

As the third most important greenhouse gas (GHG) after carbon dioxide (CO2) and methane (CH4), tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O3 near the tropopause (∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O3 precursors (CO, NOx, and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and possibly overestimating OH. Throughout the vertical profile (compared to aircraft measurements), the MMM underestimates both CO and NOx but overestimates PAN. Perhaps as a result of competing deficiencies, the MMM O3 matches the observed O3 reasonably well. Our findings suggest that despite model updates over the last decade, model results are as highly variable as ever and have not increased in accuracy for representing Arctic tropospheric O3.

2023

Fluorescent Nanocomposites: Hollow Silica Microspheres with Embedded Carbon Dots

Delic, Asmira; Mariussen, Espen; Roede, Erik Dobloug; Krivokapic, Alexander; Erbe, Andreas; Lindgren, Mikael; Benelmekki, Maria; Einarsrud, Mari-Ann

Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m2/g. High absolute zeta potential (−44 mV) at neutral pH demonstrates the high electrosteric stability of the nanocomposites in aqueous solution. Their fluorescence emission at 445 nm is remarkably stable in aqueous dispersion under a wide pH range (3–12) and in the dried state. The biocompatibility of the composite particles is excellent, as the particles were found to show low genotoxicity at exposures up to 10 μg/cm2.

2021

Alpine Ice‐Core Evidence of a Large Increase in Vanadium and Molybdenum Pollution in Western Europe During the 20th Century

Arienzo, Monica M.; Legrand, Michel; Preunkert, Susanne; Stohl, Andreas; Chellman, Nathan J; Eckhardt, Sabine; Gleason, Kelly E.; McConnell, Joseph R.

Pollutants emitted by industrial processes are deposited across the landscape. Ice core records from mid-latitude glaciers located close to emission sources document the history of local-to-regional pollution since preindustrial times. Such records underpin attribution of pollutants to specific emission sources critical to developing abatement policies. Previous ice core studies from the Alps document the overall magnitude and timing of pollution related to nitrogen and sulfur-derived species, as well as a few metals including lead. Here, we used subannually resolved measurements of vanadium (V) and molybdenum (Mo) in two ice cores from Col du Dome (French Alps), as well as atmospheric transport and deposition modeling, to investigate sources of pollution in the free European troposphere. The noncrustal V and Mo (ncV, ncMo) components were calculated by subtracting the crustal component from the total concentration. These ice core results showed a 32-fold increase in ncV and a 69-fold increase in ncMo from the preindustrial era (pre-1860) to the industrial concentration peaks. Anthropogenic V and Mo emissions in Europe were estimated using emission factors from oil and coal consumption and atmospheric transport and deposition modeling. When comparing ice core data to estimated anthropogenic V and Mo emissions in Europe, V was found to be sourced primarily from oil combustion emissions. Conversely, coal and oil combustion estimated emissions did not agree with the measured ice core Mo concentrations, suggesting that other anthropogenic Mo sources dominated coal-burning emissions, particularly after the 1950s. Noncoal-burning sources of Mo may include metallurgy although emission factors are poorly known.

2021

Atmospheric DMS in the Arctic Ocean and Its Relation to Phytoplankton Biomass

Park, Ki-Tae; Lee, Kitack; Kim, Tae-Wook; Yoon, Young Jun; Jang, Eun-Ho; Jang, Sehyun; Lee, Bang-Yong; Hermansen, Ove

2018

A schematic sampling protocol for contaminant monitoring in raptors

Espín, Silvia; Andevski, Jovan; Duke, Guy; Eulaers, Igor; Gomez-Ramirez, Pilar; Hallgrimsson, Gunnar Thor; Helander, Björn; Herzke, Dorte; Jaspers, Veerle; Krone, Oliver; Lourenco, Rui; Maria-Mojica, Pedro; Martínez-López, Emma; Mateo, Rafael; Movalli, Paola; Sanchez-Virosta, Pablo; Shore, Richard F.; Sonne, Christian; Brink, Nico W. van den; Hattum, B. van; Vrezec, Al; Wernham, Chris; García-Fernández, Antonio J.

Birds of prey, owls and falcons are widely used as sentinel species in raptor biomonitoring programmes. A major current challenge is to facilitate large-scale biomonitoring by coordinating contaminant monitoring activities and by building capacity across countries. This requires sharing, dissemination and adoption of best practices addressed by the Networking Programme Research and Monitoring for and with Raptors in Europe (EURAPMON) and now being advanced by the ongoing international COST Action European Raptor Biomonitoring Facility. The present perspective introduces a schematic sampling protocol for contaminant monitoring in raptors. We provide guidance on sample collection with a view to increasing sampling capacity across countries, ensuring appropriate quality of samples and facilitating harmonization of procedures to maximize the reliability, comparability and interoperability of data. The here presented protocol can be used by professionals and volunteers as a standard guide to ensure harmonised sampling methods for contaminant monitoring in raptors.

2020

Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches

Thunis, Philippe; Clappier, A.; Tarrasón, Leonor; Cuvelier, Cornelis; Monteiro, Ana; Pisoni, Enrico; Wesseling, Joost; Belis, Claudio A.; Pirovano, Guido; Janssen, Stijn; Guerreiro, Cristina; Peduzzi, Emanuela

Information on the origin of pollution constitutes an essential step of air quality management as it helps identifying measures to control air pollution. In this work, we review the most widely used source-apportionment methods for air quality management. Using theoretical and real-case datasets we study the differences among these methods and explain why they result in very different conclusions to support air quality planning. These differences are a consequence of the intrinsic assumptions that underpin the different methodologies and determine/limit their range of applicability. We show that ignoring their underlying assumptions is a risk for efficient/successful air quality management as these methods are sometimes used beyond their scope and range of applicability. The simplest approach based on increments (incremental approach) is often not suitable to support air quality planning. Contributions obtained through mass-transfer methods (receptor models or tagging approaches built in air quality models) are appropriate to support planning but only for specific pollutants. Impacts obtained via “brute-force” methods are the best suited but it is important to assess carefully their application range to make sure they reproduce correctly the prevailing chemical regimes.

2019

The Greenhouse Gas Budget of Terrestrial Ecosystems in East Asia Since 2000

Wang, Xuhui; Gao, Yuanyi; Jeong, Sujong; Ito, Akihiko; Bastos, Ana; Poulter, Benjamin; Wang, Yilong; Ciais, Philippe; Tian, Hanqin; Yuan, Wenping; Chandra, Naveen; Chevallier, Frédéric; Fan, Lei; Hong, Songbai; Lauerwald, Ronny; Li, Wei; Lin, Zhengyang; Pan, Naiqing; Patra, Prabir K.; Peng, Shushi; Ran, Lishan; Sang, Yuxing; Sitch, Stephen; Takashi, Maki; Thompson, Rona Louise; Wang, Chenzhi; Wang, Kai; Wang, Tao; Xi, Yi; Xu, Liang; Yan, Yanzi; Yun, Jeongmin; Zhang, Yao; Zhang, Yuzhong; Zhang, Zhen; Zheng, Bo; Zhou, Feng; Tao, Shu; Canadell, Josep G.; Piao, Shilong

East Asia (China, Japan, Koreas, and Mongolia) has been the world's economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid-century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long-lived greenhouse gases (CO2, CH4, and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between −46.3 ± 505.9 Tg CO2eq yr−1 (the top-down approach) and −36.1 ± 207.1 Tg CO2eq yr−1 (the bottom-up approach) during 2000–2019. This net GHG sink includes a large land CO2 sink (−1229.3 ± 430.9 Tg CO2 yr−1 based on the top-down approach and −1353.8 ± 158.5 Tg CO2 yr−1 based on the bottom-up approach) being offset by biogenic CH4 and N2O emissions, predominantly coming from the agricultural sectors. Emerging data sources and modeling capacities have helped achieve agreement between the top-down and bottom-up approaches, but sizable uncertainties remain in several flux terms. For example, the reported CO2 flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr−1 to a net sink of ∼−700 Tg CO2 yr−1. Although terrestrial ecosystems over East Asia is close to GHG neutral currently, curbing agricultural GHG emissions and additional afforestation and forest managements have the potential to transform the terrestrial ecosystems into a net GHG sink, which would help in realizing East Asian countries' ambitions to achieve climate neutrality.

2024

Validation of SMILES HCl profiles over a wide range from the stratosphere to the lower thermosphere

Nara, Seidai; Sato, Tomohiro O.; Yamada, Takayoshi; Fujinawa, Tamaki; Kuribayashi, Kota; Manabe, Takeshi; Froidevaux, Lucien; Livesey, Nathaniel J.; Walker, Kaley A.; Xu, Jian; Schreier, Franz; Orsolini, Yvan J.; Limpasuvan, Varavut; Kuno, Nario; Kasai, Yasuko

Hydrogen chloride (HCl) is the most abundant (more than 95 %) among inorganic chlorine compounds Cly in the upper stratosphere. The HCl molecule is observed to obtain long-term quantitative estimations of the total budget of the stratospheric chlorine compounds. In this study, we provided HCl vertical profiles at altitudes of 16–100 km using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from space. The HCl vertical profile from the upper troposphere to the lower thermosphere is reported for the first time from SMILES observations; the data quality is quantified by comparison with other measurements and via theoretical error analysis. We used the SMILES level-2 research product version 3.0.0. The period of the SMILES HCl observation was from 12 October 2009 to 21 April 2010, and the latitude coverage was 40∘ S–65∘ N. The average HCl vertical profile showed an increase with altitude up to the stratopause (∼ 45 km), approximately constant values between the stratopause and the upper mesosphere (∼ 80 km), and a decrease from the mesopause to the lower thermosphere (∼ 100 km). This behavior was observed in all latitude regions and reproduced by the Whole Atmosphere Community Climate Model in the specified dynamics configuration (SD-WACCM). We compared the SMILES HCl vertical profiles in the stratosphere and lower mesosphere with HCl profiles from Microwave Limb Sounder (MLS) on the Aura satellite, as well as from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT and the TErahertz and submillimeter LImb Sounder (TELIS) (balloon borne). The TELIS observations were performed using the superconductive limb emission technique, as used by SMILES. The globally averaged vertical HCl profiles of SMILES agreed well with those of MLS and ACE-FTS within 0.25 and 0.2 ppbv between 20 and 40 km (within 10 % between 30 and 40 km; there is a larger discrepancy below 30 km), respectively. The SMILES HCl concentration was smaller than those of MLS and ACE-FTS as the altitude increased from 40 km, and the difference was approximately 0.4–0.5 ppbv (12 %–15 %) at 50–60 km. The difference between SMILES and TELIS HCl observations was about 0.3 ppbv in the polar winter region between 20 and 34 km, except near 26 km. SMILES HCl error sources that may cause discrepancies with the other observations are investigated by a theoretical error analysis. We calculated errors caused by the uncertainties of spectroscopic parameters, instrument functions, and atmospheric temperature profiles. The Jacobian for the temperature explains the negative bias of the SMILES HCl concentrations at 50–60 km.

2020

Publikasjon
År
Kategori