Fant 778 publikasjoner. Viser side 26 av 33:
2019
2019
Estimating tropospheric and stratospheric winds using infrasound from explosions
The receiver-to-source backazimuth of atmospheric infrasound signals is biased when cross-winds are present along the propagation path. Infrasound from 598 surface explosions from over 30 years in northern Finland is measured with high spatial resolution on an array 178 km almost due North. The array is situated in the classical shadow-zone distance from the explosions. However, strong infrasound is almost always observed, which is most plausibly due to partial reflections from stratospheric altitudes. The most probable propagation paths are subject to both tropospheric and stratospheric cross-winds, and the wave-propagation modelling in this study yields good correspondence between the observed backazimuth deviation and cross-winds from the European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim reanalysis product. This study demonstrates that atmospheric cross-winds can be estimated directly from infrasound data using propagation time and backazimuth deviation observations. This study finds these cross-wind estimates to be in good agreement with the ERA-Interim reanalysis.
Acoustical Society of America (ASA)
2019
2019
2019
Academic Press
2019
2019
We present here emissions estimated from a newly developed emission model for residential wood combustion (RWC) at high spatial and temporal resolution, which we name the MetVed model. The model estimates hourly emissions resolved on a 250 m grid resolution for several compounds, including particulate matter (PM), black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) in Norway for a 12-year period. The model uses novel input data and calculation methods that combine databases built with an unprecedented high level of detail and near-national coverage. The model establishes wood burning potential at the grid based on the dependencies between variables that influence emissions: i.e. outdoor temperature, number of and type and size of dwellings, type of available heating technologies, distribution of wood-based heating installations and their associated emission factors. RWC activity with a 1 h temporal profile was produced by combining heating degree day and hourly and weekday activity profiles reported by wood consumers in official statistics. This approach results in an improved characterisation of the spatio-temporal distribution of wood use, and subsequently of emissions, required for urban air quality assessments. Whereas most variables are calculated based on bottom-up approaches on a 250 m spatial grid, the MetVed model is set up to use official wood consumption at the county level and then distributes consumption to individual grids proportional to the physical traits of the residences within it. MetVed combines consumption with official emission factors that makes the emissions also upward scalable from the 250 m grid to the national level.
The MetVed spatial distribution obtained was compared at the urban scale to other existing emissions at the same scale. The annual urban emissions, developed according to different spatial proxies, were found to have differences up to an order of magnitude. The MetVed total annual PM2.5 emissions in the urban domains compare well to emissions adjusted based on concentration measurements. In addition, hourly PM2.5 concentrations estimated by an Eulerian dispersion model using MetVed emissions were compared to measurements at air quality stations. Both hourly daily profiles and the seasonality of PM2.5 show a slight overestimation of PM2.5 levels. However, a comparison with black carbon from biomass burning and benzo(a)pyrene measurements indicates higher emissions during winter than that obtained by MetVed. The accuracy of urban emissions from RWC relies on the accuracy of the wood consumption (activity data), emission factors and the spatio-temporal distribution. While there are still knowledge gaps regarding emissions, MetVed represents a vast improvement in the spatial and temporal distribution of RWC.
2019
2019
2019
2019
Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis
2019
2019
2019
2019
2019
Information on the origin of pollution constitutes an essential step of air quality management as it helps identifying measures to control air pollution. In this work, we review the most widely used source-apportionment methods for air quality management. Using theoretical and real-case datasets we study the differences among these methods and explain why they result in very different conclusions to support air quality planning. These differences are a consequence of the intrinsic assumptions that underpin the different methodologies and determine/limit their range of applicability. We show that ignoring their underlying assumptions is a risk for efficient/successful air quality management as these methods are sometimes used beyond their scope and range of applicability. The simplest approach based on increments (incremental approach) is often not suitable to support air quality planning. Contributions obtained through mass-transfer methods (receptor models or tagging approaches built in air quality models) are appropriate to support planning but only for specific pollutants. Impacts obtained via “brute-force” methods are the best suited but it is important to assess carefully their application range to make sure they reproduce correctly the prevailing chemical regimes.
Elsevier
2019
BioMed Central (BMC)
2019
2019
American Geophysical Union (AGU)
2019
2019
2019
Supporting the improvement of air quality management practices: The “FAIRMODE pilot” activity
Academic Press
2019