Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 751 publikasjoner. Viser side 24 av 32:

Publikasjon  
År  
Kategori

PM10 levels at urban, suburban, and background locations in the eastern Mediterranean: local versus regional sources with emphasis on African dust

Chatoutsidou, Sofia Eirini; Kopanakis, Ilias; Lagouvardos, Konstantinos; Mihalopoulos, Nikolaos; Tørseth, Kjetil; Lazaridis, Mihalis

Springer

2019

Distinct pathways associated with chromosomal aberration frequency in a cohort exposed to genotoxic compounds compared to general population

Niazi, Yasmeen; Thomsen, Hauke; Smolkova, Bozena; Vodickova, Ludmila; Vodenkova, Sona; Kroupa, Michal; Vymetalkova, Veronika; Kazimirova, Alena; Barancokova, Magdalena; Volkovova, Katarina; Staruchova, Marta; Hoffmann, Per; Nöthen, Markus M.; Dusinska, Maria; Musak, Ludovit; Vodička, Pavel; Hemminki, Kari; Försti, Asta

Oxford University Press

2019

Technical note: Reanalysis of Aura MLS chemical observations

Errera, Quentin; Chabrillat, Simon; Christophe, Yves; Debosscher, Jonas; Hubert, Daan; Lahoz, William A.; Santee, Michelle L.; Shiotani, Masato; Skachko, Sergey; von Clarmann, Thomas; Walker, Kaley A.

This paper presents a reanalysis of the atmospheric chemical composition from the upper troposphere to the lower mesosphere from August 2004 to December 2017. This reanalysis is produced by the Belgian Assimilation System for Chemical ObsErvations (BASCOE) constrained by the chemical observations from the Microwave Limb Sounder (MLS) on board the Aura satellite. BASCOE is based on the ensemble Kalman filter (EnKF) method and includes a chemical transport model driven by the winds and temperature from the ERA-Interim meteorological reanalysis. The model resolution is 3.75∘ in longitude, 2.5∘ in latitude and 37 vertical levels from the surface to 0.1 hPa with 25 levels above 100 hPa. The outputs are provided every 6 h. This reanalysis is called BRAM2 for BASCOE Reanalysis of Aura MLS, version 2.

Vertical profiles of eight species from MLS version 4 are assimilated and are evaluated in this paper: ozone (O3), water vapour (H2O), nitrous oxide (N2O), nitric acid (HNO3), hydrogen chloride (HCl), chlorine oxide (ClO), methyl chloride (CH3Cl) and carbon monoxide (CO). They are evaluated using independent observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and N2O observations from a different MLS radiometer than the one used to deliver the standard product and ozonesondes. The evaluation is carried out in four regions of interest where only selected species are evaluated. These regions are (1) the lower-stratospheric polar vortex where O3, H2O, N2O, HNO3, HCl and ClO are evaluated; (2) the upper-stratospheric–lower-mesospheric polar vortex where H2O, N2O, HNO3 and CO are evaluated; (3) the upper troposphere–lower stratosphere (UTLS) where O3, H2O, CO and CH3Cl are evaluated; and (4) the middle stratosphere where O3, H2O, N2O, HNO3, HCl, ClO and CH3Cl are evaluated.

In general BRAM2 reproduces MLS observations within their uncertainties and agrees well with independent observations, with several limitations discussed in this paper (see the summary in Sect. 5.5). In particular, ozone is not assimilated at altitudes above (i.e. pressures lower than) 4 hPa due to a model bias that cannot be corrected by the assimilation. MLS ozone profiles display unphysical oscillations in the tropical UTLS, which are corrected by the assimilation, allowing a good agreement with ozonesondes. Moreover, in the upper troposphere, comparison of BRAM2 with MLS and independent observations suggests a positive bias in MLS O3 and a negative bias in MLS H2O. The reanalysis also reveals a drift in MLS N2O against independent observations, which highlights the potential use of BRAM2 to estimate biases between instruments. BRAM2 is publicly available and will be extended to assimilate MLS observations after 2017.

2019

White-Tailed Eagle (Haliaeetus albicilla) Body Feathers Document Spatiotemporal Trends of Perfluoroalkyl Substances in the Northern Environment

Sun, Jiachen; Bossi, Rossana; Bustnes, Jan Ove; Helander, Björn; Boertmann, David; Dietz, Rune; Herzke, Dorte; Jaspers, Veerle; Labansen, Aili Lage; Lepoint, Gilles; Schulz, Ralf; Sonne, Christian; Thorup, Kasper; Tøttrup, Anders; Zubrod, Jochen P.; Eens, Marcel; Eulaers, Igor

2019

Plastic litter in the European Arctic: What do we know?

Halsband, Claudia; Herzke, Dorte

Despite an exponential increase in available data on marine plastic debris globally, information on levels and trends of plastic pollution and especially microplastics in the Arctic remains scarce. The few available peer-reviewed scientific works, however, point to a ubiquitous distribution of plastic particles in all environmental compartments, including sea ice. Here, we review the current state of knowledge on the sources, distribution, transport pathways and fate of meso- and microplastics with a focus on the European Arctic and discuss observed and projected impacts on biota and ecosystems.

2019

Acceleration of global N2O emissions seen from two decades of atmospheric inversion

Thompson, Rona Louise; Lassaletta, Luis; Patra, Prabir K.; Wilson, Chris; Wells, Kelley C.; Gressent, Alicia; Koffi, Ernest N.; Chipperfield, Martyn P.; Winiwarter, Wilfried; Davidson, Eric A.; Tian, Hanqin; Canadell, Josep G.

2019

Air Pollution Monitoring for Health Research and Patient Care. An Official American Thoracic Society Workshop Report

Cromar, Kevin R.; Duncan, Bryan N.; Bartonova, Alena; Benedict, Kristen; Brauer, Michael; Habre, Rima; Hagler, Gayle S. W.; Haynes, John A.; Khan, Sean; Kilaru, Vasu; Liu, Yang; Pawson, Steven; Peden, David B.; Quint, Jennifer K.; Rice, Mary B.; Sasser, Erika N.; Seto, Edmund; Stone, Susan L.; Thurston, George D.; Volckens, John

2019

Using elemental analyses and multivariate statistics to identify the off-site dispersion from informal e-waste processing

Mudge, Stephen Michael; Pfaffhuber, Katrine Aspmo; Fobil, Julis N.; Bouman, Evert; Uggerud, Hilde Thelle; Thorne, Rebecca Jayne

Electronic waste (e-waste) is informally processed and recycled in Agbogbloshie in Accra (Ghana), which may be the largest such site in West Africa. This industry can lead to significant environmental contamination. In this study, surface dust samples were collected at a range of sites within Accra to establish the offsite consequences of such activities. Fifty-one samples were collected and analysed for 69 elements by ICP-mass spectrometry after nitric acid digestion. The data indicated a significant enrichment in metals associated with solder and copper wire at the site itself and a downwind dispersion of this source material to a distance of approximately 2.0 km. Chlorine and bromine were also elevated at this site as residues from polyvinyl chloride combustion and flame retardants respectively. The elemental composition indicated that only low technology electrical equipment was being treated this way. Multivariate statistical analyses by principal components analysis and polytopic vector analysis identified three sources contributing to the system; (i) burn site residue dispersing within 2 km from the source site, (ii) marine matter on the beaches alone and (iii) the baseline soil conditions of the city of Accra. Risk ratios and hazard quotients developed from the measured concentrations indicated that copper was providing the greatest risk to inhabitants in most cases although nickel, vanadium, chromium and zinc also contributed.

Royal Society of Chemistry (RSC)

2019

Technical and environmental viability of a European CO2 EOR system

Thorne, Rebecca Jayne; Sundseth, Kyrre; Bouman, Evert; Czarnowska, Lucyna; Mathisen, Anette; Skagestad, Ragnhild; Stanek, Wojciech; Pacyna, Jozef M; Pacyna, Elisabeth G

Captured CO2 from large industrial emitters may be used for enhanced oil recovery (EOR), but as of yet there are no European large-scale EOR systems. Recent implementation decisions for a Norwegian carbon capture and storage demonstration will result in the establishment of a central CO2 hub on the west-coast of Norway and storage on the Norwegian Continental Shelf. This development may continue towards a large-scale operation involving European CO2 and CO2 EOR operation. To this end, a conceptual EOR system was developed here based on an oxyfuel power plant located in Poland that acted as a source for CO2, coupled to a promising oil field located on the Norwegian Continental Shelf. Lifecycle assessment was subsequently used to estimate environmental emissions indicators. When averaged over the operational lifetime, results show greenhouse gas (GHG) emissions of 0.4 kg CO2-eq per kg oil (and n kWh associated electricity) produced, of which 64 % derived from the oxyfuel power plant. This represents a 71 % emission reduction when compared to the same amount of oil and electricity production using conventional technology. Other environmental impact indicators were increased, showing that this type of CO2 EOR system may help reach GHG reduction targets, but care should be taken to avoid problem shifting.

Elsevier

2020

Impact of synthetic space-borne NO2 observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO2 analyses

Timmermans, Renske; Segers, Arjo; Curier, Lyana; Abida, Rachid; Attié, Jean-Luc; El Amraoui, Laaziz; Eskes, Henk; de Haan, Johan; Kujanpää, Jukka; Lahoz, William A.; Nijhuis, Albert Oude; Quesada-Ruiz, Samuel; Ricaud, Philippe; Veefkind, Pepijn; Schaap, Martijn

We present an Observing System Simulation Experiment (OSSE) dedicated to the evaluation of the added value of the Sentinel-4 and Sentinel-5P missions for tropospheric nitrogen dioxide (NO2). Sentinel-4 is a geostationary (GEO) mission covering the European continent, providing observations with high temporal resolution (hourly). Sentinel-5P is a low Earth orbit (LEO) mission providing daily observations with a global coverage. The OSSE experiment has been carefully designed, with separate models for the simulation of observations and for the assimilation experiments and with conservative estimates of the total observation uncertainties. In the experiment we simulate Sentinel-4 and Sentinel-5P tropospheric NO2 columns and surface ozone concentrations at 7 by 7 km resolution over Europe for two 3-month summer and winter periods. The synthetic observations are based on a nature run (NR) from a chemistry transport model (MOCAGE) and error estimates using instrument characteristics. We assimilate the simulated observations into a chemistry transport model (LOTOS-EUROS) independent of the NR to evaluate their impact on modelled NO2 tropospheric columns and surface concentrations. The results are compared to an operational system where only ground-based ozone observations are ingested. Both instruments have an added value to analysed NO2 columns and surface values, reflected in decreased biases and improved correlations. The Sentinel-4 NO2 observations with hourly temporal resolution benefit modelled NO2 analyses throughout the entire day where the daily Sentinel-5P NO2 observations have a slightly lower impact that lasts up to 3–6 h after overpass. The evaluated benefits may be even higher in reality as the applied error estimates were shown to be higher than actual errors in the now operational Sentinel-5P NO2 products. We show that an accurate representation of the NO2 profile is crucial for the benefit of the column observations on surface values. The results support the need for having a combination of GEO and LEO missions for NO2 analyses in view of the complementary benefits of hourly temporal resolution (GEO, Sentinel-4) and global coverage (LEO, Sentinel-5P).

2019

Valuing mangrove biodiversity and ecosystem services: A deliberative choice experiment in Mida Creek, Kenya

Owuor, Margaret Awuor; Mulwa, Richard; Otieno, Philip; Icely, John; Newton, Alice

Elsevier

2019

Seabird-transported contaminants are reflected in the Arctic tundra, but not in its soil-dwelling springtails (Collembola)

Kristiansen, Silje Marie; Leinaas, Hans Petter; Herzke, Dorte; Hylland, Ketil; Gabrielsen, Geir W.; Harju, Mikael; Borgå, Katrine

2019

Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia

Liu, Yang; Zhu, Yali; Wang, Huijun; Gao, Yongqi; Sun, Jianqi; Wang, Tao; Ma, Jiehua; Yurova, Alla; Li, Fei

2019

Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic

Im, Ulas; Christensen, Jesper H.; Nielsen, Ole-Kenneth; Sand, Maria; Makkonen, Risto; Geels, Camilla; Anderson, Camilla; Kukkonen, Jaakko; Lopez-Aparicio, Susana; Brandt, Jørgen

This modeling study presents the sectoral contributions of anthropogenic emissions in the four Nordic countries (Denmark, Finland, Norway and Sweden) on air pollution levels and the associated health impacts and costs over the Nordic and the Arctic regions for the year 2015. The Danish Eulerian Hemispheric Model (DEHM) has been used on a 50 km resolution over Europe in tagged mode in order to calculate the response of a 30 % reduction of each emission sector in each Nordic country individually. The emission sectors considered in the study were energy production, non-industrial/commercial heating, industry, traffic, off-road mobile sources and waste management/agriculture. In total, 28 simulations were carried out. Following the air pollution modeling, the Economic Valuation of Air Pollution (EVA) model has been used to calculate the associated premature mortality and their costs. Results showed that more than 80 % of the PM2.5 concentration was attributed to transport from outside these four countries, implying an effort outside the Nordic region in order to decrease the pollutant levels over the area. The leading emission sector in each country was found to be non-industrial combustion (contributing by more than 60 % to the total PM2.5 mass coming from the country itself), except for Sweden, where industry contributed to PM2.5 with a comparable amount to non-industrial combustion. In addition to non-industrial combustion, the next most important source categories were industry, agriculture and traffic. The main chemical constituent of PM2.5 concentrations that comes from the country itself is calculated to be organic carbon in all countries, which suggested that non-industrial wood burning was the dominant national source of pollution in the Nordic countries. We have estimated the total number of premature mortality cases due to air pollution to be around 4000 in Denmark and Sweden and around 2000 in Finland and Norway. These premature mortality cases led to a total cost of EUR 7 billion in the selected Nordic countries. The assessment of the related premature mortality and associated cost estimates suggested that non-industrial combustion, together with industry and traffic, will be the main sectors to be targeted in emission mitigation strategies in the future.

2019

DNA double‐strand breaks in Arctic char (Salvelinus alpinus) from Bjørnøya in the Norwegian Arctic

Neerland, Eirik D.; Bytingsvik, Jenny; Nikiforov, Vladimir; Evenset, Anita; Krøkje, Åse

High levels of organochlorine contaminants (OCs) have been found in arctic char (Salvelinus alpinus) from Lake Ellasjøen, Bjørnøya (Norwegian Arctic). The aim of the present study was to investigate the potential genotoxic effect of environmental organochlorine contaminant exposure in arctic char from Ellasjøen compared with arctic char from the low‐contaminated Lake Laksvatn nearby. Blood was analyzed using agarose gel electrophoresis and image data analysis to quantify the fraction of total DNA that migrated into the gel (DNA‐FTM) as a relative measure of DNA double‐strand breaks (DSBs). Analysis by GC‐MS of muscle samples showed an average 43 times higher concentration of ΣOCs in arctic char from Ellasjøen (n = 18) compared with Laksvatn char (n = 21). Char from Lake Ellasjøen had a much higher frequency of DSBs, as measured by DNA‐FTM, than char from Lake Laksvatn. Principal component analysis and multiple linear regressions show that there was a significant positive relationship between DSBs and levels of organochlorine contaminants in the char. In addition, DSBs were less frequent in reproductively mature char than in immature char. The results suggest that organochlorine contaminants are genotoxic to arctic char.

Pergamon Press

2019

Health and Exposure to VOCs From Pinewood in Indoor Environments

Skulberg, Knut Ragnvald; Nyrud, Anders Q.; Goffeng, Lars Ole; Wisthaler, Armin

As a natural, biological material, wood emits various organic chemical substances, mostly volatile organic compounds (VOCs), very volatile organic compounds (VVOCs) and formaldehyde. When such emissions occur in indoor spaces, concentrations of these substances are higher than concentrations outdoors. Consequently, the level of emissions from building materials are of relevance in relation to their possible health effects. The aim of the study was to test the hypothesis that exposure to VOCs from Scots pine (Pinus sylvestris) might increase mucous membrane symptoms and/or general symptoms, compared to exposure to VOCs from Norway spruce (Picea abies). The study was carried out as a double-blinded, crossover, randomized, controlled trial. The health indicators were measured using objective and subjective methods. The VOC exposure was measured with a proton-transfer-reaction time-of-flight mass spectrometer. Thirty healthy individuals participated. The mean concentration of CO2 inside the chamber in each session varied between 420 ppm and 533 ppm. The temperature and RH varied between 21.5°C and 23.7°C and 12.0% and 24.2%. Ozone was supplied via ventilated outdoor air. The median concentration in outdoor air was 23 μg/m3 (13 ppb). The study was conducted with a statistically significant difference in the exposure to VOCs between the experimental (pine) exposure and the control (spruce) exposure. The mean concentrations of VOCs during the experimental exposure were methanol (31 ppb), acetaldehyde (8 ppb), formic acid (11 ppb), acetone/propanal (14 ppb), acetic acid (14 ppb) and monoterpenes (172 ppb). No difference in health outcome was revealed between the experimental and the control exposure. No inflammatory reactions or sensory irritation were found with exposure to 172 ppb monoterpenes and a low ozone concentration. Low relative humidity may have increased eye blinking in the participants in both exposure situations.

Frontiers Media S.A.

2019

Integrated exposure assessment of northern goshawk (Accipiter gentilis) nestlings to legacy and emerging organic pollutants using non-destructive samples

Briels, Nathalie; Torgersen, Lene Norstrand; Castano-Ortíz, Jose M.; Løseth, Mari Engvig; Herzke, Dorte; Nygård, Torgeir; Bustnes, Jan Ove; Ciesielski, Tomasz Maciej; Poma, Giulia; Malarvannan, Govindan; Covaci, Adrian; Jaspers, Veerle

In the present study, concentrations of legacy and emerging contaminants were determined in three non-destructive matrices (plasma, preen oil and body feathers) of northern goshawk (Accipiter gentilis) nestlings. Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), together with emerging pollutants, including per- and polyfluorinated alkyl substances (PFASs), novel brominated flame retardants (NBFRs), phosphorus flame retardants (PFRs) and Dechlorane Plus isomers (DPs) were targeted. Plasma, preen oil and feather samples were collected from 61 goshawk nestlings in Norway (Trøndelag and Troms) in 2015 and 2016, and pollutant concentrations were compared between the three matrices. In plasma, PFASs were detected in the highest concentrations, ranging between 1.37 and 36.0 ng/mL, which suggests that the nestlings were recently and continuously exposed to these emerging contaminants, likely through dietary input. In preen oil, OCPs (169–3560 ng/g) showed the highest concentrations among the investigated compounds, consistent with their high lipophilicity. PFRs (2.60–314 ng/g) were the dominant compounds in feathers and are thought to originate mainly from external deposition, as they were not detected in the other two matrices. NBFRs and DPs were generally not detected in the nestlings, suggesting low presence of these emerging contaminants in their environment and/or low absorption. Strong and significant correlations between matrices were found for all POPs (rs = 0.46–0.95, p < 0.001), except for hexachlorobenzene (HCB, rs = 0.20, p = 0.13). Correlations for PFASs were less conclusive: linear perfluorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnA), perfluorododecanoate (PFDoA) and perfluorotetradecanoate (PFTeA) showed strong and significant correlations between plasma and feathers (rs = 0.42–0.72, p < 0.02), however no correlation was found for perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA) and perfluorotridecanoate (PFTriA) (rs = 0.05–0.33, p = 0.09–0.85). A lack of consistency between the PFAS compounds (contrary to POPs), and between studies, prevents concluding on the suitability of the investigated matrices for PFAS biomonitoring.

Elsevier

2019

Perfluorocyclobutane (PFC-318, c-C4F8) in the global atmosphere

Mühle, Jens; Trudinger, Cathy; Western, Luke M.; Rigby, Matthew; Vollmer, Martin K.; Park, Sunyoung; Manning, Alistair J.; Say, Daniel; Ganesan, Anita; Steele, L. Paul; Ivy, Diane J.; Arnold, Tim; Li, Shanlan; Stohl, Andreas; Harth, Christina M.; Salameh, Peter K.; McCulloch, Archie; O'Doherty, Simon; Park, Mi-Kyung; Jo, Chun Ok; Young, Dickon; Stanley, Kieran; Krummel, Paul B.; Mitrevski, Blagoj; Hermansen, Ove; Lunder, Chris Rene; Evangeliou, Nikolaos; Yao, Bo; Kim, Jooil; Hmiel, Benjamin; Buizert, Christo; Petrenko, Vasilii V.; Arduini, Jgor; Maione, Michela; Etheridge, David M.; Michalopoulou, Eleni; Czerniak, Mike; Severinghaus, Jeffrey P.; Reimann, Stefan; Simmonds, Peter G.; Fraser, Paul J.; Prinn, Ronald G.; Weiss, Ray F.

We reconstruct atmospheric abundances of the potent greenhouse gas c-C4F8 (perfluorocyclobutane, perfluorocarbon PFC-318) from measurements of in situ, archived, firn, and aircraft air samples with precisions of ∼1 %–2 % reported on the SIO-14 gravimetric calibration scale. Combined with inverse methods, we found near-zero atmospheric abundances from the early 1900s to the early 1960s, after which they rose sharply, reaching 1.66 ppt (parts per trillion dry-air mole fraction) in 2017. Global c-C4F8 emissions rose from near zero in the 1960s to 1.2±0.1 (1σ) Gg yr−1 in the late 1970s to late 1980s, then declined to 0.77±0.03 Gg yr−1 in the mid-1990s to early 2000s, followed by a rise since the early 2000s to 2.20±0.05 Gg yr−1 in 2017. These emissions are significantly larger than inventory-based emission estimates. Estimated emissions from eastern Asia rose from 0.36 Gg yr−1 in 2010 to 0.73 Gg yr−1 in 2016 and 2017, 31 % of global emissions, mostly from eastern China. We estimate emissions of 0.14 Gg yr−1 from northern and central India in 2016 and find evidence for significant emissions from Russia. In contrast, recent emissions from northwestern Europe and Australia are estimated to be small (≤1 % each). We suggest that emissions from China, India, and Russia are likely related to production of polytetrafluoroethylene (PTFE, “Teflon”) and other fluoropolymers and fluorochemicals that are based on the pyrolysis of hydrochlorofluorocarbon HCFC-22 (CHClF2) in which c-C4F8 is a known by-product. The semiconductor sector, where c-C4F8 is used, is estimated to be a small source, at least in South Korea, Japan, Taiwan, and Europe. Without an obvious correlation with population density, incineration of waste-containing fluoropolymers is probably a minor source, and we find no evidence of emissions from electrolytic production of aluminum in Australia. While many possible emissive uses of c-C4F8 are known and though we cannot categorically exclude unknown sources, the start of significant emissions may well be related to the advent of commercial PTFE production in 1947. Process controls or abatement to reduce the c-C4F8 by-product were probably not in place in the early decades, explaining the increase in emissions in the 1960s and 1970s. With the advent of by-product reporting requirements to the United Nations Framework Convention on Climate Change (UNFCCC) in the 1990s, concern about climate change and product stewardship, abatement, and perhaps the collection of c-C4F8 by-product for use in the semiconductor industry where it can be easily abated, it is conceivable that emissions in developed countries were stabilized and then reduced, explaining the observed emission reduction in the 1980s and 1990s. Concurrently, production of PTFE in China began to increase rapidly. Without emission reduction requirements, it is plausible that global emissions today are dominated by China and other developing countries. We predict that c-C4F8 emissions will continue to rise and that c-C4F8 will become the second most important emitted PFC in terms of CO2-equivalent emissions within a year or two. The 2017 radiative forcing of c-C4F8 (0.52 mW m−2) is small but emissions of c-C4F8 and other PFCs, due to their very long atmospheric lifetimes, essentially permanently alter Earth's radiative budget and should be reduced. Significant emissions inferred outside of the investigated regions clearly show that observational capabilities and reporting requirements need to be improved to understand global and country-scale emissions of PFCs and other synthetic greenhouse gases and ozone-depleting substances.

2019

Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model

Li, Fei; Orsolini, Yvan; Keenlyside, Noel; Shen, Mao-Lin; Counillon, Francois; Wang, Yiguo

Snow initialization has been previously investigated as a potential source of predictability atthe subseasonal‐to‐seasonal (S2S) timescale in winter and spring, through its local radiative,thermodynamical, and hydrological feedbacks. However, previous studies were conducted with low‐topmodels over short periods only. Furthermore, the potential role of the land surface‐stratosphere connectionupon the S2S predictability had remained unclear. To this end, we have carried out twin 30‐memberensembles of 2‐month (November and December) retrospective forecasts over the period 1985–2016, witheither realistic or degraded snow initialization. A high‐top version of the Norwegian Climate PredictionModel is used, based on the Whole Atmosphere Community Climate Model, to insure improved couplingwith the stratosphere. In a composite difference of high versus low initial Eurasian snow, the surfacetemperature is strongly impacted by the presence of snow, and wave activityfluxes into the stratosphere areenhanced at a 1‐month lag, leading to a weakened polar vortex. Focusing further on 7 years characterized bya strongly negative phase of the Arctic Oscillation, wefind a weak snow feedback contributing to themaintenance of the negative Arctic Oscillation. By comparing the twin forecasts, we extracted the predictiveskill increment due to realistic snow initialization. The prediction of snow itself is greatly improved, andthere is increased skill in surface temperature over snow‐covered land in thefirst 10 days, and localized skillincrements in the mid‐latitude transition regions on the southernflanks of the snow‐covered land areas, atlead times longer than 30 days.

American Geophysical Union (AGU)

2019

Recent Trends in Maintenance Costs for Façades Due to Air Pollution in the Oslo Quadrature, Norway

Grøntoft, Terje

This study assesses changes since 1980 in the maintenance cost of the façades of the historical 17th to 19th century buildings of the Oslo Quadrature, Norway, due to atmospheric chemical wear, including the influence of air pollution. Bottom up estimations by exposure–response functions for an SO2 dominated situation reported in the literature for 1979 and 1995 were compared with calculations for the present (2002–2014) multi-pollutant situation. The present maintenance cost, relative to the total façade area, due to atmospheric wear and soiling was found to be about 1.6 Euro/m2 per year. The exposure to local air pollution, mainly particulate matter and NOx gases, contributed to 0.6 Euro/m2 (38%), of which the cost due to wear of renderings was about 0.4 Euro/m2 (22%), that due to the cleaning of glass was 0.2 Euro/m2 (11%), and that due to wear of other façade materials was 0.07 Euro/m2 (5%). The maintenance cost due to the atmospheric wear was found to be about 3.5%, and that due to the local air pollution about 1.1% of the total municipal building maintenance costs. The present (2002–2014) maintenance costs, relative to the areas of the specific materials, due to atmospheric wear are probably the highest for painted steel surfaces, about 8–10 Euro/m2, then about 2 Euro/m2 for façade cleaning and the maintenance of rendering, and down to 0.3 Euro/m2 for the maintenance of copper roofs. These costs should be adjusted with the importance of the wear relative to other reasons for the façade maintenance.

MDPI

2019

Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations

Orsolini, Yvan; Wegmann, Martin; Dutra, Emanuel; Liu, Boqi; Balsamo, Gianpaolo; Yang, Kun; de Rosnay, Patricia; Zhu, Congwen; Wang, Wenli; Senan, Retish; Arduini, Gabriele

The Tibetan Plateau (TP) region, often referred to as the Third Pole, is the world's highest plateau and exerts a considerable influence on regional and global climate. The state of the snowpack over the TP is a major research focus due to its great impact on the headwaters of a dozen major Asian rivers. While many studies have attempted to validate atmospheric reanalyses over the TP area in terms of temperature or precipitation, there have been – remarkably – no studies aimed at systematically comparing the snow depth or snow cover in global reanalyses with satellite and in situ data. Yet, snow in reanalyses provides critical surface information for forecast systems from the medium to sub-seasonal timescales.

Here, snow depth and snow cover from four recent global reanalysis products, namely the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 and ERA-Interim reanalyses, the Japanese 55-year Reanalysis (JRA-55) and the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA-2), are inter-compared over the TP region. The reanalyses are evaluated against a set of 33 in situ station observations, as well as against the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover and a satellite microwave snow depth dataset. The high temporal correlation coefficient (0.78) between the IMS snow cover and the in situ observations provides confidence in the station data despite the relative paucity of in situ measurement sites and the harsh operating conditions.

While several reanalyses show a systematic overestimation of the snow depth or snow cover, the reanalyses that assimilate local in situ observations or IMS snow cover are better capable of representing the shallow, transient snowpack over the TP region. The latter point is clearly demonstrated by examining the family of reanalyses from the ECMWF, of which only the older ERA-Interim assimilated IMS snow cover at high altitudes, while ERA5 did not consider IMS snow cover for high altitudes. We further tested the sensitivity of the ERA5-Land model in offline experiments, assessing the impact of blown snow sublimation, snow cover to snow depth conversion and, more importantly, excessive snowfall. These results suggest that excessive snowfall might be the primary factor for the large overestimation of snow depth and cover in ERA5 reanalysis. Pending a solution for this common model precipitation bias over the Himalayas and the TP, future snow reanalyses that optimally combine the use of satellite snow cover and in situ snow depth observations in the assimilation and analysis cycles have the potential to improve medium-range to sub-seasonal forecasts for water resources applications.

European Geosciences Union (EGU)

2019

Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo

Kazimirova, Alena; Baranokova, Magdalena; Staruchova, Marta; Drlickova, Martina; Volkovova, Katarina; Dusinska, Maria

2019

Estimating tropospheric and stratospheric winds using infrasound from explosions

Blixt, Erik Mårten; Näsholm, Sven Peter; Gibbons, Steven John; Evers, Laslo; Charlton-Perez, Andrew; Orsolini, Yvan; Kværna, Tormod

The receiver-to-source backazimuth of atmospheric infrasound signals is biased when cross-winds are present along the propagation path. Infrasound from 598 surface explosions from over 30 years in northern Finland is measured with high spatial resolution on an array 178 km almost due North. The array is situated in the classical shadow-zone distance from the explosions. However, strong infrasound is almost always observed, which is most plausibly due to partial reflections from stratospheric altitudes. The most probable propagation paths are subject to both tropospheric and stratospheric cross-winds, and the wave-propagation modelling in this study yields good correspondence between the observed backazimuth deviation and cross-winds from the European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim reanalysis product. This study demonstrates that atmospheric cross-winds can be estimated directly from infrasound data using propagation time and backazimuth deviation observations. This study finds these cross-wind estimates to be in good agreement with the ERA-Interim reanalysis.

Acoustical Society of America (ASA)

2019

Publikasjon
År
Kategori