Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 827 publikasjoner. Viser side 24 av 35:

Publikasjon  
År  
Kategori

Revised historical Northern Hemisphere black carbon emissions based on inverse modeling of ice core records

Eckhardt, Sabine; Pisso, Ignacio; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Plach, Andreas; McConnell, Joseph R.; Sigl, Michael; Ruppel, Meri; Zdanowicz, Christian; Lim, Saehee; Chellman, Nathan J; Opel, Thomas; Meyer, Hanno; Steffensen, Jørgen Peder; Schwikowski, Margit; Stohl, Andreas

Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.

2023

Surface warming in Svalbard may have led to increases in highly active ice-nucleating particles

Tobo, Yutaka; Adachi, Kouji; Kawai, Kei; Matsui, Hitoshi; Ohata, Sho; Oshima, Naga; Kondo, Yutaka; Hermansen, Ove; Uchida, Masaki; Inoue, Jun; Koike, Makoto

The roles of Arctic aerosols as ice-nucleating particles remain poorly understood, even though their effects on cloud microphysics are crucial for assessing the climate sensitivity of Arctic mixed-phase clouds and predicting their response to Arctic warming. Here we present a full-year record of ice-nucleating particle concentrations over Svalbard, where surface warming has been anomalously faster than the Arctic average. While the variation of ice-nucleating particles active at around −30 °C was relatively small, those active at higher temperatures (i.e., highly active ice-nucleating particles) tended to increase exponentially with rising surface air temperatures when the surface air temperatures rose above 0 °C and snow/ice-free barren and vegetated areas appeared in Svalbard. The aerosol population relevant to their increase was largely characterized by dust and biological organic materials that likely originated from local/regional terrestrial sources. Our results suggest that highly active ice-nucleating particles could be actively released from Arctic natural sources in response to surface warming.

2024

Maternal-Child Exposures to Persistent Organic Pollutants in Dhaka, Bangladesh

Leung, Michael; Nøst, Therese Haugdahl; Wania, Frank; Papp, Eszter Agnes; Herzke, Dorte; Mahmud, Abdullah Al; Roth, Daniel E

Information about the human burdens of persistent organic pollutants (POPs) in low- and middle-income countries is limited. In particular, studies often include only a small subset of POPs. To address this data gap, we aimed to assess maternal-child exposures to POPs in Dhaka, Bangladesh. We quantified 16 organochlorine pesticides, 12 polychlorinated biphenyls, 21 brominated flame retardants, 18 per- and polyfluorinated alkyl substances, 2 polycyclic aromatic hydrocarbons, and short-chain chlorinated paraffins in 18 pooled samples of human cord blood from 90 mother–infant pairs living in Dhaka, Bangladesh (2014–2015). In all pooled samples, we detected high levels of p,p′-DDT (median 81.6 ng/g lipid) and its metabolites p,p′-DDE and p,p′-DDD (median 551 and 10.7 ng/g lipid, respectively), where the p,p′-DDE/p,p′-DDT ratio ranged from 2.9 to 9.8 indicating recent dichlorodiphenyltrichloroethane (DDT) exposure. We also detected acenaphthene, decabromodiphenyl ethane, o,p′-DDT, o,p′-DDE, hexachlorobenzene, β-hexachlorocyclohexane, hexabromobenzene, and perfluorooctanoic acid in a subset of samples. For the other 59 target compounds, concentrations were below the limits of detection, despite using ultra-trace analytical methodology. No trends were observed when stratifying the analyses of detected POP concentrations by maternal age, maternal body mass index, or large fish consumption. These findings highlight recent DDT exposure in Dhaka, but the overall POP burden was otherwise low in this sample of pregnant women/newborns. Future monitoring efforts should focus on newly detected POPs for which burdens may be increasing due to ongoing industrialization in Bangladesh.

2018

Widespread Pesticide Distribution in the European Atmosphere Questions their Degradability in Air

Mayer, Ludovic; Degrendele, Celine; Senk, Petr; Kohoutek, Jiří; Přibylovác, Petra; Kukučka, Petr; Melymuk, Lisa; Durand, Amandine; Ravier, Sylvain; Alastuey, Andres; Baker, Alex R.; Baltensperger, Urs; Baumann-Stanzer, Kathrin; Biermann, Tobias; Bohlin-Nizzetto, Pernilla; Ceburnis, Darius; Conil, Sébastien; Couret, Cedric; Degorska, Anna; Diapouli, Evangelia; Eckhardt, Sabine; Eleftheriadis, Konstantinos; Forster, Grant L.; Freier, Korbinian; Gheusi, Francois; Gini, Maria; Hellén, Heidi; Henne, Stephan; Hermann, Hartmut; Šmejkalová, Adéla Holubová; Horrak, Urmas; Hüglin, Christoph; Junninen, Heikki; Kristensson, Adam; Langrene, Laurent; Levula, Janne; Lothon, Marie; Ludewig, Elke; Makkonen, Ulla; Matejovičová, Jana; Mihalopoulos, Nikolaos; Mináriková, Veronika; Moche, Wolfgang; Noe, Steffen M.; Perez, Noemi; Petäjä, Tuukka; Pont, Veronique; Poulain, Laurent; Quivet, Etienne; Ratz, Gabriela; Rehm, Till; Reimann, Stefan; Simmons, Ivan; Sonke, Jeroen E.; Sorribas, Mar; Spoor, Ronald; Swart, Daan P.J.; Vasilatou, Vasiliki; Wortham, Henri; Yela, Margarita; Zarmpas, Pavlos; Zellweger-Fäsi, Claudia; Tørseth, Kjetil; Laj, Paolo G.; Klanova, Jana; Lammel, Gerhard

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

2024

Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund

Platt, Stephen Matthew; Hov, Øystein; Berg, Torunn; Breivik, Knut; Eckhardt, Sabine; Eleftheriadis, Konstantinos; Evangeliou, Nikolaos; Fiebig, Markus; Fisher, Rebecca; Hansen, Georg Heinrich; Hansson, Hans-Christen; Heintzenberg, Jost; Hermansen, Ove; Heslin-Rees, Dominic; Holmén, Kim; Hudson, Stephen; Kallenborn, Roland; Krejci, Radovan; Krognes, Terje; Larssen, Steinar; Lowry, David; Myhre, Cathrine Lund; Lunder, Chris Rene; Nisbet, Euan; Bohlin-Nizzetto, Pernilla; Park, Ki-Tae; Pedersen, Christina Alsvik; Pfaffhuber, Katrine Aspmo; Röckmann, Thomas; Schmidbauer, Norbert; Solberg, Sverre; Stohl, Andreas; Ström, Johan; Svendby, Tove Marit; Tunved, Peter; Tørnkvist, Kjersti Karlsen; Veen, Carina van der; Vratolis, Stergios; Yoon, Young Jun; Yttri, Karl Espen; Zieger, Paul; Aas, Wenche; Tørseth, Kjetil

The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.

2022

Performance assessment of a low-cost PM2.5 Sensor for a near four-month period in Oslo, Norway

Liu, Hai-Ying; Schneider, Philipp; Haugen, Rolf; Vogt, Matthias

The very low-cost Nova particulate matter (PM) sensor SDS011 has recently drawn attention for its use for measuring PM mass concentration, which is frequently used as an indicator of air quality. However, this sensor has not been thoroughly evaluated in real-world conditions and its data quality is not well documented. In this study, three SDS011 sensors were evaluated by co-locating them at an official, air quality monitoring station equipped with reference-equivalent instrumentation in Oslo, Norway. The sensors’ measurement results for PM2.5 were compared with data generated from the air quality monitoring station over almost a four-month period. Five performance aspects of the sensors were examined: operational data coverage, linearity of response and accuracy, inter-sensor variability, dependence on relative humidity (RH) and temperature (T), and potential improvement of sensor accuracy, by data calibration using a machine-learning method. The results of the study are: (i) the three sensors provide quite similar results, with inter-sensor correlations exhibiting R values higher than 0.97; (ii) all three sensors demonstrate quite high linearity against officially measured concentrations of PM2.5, with R2 values ranging from 0.55 to 0.71; (iii) high RH (over 80%) negatively affected the sensor response; (iv) data calibration using only the RH and T recorded directly at the three sensors increased the R2 value from 0.71 to 0.80, 068 to 0.79, and 0.55 to 0.76. The results demonstrate the general feasibility of using these low cost SDS011 sensors for indicative PM2.5 monitoring under certain environmental conditions. Within these constraints, they further indicate that there is potential for deploying large networks of such devices, due to the sensors’ relative accuracy, size and cost. This opens up a wide variety of applications, such as high-resolution air quality mapping and personalized air quality information services. However, it should be noted that the sensors exhibit often very high relative errors for hourly values and that there is a high potential of abusing these types of sensors if they are applied outside the manufacturer-provided specifications particularly regarding relative humidity. Furthermore, our analysis covers only a relatively short time period and it is desirable to carry out longer-term studies covering a wider range of meteorological conditions

2019

Indian Land Carbon Sink Estimated from Surface and GOSAT Observations

Nayagam, Lorna Raja; Maksyutov, Shamil; Janardanan, Rajesh; Oda, Tomohiro; Tiwari, Yogesh K.; Sreenivas, Gaddamidi; Datye, Amey; Jain, Chaithanya D.; Ratnam, Madineni Venkat; Sinha, Vinayak; Hakkim, Haseeb; Terao, Yukio; Naja, Manish; Ahmed, Md. Kawser; Mukai, Hitoshi; Zeng, Jiye; Kaiser, Johannes; Someya, Yu; Yoshida, Yukio

The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.

2025

Exploring the Chemical Complexity and Sources of Airborne Fine Particulate Matter in East Asia by Nontarget Analysis and Multivariate Modeling

Froment, Jean Francois; Park, Jong-Uk; Kim, Sang-Woo; Cho, Yoonjin; Choi, Soobin; Seo, Young Hun; Baik, Seungyun; Lee, Ji Eun; Martin, Jonathan W.

The complex and dynamic nature of airborne fine particulate matter (PM2.5) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM2.5 samples (n = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry. More than 50,000 nontarget features were detected, and by consensus of in silico tools, we assigned a molecular formula to 13,907 features. Oxygenated compounds were most prominent, followed by mixed nitrogenated/oxygenated compounds, organic sulfates, and sulfonates. Spectral matching enabled identification or structural annotation of 43 substances, and a workflow involving SIRIUS and MS-DIAL software enabled annotation of 74 unknown per- and polyfluoroalkyl substances with primary source regions in China and the Korean Peninsula. Multivariate modeling revealed seasonal variations in chemistry, attributable to the combination of warmer temperatures and maritime source regions in summer and to cooler temperatures and source regions of China in winter.

2025

A Portable Tool for the Evaluation of Microclimate Conditions within Museum Enclosures, Transit Frames, and Transport Cases

Odlyha, Marianne; Slater, Jonathon M.; Grøntoft, Terje; Jakiela, Slawomir; Obarzanowski, Michal; Thickett, David; Hackney, Stephen; Andrade, Guillermo; Wadum, Jørgen; Christensen, Anne Haack; Scharff, Mikkel

2018

Spatial variability and temporal changes of POPs in European background air

Halvorsen, Helene Lunder; Bohlin-Nizzetto, Pernilla; Eckhardt, Sabine; Gusev, Alexey; Möckel, Claudia; Shatalov, Victor; Skogeng, Lovise Pedersen; Breivik, Knut

Concentration data on POPs in air is necessary to assess the effectiveness of international regulations aiming to reduce the emissions of persistent organic pollutants (POPs) into the environment. POPs in European background air are continuously monitored using active- and passive air sampling techniques at a limited number of atmospheric monitoring stations. As a result of the low spatial resolution of such continuous monitoring, there is limited understanding of the main sources controlling the atmospheric burdens of POPs across Europe. The key objectives of this study were to measure the spatial and temporal variability of concentrations of POPs in background air with a high spatial resolution (n = 101) across 33 countries within Europe, and to use observations and models in concert to assess if the measured concentrations are mainly governed by secondary emissions or continuing primary emissions. Hexachlorobenzene (HCB) was not only the POP detected in highest concentrations (median: 67 pg/m3), but also the only POP that had significantly increased over the last decade. HCB was also the only POP that was positively correlated to latitude. For the other targeted POPs, the highest concentrations were observed in the southern part of Europe, and a declining temporal trend was observed. Spatial differences in temporal changes were observed. For example, γ-HCH (hexachlorocyclohexane) had the largest decrease in the south of Europe, while α-HCH had declined the most in central-east Europe. High occurrence of degradation products of the organochlorine pesticides and isomeric ratios indicated past usage. Model predictions of PCB-153 (2,2’,4,4’,5,5’-hexachlorobiphenyl) by the Global EMEP Multi-media Modelling System suggest that secondary emissions are more important than primary emissions in controlling atmospheric burdens, and that the relative importance of primary emissions are more influential in southern Europe compared to northern Europe. Our study highlights the major advantages of combining high spatial resolution observations with mechanistic modelling approaches to provide insights on the relative importance of primary- and secondary emission sources in Europe. Such knowledge is considered vital for policy makers aiming to assess the potential for further emission reduction strategies of legacy POPs.

2023

Improving Estimates of Sulfur, Nitrogen, and Ozone Total Deposition through Multi-Model and Measurement-Model Fusion Approaches

Fu, Joshua S.; Carmichael, Gregory R.; Dentener, Frank; Aas, Wenche; Vestøl, Anna Camilla Andersson; Barrie, Leonard A.; Cole, AS; Galy-Lacaux, Corinne; Geddes, Jeffrey; Itahashi, Syuichi; Kanakidou, Maria; Labrador, Lorenzo; Paulot, Fabien; Schwede, Donna; Tan, Jiani; Vet, Robert

Earth system and environmental impact studies need high quality and up-to-date estimates of atmospheric deposition. This study demonstrates the methodological benefits of multimodel ensemble and measurement-model fusion mapping approaches for atmospheric deposition focusing on 2010, a year for which several studies were conducted. Global model-only deposition assessment can be further improved by integrating new model-measurement techniques, including expanded capabilities of satellite observations of atmospheric composition. We identify research and implementation priorities for timely estimates of deposition globally as implemented by the World Meteorological Organization.

2022

Transformation Product Formation and Removal Efficiency of Emerging Pollutants by Three-Dimensional Ceramic Carbon Foam-Supported Electrochemical Oxidation

Froment, Jean Francois; Pierpaoli, Mattia; Gundersen, Hans; Davanger, Kirsten; Bjørneby, Stine Marie; Eikenes, Heidi; Skowierzak, Grzegorz; Ślepskic, Paweł; Jakóbczyk, Paweł; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel

This study evaluated galvanostatic three-dimensional electrolysis using ceramic carbon foam anodes for the removal of emerging pollutants from wastewater and assessed transformation product formation. Five pollutants (paracetamol, triclosan, bisphenol A, caffeine, and diclofenac) were selected based on their detection in wastewater treatment plant effluents. Electrochemical oxidation was carried out on artificial wastewater spiked with these compounds under galvanostatic conditions (50, 125, and 250 mA) using a stainless steel tube electrolyzer with three ceramic carbon foam anodes and a stainless steel cathode. Decreasing pollutant concentrations were observed in all of the experiments. Nontarget chemical analysis using liquid chromatography coupled to a high-resolution mass spectrometer detected 338 features with increasing intensity including 12 confirmed transformation products (TPs). Real wastewater effluent spiked with the pollutants was then electrolyzed, again showing pollutant removal, with 9 of the 12 previously identified TPs present and increasing. Two TPs (benzamide and 2,4-dichlorophenol) are known toxicants, indicating the formation of a potential toxic by-product during electrolysis. Furthermore, electrolysis of unspiked real wastewater revealed the removal of five pharmaceuticals and a drug metabolite. While demonstrating electrolysis’ ability to degrade pollutants in wastewater, the study underscores the need to investigate transformation product formation and toxicity implications of the electrolysis process.

2025

Microfluidic In Vitro Platform for (Nano)Safety and (Nano)Drug Efficiency Screening

Kohl, Yvonne; Biehl, Margit; Spring, Sarah; Hesler, Michelle; Ogourtsov, Vladimir; Todorovic, Miomir; Owen, Joshua; Elje, Elisabeth; Kopecka, Kristina; Moriones, Oscar Hernando; Bastus, Neus G.; Simon, Peter; Dubaj, Tibor; Rundén-Pran, Elise; Puntes, Victor; William, Nicola; Briesen, Hagen von; Wagner, Sylvia; Kapur, Nikil; Mariussen, Espen; Nelson, Andrew; Gabelova, A; Dusinska, Maria; Velten, Thomas; Knoll, Thorsten

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal‐free risk assessment of new chemicals and drugs. Microfluidic cell‐based devices allow high‐throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal‐free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo‐like in vitro cell cultivation. It is equipped with a wafer‐based silicon chip including integrated electrodes and a microcavity. A proof‐of‐concept using different relevant cell models shows its suitability for label‐free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label‐free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole‐body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.

2021

Do Carbon Nanotubes and Asbestos Fibers Exhibit Common Toxicity Mechanisms?

Gupta, Suchi Smita; Singh, Krishna P.; Gupta, Shailendra; Dusinska, Maria; Rahman, Qamar

During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers. In this review, we present a comparative analysis between CNTs and asbestos fibers using the following four parameters: (1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and (4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream pathways associated with altered gene expression data from both asbestos and CNT exposure. Our results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated toxicity is concerned.

2022

Safety assessment of titanium dioxide (E171) as a food additive

Younes, Maged; Aquilina, Gabriele; Castle, Laurence; Engel, Karl-Heinz; Fowler, Paul; Fernandez, Maria Jose Frutos; Fürst, Peter; Gundert-Remy, Ursula; Gürtler, Rainer; Husøy, Trine; Manco, Melania; Mennes, Wim; Moldeus, Peter; Passamonti, Sabina; Shah, Romina; Waalkens-Berendsen, Ine; Wölfle, Detlef; Corsini, Emanuela; Cubadda, Francesco; Groot, Didima De; FitzGerald, Rex; Gunnare, Sara; Gutleb, Arno C.; Mast, Jan; Mortensen, Alicja; Oomen, Agnes; Piersma, Aldert; Plichta, Veronika; Ulbrich, Beate; Loveren, Henk Van; Benford, Diane; Bignami, Margherita; Bolognesi, Claudia; Crebelli, Riccardo; Dusinska, Maria; Marcon, Francesca; Nielsen, Elsa; Schlatter, Josef; Vleminckx, Christiane; Barmaz, Stefania; Carfi, Maria; Civitella, Consuelo; Giarola, Alessandra; Rincon, Ana Maria; Serafimova, Rositsa; Smeraldi, Camilla; Tarazona, Jose; Tard, Alexandra; Wright, Matthew

The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.

2021

Governance of advanced materials: Shaping a safe and sustainable future

Groenewold, Monique; Bleeker, Eric A.J.; Noorlander, Cornelle W.; Sips, Adriënne J.A.M.; Zee, Margriet van der; Aitken, Robert J.; Baker, James H.; Bakker, Martine I.; Bouman, Evert; Doak, Shareen H.; Drobne, Damjana; Dumit, Verónica I.; Florin, Marie-Valentine; Fransman, Wouter; Gonzalez, Mar M.; Heunisch, Elisabeth; Isigonis, Panagiotis; Jeliazkova, Nina; Jensen, Keld Alstrup; Kuhlbusch, Thomas; Lynch, Iseult; Morrison, Mark; Porcari, Andrea; Rodríguez-Llopis, Isabel; Pozuelo, Blanca M.; Resch, Susanne; Säämänen, Arto J.; Serchi, Tommaso; Soeteman-Hernandez, Lya G.; Willighagen, Egon; Dusinska, Maria; Scott-Fordsmand, Janeck J.

2024

Unleaded gasoline as a significant source of Pb emissions in the Subarctic

Chrastný, Vladislav; Šillerová, Hana; Vitková, Martina; Francová, Anna; Jehlička, Jan; Kocourková, Jana; Aspholm, Paul Eric; Nilsson, Lars Ola; Berglen, Tore Flatlandsmo; Jensen, Henning K.B.; Komárek, Michael

After the phasing out of leaded gasoline, Pb emissions to the atmosphere dramatically decreased, and other sources became more significant. The contribution of unleaded gasoline has not been sufficiently recognized; therefore, we evaluated the impact of Pb from unleaded gasoline in a relatively pristine area in Subarctic NE Norway. The influence of different endmembers (Ni slag and concentrate from the Nikel smelter in Russia, PM10 filters, and traffic) on the overall Pb emissions was determined using various environmental samples (snow, lichens, and topsoils) and Pb isotope tracing. We found a strong relationship between Pb in snow and the Ni smelter. However, lichen samples and most of the topsoils were contaminated by Pb originating from the current use of unleaded gasoline originating from Russia. Historical leaded and recent unleaded gasoline are fully distinguishable using Pb isotopes, as unleaded gasoline is characterized by a low radiogenic composition (206Pb/207Pb = 1.098 and 208Pb/206Pb = 2.060) and remains an unneglectable source of Pb in the region.

2018

Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results

Møller, Peter; Azqueta, Amaya; Boutet-Robinet, Elisa; Koppen, Gudrun; Bonassi, Stefano; Milic, Mirta; Gajski, Goran; Costa, Solange; Teixeira, João Paulo; Pereira, Cristiana Costa; Dusinska, Maria; Godschalk, Roger; Brunborg, Gunnar; Gutzkow, Kristine Bjerve; Giovannelli, Lisa; Cooke, Marcus S.; Richling, Elke; Laffon, Blanca; Valdiglesias, Vanessa; Basaran, Nursen; Bo, Cristian Del; Zegura, Bojana; Novak, Matjaz; Stopper, Helga; Vodicka, Pavel; Vodenkova, Sona; Andrade, Vanessa Moraes de; Srámková, Monika; Gábelová, Alena; Collins, Andrew Richard; Langie, Sabine A.S.

The comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published. Here, we present a Consensus Statement for the Minimum Information for Reporting Comet Assay (MIRCA) providing recommendations for describing comet assay conditions and results. These recommendations differentiate between ‘desirable’ and ‘essential’ information: ‘essential’ information refers to the precise details that are necessary to assess the quality of the experimental work, whereas ‘desirable’ information relates to technical issues that might be encountered when repeating the experiments. Adherence to MIRCA recommendations should ensure that comet assay results can be easily interpreted and independently verified by other researchers.

2020

White-Tailed Eagle (Haliaeetus albicilla) Body Feathers Document Spatiotemporal Trends of Perfluoroalkyl Substances in the Northern Environment

Sun, Jiachen; Bossi, Rossana; Bustnes, Jan Ove; Helander, Björn; Boertmann, David; Dietz, Rune; Herzke, Dorte; Jaspers, Veerle; Labansen, Aili Lage; Lepoint, Gilles; Schulz, Ralf; Sonne, Christian; Thorup, Kasper; Tøttrup, Anders; Zubrod, Jochen P.; Eens, Marcel; Eulaers, Igor

2019

Effect of Long-Range Transported Fire Aerosols on Cloud Condensation Nuclei Concentrations and Cloud Properties at High Latitudes

Kommula, Snehitha M.; Buchholz, Angela; Gramlich, Yvette; Mielonen, Tero; Hao, L.; Pullinen, Iida; Vettikkat, Lejish; Ylisirniö, A.; Joutsensaari, J.; Schobesberger, Siegfried; Tiitta, P; Leskinen, Ari; Heslin-Rees, Dominic; Haslett, S. L.; Siegel, Karolina; Lunder, Chris Rene; Zieger, Paul; Krejci, Radovan; Romakkaniemi, Sami; Mohr, C.; Virtanen, Annele

Active vegetation fires in south-eastern (SE) Europe resulted in a notable increase in the number concentration of aerosols and cloud condensation nuclei (CCN) particles at two high latitude locations—the SMEAR IV station in Kuopio, Finland, and the Zeppelin Observatory in Svalbard, high Arctic. During the fire episode aerosol hygroscopicity κ slightly increased at SMEAR IV and at the Zeppelin Observatory κ decreased. Despite increased κ in high CCN conditions at SMEAR IV, the aerosol activation diameter increased due to the decreased supersaturation with an increase in aerosol loading. In addition, at SMEAR IV during the fire episode, in situ measured cloud droplet number concentration (CDNC) increased by a factor of ∼7 as compared to non-fire periods which was in good agreement with the satellite observations (MODIS, Terra). Results from this study show the importance of SE European fires for cloud properties and radiative forcing in high latitudes.

2024

Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling

Marécal, Virginie; Voisin-Plessis, Ronan; Roberts, Tarda Jane; Aiuppa, Alessandro; Narivelo, Herizo; Hamer, Paul David; Josse, Beatrice; Guth, Jonathan; Surl, Luke

HBr emissions from volcanoes lead rapidly to the formation of BrO within volcanic plumes and have an impact on tropospheric chemistry, at least at the local and regional scales. The motivation of this paper is to prepare a framework for further 3D modelling of volcanic halogen emissions in order to determine their fate within the volcanic plume and then in the atmosphere at the regional and global scales. The main aim is to evaluate the ability of the model to produce a realistic partitioning of bromine species within a grid box size typical of MOCAGE (Model Of atmospheric Chemistry At larGE scale) 3D (0.5∘ × 0.5∘). This work is based on a 1D single-column configuration of the global chemistry-transport model MOCAGE that has low enough computational cost to allow us to perform a large set of sensitivity simulations. This paper uses the emissions from the Mount Etna eruption on 10 May 2008. Several reactions are added to MOCAGE to represent the volcanic plume halogen chemistry. A simple plume parameterisation is also implemented and tested. The use of this parameterisation tends to only slightly limit the efficiency of BrO net production. Both simulations with and without the parameterisation give results for the partitioning of the bromine species, of ozone depletion and of the ratio that are consistent with previous studies.

A series of test experiments were performed to evaluate the sensitivity of the results to the composition of the emissions (primary sulfate aerosols, Br radical and NO) and to the effective radius assumed for the volcanic sulfate aerosols. Simulations show that the plume chemistry is sensitive to all these parameters. We also find that the maximum altitude of the eruption changes the BrO production, which is linked to the vertical variability of the concentrations of oxidants in the background air. These sensitivity tests display changes in the bromine chemistry cycles that are generally at least as important as the plume parameterisation. Overall, the version of the MOCAGE chemistry developed for this study is suitable to produce the expected halogen chemistry in volcanic plumes during daytime and night-time.

2023

Revisiting the strategy for marine litter monitoring within the european marine strategy framework directive (MSFD)

Galgani, François; Lusher, Amy L; Strand, Jakob; Haarr, Marthe Larsen; Vinci, Matteo; Jack, Maria Eugenia Molina; Kagi, Ralf; Aliani, Stefano; Herzke, Dorte; Nikiforov, Vladimir; Primpke, Sebastian; Schmidt, Natascha; Fabres, Joan; Witte, Bavo P. De; Solbakken, Vilde Sørnes; Bavel, Bert van

Marine litter and non-degradable plastic pollution is of global concern. Regular monitoring programs are being established to assess and understand the scale of this pollution. In Europe, the goal of the European Marine Strategy Framework Directive (MSFD) is to assess trends in Good Environmental Status and support large-scale actions at the regional level. Marine litter monitoring requires tailored sampling strategies, protocols and indicators, that align with specific objectives and are tailored for local or regional needs. In addition, the uneven spatial and temporal distributions of marine litter present a challenge when designing a statistically powerful monitoring program. In this paper, we critically review the existing marine litter monitoring programs in Europe. We discuss the main constraints, including environmental, logistical, scientific, and ethical factors. Additionally, we outline the critical gaps and shortcomings in monitoring MSFD beaches/shorelines, floating litter, seafloor litter, microplastics, and harm. Several priorities must be established to shape the future of monitoring within the MSFD. Recent developments in analytical approaches, including optimizing protocols and sampling strategies, gaining a better understanding of the spatiotemporal heterogeneity of litter and its implications for survey design and replication, and the inclusion of newly validated methodologies that have achieved sufficient technical readiness, must be considered. Although there are well-established methods for assessing beaches, floating and seafloor litter, it will be necessary to implement monitoring schemes for microplastics in sediments and invertebrates as robust analytical methods become available for targeting smaller particle size classes. Furthermore, the inclusion of indicators for entanglement and injury to marine organisms will have to be considered in the near future. Moreover, the following actions will enhance the effectiveness of monitoring efforts: (1) creating an inventory of accumulation areas and sources of specific types of litter (e.g., fishing gear), (2) monitoring riverine inputs of litter, (3) monitoring atmospheric inputs including microplastics, (4) accidental inputs during extreme weather events, and (5) studying how species at risk may be transported by litter. We provide recommendations to support long-term, effective, and well-coordinated marine litter monitoring within the MSFD to achieve a comprehensive and accurate understanding of marine litter in EU waters. This will allow the development of measures to mitigate the impacts of marine pollution and eventually to evaluate the success of the respective measures.

2024

A framework for advancing independent air quality sensor measurements via transparent data generating process classification

Diez, Sebastiàn; Bannan, Thomas J.; Chacón-Mateos, Miriam; Edwards, Pete M.; Ferracci, Valerio; Kilic, Dogushan; Lewis, Alastair C.; Malings, Carl; Martin, Nicholas A.; Popoola, Olalekan; Rosales, Colleen Marciel F.; Schmitz, Sean; Schneider, Philipp; Schneidemesser, Erika von

We propose operational definitions and a classification framework for air quality sensor-derived data, thereby aiding users in interpreting and selecting suitable data products for their applications. We focus on differentiating independent sensor measurements (ISM) from other data products, emphasizing transparency and traceability. Recommendations are provided for manufacturers, academia, and standardization bodies to adopt these definitions, fostering data product differentiation and incentivizing the development of more robust, reliable sensor hardware.

2025

A Synthesis Inversion to Constrain Global Emissions of Two Very Short Lived Chlorocarbons: Dichloromethane, and Perchloroethylene

Claxton, Tom; Hossaini, R.; Wilson, C.; Montzka, Stephen A.; Chipperfield, Martyn P.; Wild, Oliver; Bednarz, Ewa M.; Carpenter, Lucy J.; Andrews, Stephen J.; Hackenberg, Sina C.; Mühle, Jens; Oram, David; Park, Sunyoung; Park, Mi-Kyung; Atlas, Elliot; Navarro, Maria; Schauffler, Sue; Sherry, David; Vollmer, Martin K.; Schuck, Tanja; Engel, Andreas; Krummel, Paul B.; Maione, Michela; Arduini, Jgor; Saito, Takuya; Yokouchi, Yoko; O'Doherty, Simon; Young, Dickon; Lunder, Chris Rene

Dichloromethane (CH2Cl2) and perchloroethylene (C2Cl4) are chlorinated very short lived substances (Cl‐VSLS) with anthropogenic sources. Recent studies highlight the increasing influence of such compounds, particularly CH2Cl2, on the stratospheric chlorine budget and therefore on ozone depletion. Here, a multiyear global‐scale synthesis inversion was performed to optimize CH2Cl2 (2006–2017) and C2Cl4 (2007–2017) emissions. The approach combines long‐term surface observations from global monitoring networks, output from a three‐dimensional chemical transport model (TOMCAT), and novel bottom‐up information on prior industry emissions. Our posterior results show an increase in global CH2Cl2 emissions from 637 ± 36 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 in 2017, with Asian emissions accounting for 68% and 89% of these totals, respectively. In absolute terms, Asian CH2Cl2 emissions increased annually by 51 Gg yr−1 over the study period, while European and North American emissions declined, indicating a continental‐scale shift in emission distribution since the mid‐2000s. For C2Cl4, we estimate a decrease in global emissions from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. The time‐varying posterior emissions offer significant improvements over the prior. Utilizing the posterior emissions leads to modeled tropospheric CH2Cl2 and C2Cl4 abundances and trends in good agreement to those observed (including independent observations to the inversion). A shorter C2Cl4 lifetime, from including an uncertain Cl sink, leads to larger global C2Cl4 emissions by a factor of ~1.5, which in some places improves model‐measurement agreement. The sensitivity of our findings to assumptions in the inversion procedure, including CH2Cl2 oceanic emissions, is discussed.

2020

Publikasjon
År
Kategori