Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 827 publikasjoner. Viser side 29 av 35:

Publikasjon  
År  
Kategori

Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)

Thompson, Rona Louise; Montzka, Stephen A.; Vollmer, Martin K.; Arduini, Jgor; Crotwell, Molly; Krummel, Paul B.; Lunder, Chris Rene; Mühle, Jens; O'doherty, Simon; Prinn, Ronald G.; Reimann, Stefan; Vimont, Isaac; Wang, Hsiang; Weiss, Ray F.; Young, Dickon

The hydroxyl radical (OH) largely determines the atmosphere's oxidative capacity and, thus, the lifetimes of numerous trace gases, including methane (CH4). Hitherto, observation-based approaches for estimating the atmospheric oxidative capacity have primarily relied on using methyl chloroform (MCF), but as the atmospheric abundance of MCF has declined, the uncertainties associated with this method have increased. In this study, we examine the use of five hydrofluorocarbons (HFCs) (HFC-134a, HFC-152a, HFC-365mfc, HFC-245fa, and HFC-32) in multi-species inversions, which assimilate three HFCs simultaneously, as an alternative method to estimate atmospheric OH. We find robust estimates of OH regardless of which combination of the three HFCs are used in the inversions. Our results show that OH has remained fairly stable during our study period from 2004 to 2021, with variations of

2024

Simulation of volcanic ash ingestion into a large aero engine: particle–fan interactions

Vogel, Andreas; Durant, Adam; Cassiani, Massimo; Clarkson, Rory J.; Slaby, Michal; Diplas, Spyridon; Krüger, Kirstin; Stohl, Andreas

Volcanic ash (VA) clouds in flight corridors present a significant threat to aircraft operations
as VA particles can cause damage to gas turbine engine components that lead to a
reduction of engine performance and compromise flight safety. In the last decade,
research has mainly focused on processes such as erosion of compressor blades and
static components caused by impinging ash particles as well as clogging and/or corrosion
effects of soft or molten ash particles on hot section turbine airfoils and components.
However, there is a lack of information on how the fan separates ingested VA particles
from the core stream flow into the bypass flow and therefore influences the mass concentration
inside the engine core section, which is most vulnerable and critical for safety. In
this numerical simulation study, we investigated the VA particle–fan interactions and
resulting reductions in particle mass concentrations entering the engine core section as a
function of particle size, fan rotation rate, and for two different flight altitudes. For this,
we used a high-bypass gas-turbine engine design, with representative intake, fan, spinner,
and splitter geometries for numerical computational fluid dynamics (CFD) simulations
including a Lagrangian particle-tracking algorithm. Our results reveal that
particle–fan interactions redirect particles from the core stream flow into the bypass
stream tube, which leads to a significant particle mass concentration reduction inside the
engine core section. The results also show that the particle–fan interactions increase
with increasing fan rotation rates and VA particle size. Depending on ingested VA size
distributions, the particle mass inside the engine core flow can be up to 30% reduced
compared to the incoming particle mass flow. The presented results enable future calculations
of effective core flow exposure or dosages based on simulated or observed atmospheric
VA particle size distribution, which is required to quantify engine failure
mechanisms after exposure to VA. As an example, we applied our methodology to a
recent aircraft encounter during the Mt. Kelud 2014 eruption. Based on ambient VA concentrations
simulated with an atmospheric particle dispersion model (FLEXPART), we
calculated the effective particle mass concentration inside the core stream flow along the
actual flight track and compared it with the whole engine exposure.

2019

Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions?

Paunu, Ville-Veikko; Karvosenoja, Niko; Segersson, David; Lopez-Aparicio, Susana; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Thorsteinsson, Throstur; Niemi, Jarkko V; Vo, Dam Thanh; Gon, Hugo A.C. Denier van der; Brandt, Jørgen; Geels, Camilla

Residential wood combustion (RWC) is a major source of air pollutants in the Nordic and many other countries. The emissions of the pollutants have been estimated with inventories on several scopes, e.g. local and national. An important aspect of the inventories is the spatial distribution of the emissions, as it has an effect on health impact assessments. In this study, we present a novel residential wood combustion emission inventory for the Nordic countries based on national inventories and new gridding of the emissions. We compare the emissions of the Nordic inventory, and especially their spatial distribution, to local assessments and European level TNO-newRWC-inventory to assess the spatial proxies used. Common proxies used in the national inventories in the Nordic countries were building data on locations and primary heating methods and questionnaire-based wood use estimates for appliances or primary heating methods. Chimney sweeper register data was identified as good proxy data, but such data may not be available in an applicable format. Comparisons of national inventories to local assessments showed the possibility to achieve similar spatial distributions through nation-wide methods as local ones. However, this won't guarantee that the emissions are similar. Comparison to the TNO-newRWC-inventory revealed the importance of how differences between urban and rural residential wood combustion are handled. The comparison also highlighted the importance of local characteristics of residential wood combustion in the spatial distribution of emissions.

2021

Assessing the Relocation Robustness of on Field Calibrations for Air Quality Monitoring Devices

Esposito, E; Salvato, M; Vito, S. De; Fattoruso, G; Castell, Nuria; Karatzas, K.; Francia, G Di

2018

Ingestion of car tire crumb rubber and uptake of associated chemicals by lumpfish (Cyclopterus lumpus)

Hägg, Fanny; Herzke, Dorte; Nikiforov, Vladimir A.; Booth, Andy M.; Sperre, Kristine Hopland; Sørensen, Lisbet; Egeness, Mari Jystad; Halsband, Claudia

Car tire rubber constitutes one of the largest fractions of microplastics emissions to the environment. The two main emission sources are tire wear particles (TWPs) formed through abrasion during driving and runoff of crumb rubber (CR) granulate produced from end-of-life tires that is used as infill on artificial sports fields. Both tire wear particles and crumb rubber contain a complex mixture of metal and organic chemical additives, and exposure to both the particulate forms and their leachates can cause adverse effects in aquatic species. An understanding of the exposure pathways and mechanisms of toxicity are, however, scarce. While the most abundant metals and organic chemicals in car tire rubber have multiple other applications, para-phenylenediamines (PDs) are primarily used as rubber antioxidants and were recently shown to cause negative effects in aquatic organisms. The present study investigated the responses of the marine lumpfish (Cyclopterus lumpus) to crumb rubber exposure in a controlled feeding experiment. Juvenile fish were offered crumb rubber particles with their feed for 1 week, followed by 2 weeks of depuration. Crumb rubber particle ingestion occurred in >75% of exposed individuals, with a maximum of 84 particles observed in one specimen. Gastrointestinal tract retention times varied, with some organisms having no crumb rubber particles and others still containing up to 33 crumb rubber particles at the end of the experiment. Blood samples were analyzed for metals and organic chemicals, with ICP-MS analysis revealing there was no uptake of metals by the exposed fish. Interestingly, high resolution GC-MS analysis indicated that uptake of PDs into lumpfish blood was proportionate to the number of ingested CR particles. Three of the PDs found in blood were the same as those identified in the additive mixture Vulkanox3100. N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) was the most concentrated PD in both the crumb rubber and lumpfish blood. The transformation product 6PPD-quinone was detected in the rubber material, but not in the blood. This study demonstrates that PDs are specific and bioavailable chemicals in car tire rubber that have the potential to serve as biomarkers of recent exposure to tire chemicals, where simple blood samples could be used to assess recent tire chemical exposure in vertebrates, including humans.

2023

Warm Arctic–cold Siberia: comparing the recent and the early 20th century Arctic warmings

Zolina, Olga; Orsolini, Yvan

The Warm Arctic–cold Siberia surface temperature pattern during recent boreal winter is suggested to be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed together with an increase in mid-latitude extreme events and a meridionalization of tropospheric circulation. However, the exact mechanism behind this dipole temperature pattern is still under debate, since model experiments with reduced sea ice show conflicting results. We use the early twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between September sea ice in the Barents–Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

2018

A regional modelling study of halogen chemistry within a volcanic plume of Mt Etna's Christmas 2018 eruption

Narivelo, Herizo; Hamer, Paul David; Marécal, Virginie; Surl, Luke; Roberts, Tjarda; Pelletier, Sophie; Josse, Béatrice; Guth, Jonathan; Bacles, Mickaël; Warnach, Simon; Wagner, Thomas; Corradini, Stefano; Salerno, Giuseppe; Guerrieri, Lorenzo

Volcanoes are known to be important emitters of atmospheric gases and aerosols, which for certain volcanoes can include halogen gases and in particular HBr. HBr emitted in this way can undergo rapid atmospheric oxidation chemistry (known as the bromine explosion) within the volcanic emission plume, leading to the production of bromine oxide (BrO) and ozone depletion. In this work, we present the results of a modelling study of a volcanic eruption from Mt Etna that occurred around Christmas 2018 and lasted 6 d. The aims of this study are to demonstrate and evaluate the ability of the regional 3D chemistry transport model Modèle de Chimie Atmosphérique de Grande Echelle (MOCAGE) to simulate the volcanic halogen chemistry in this case study, to analyse the variability of the chemical processes during the plume transport, and to quantify its impact on the composition of the troposphere at a regional scale over the Mediterranean basin.

The comparison of the tropospheric SO2 and BrO columns from 25 to 30 December 2018 from the MOCAGE simulation with the columns derived from the TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements shows a very good agreement for the transport of the plume and a good consistency for the concentrations if considering the uncertainties in the flux estimates and the TROPOMI columns. The analysis of the bromine species' partitioning and of the associated chemical reaction rates provides a detailed picture of the simulated bromine chemistry throughout the diurnal cycle and at different stages of the volcanic plume's evolution. The partitioning of the bromine species is modulated by the time evolution of the emissions during the 6 d of the eruption; by the meteorological conditions; and by the distance of the plume from the vent, which is equivalent to the time since the emission. As the plume travels further from the vent, the halogen source gas HBr becomes depleted, BrO production in the plume becomes less efficient, and ozone depletion (proceeding via the Br+O3 reaction followed by the BrO self-reaction) decreases. The depletion of HBr relative to the other prevalent hydracid HCl leads to a shift in the relative concentrations of the Br− and Cl− ions, which in turn leads to reduced production of Br2 relative to BrCl.

The MOCAGE simulations show a regional impact of the volcanic eruption on the oxidants OH and O3 with a reduced burden of both gases that is caused by the chemistry in the volcanic plume. This reduction in atmospheric oxidation capacity results in a reduced CH4 burden. Finally, sensitivity tests on the composition of the emissions carried out in this work show that the production of BrO is higher when the volcanic emissions of sulfate aerosols are increased but occurs very slowly when no sulfate and Br radicals are assumed to be in the emissions. Both sensitivity tests highlight a significant impact on the oxidants in the troposphere at the regional scale of these assumptions.

All the results of this modelling study, in particular the rapid formation of BrO, which leads to a significant loss of tropospheric ozone, are consistent with previous studies carried out on the modelling of volcanic halogens.

2023

Assessing the impacts of citizen-led policies on emissions, air quality and health

Oliveira, Kevin; Rodrigues, Vera; Slingerland, Stephan; Vanherle, Kris; Soares, Joana; Rafael, Sandra; Trozzi, Carlo; Bouman, Evert; Ferreira, José Alexandre; Kewo, Angreine; Nielsen, Per Sieverts; Diafas, Iason; Monteiro, Alexandra; Miranda, Andreia I.; Lopes, Marta Júlia Marques; Hayes, Enda T.

Air pollution is a global challenge, and especially urban areas are particularly affected by acute episodes. Traditional approaches used to mitigate air pollution primarily consider the technical aspects of the problem but not the role of citizen behaviour and day-to-day practices. ClairCity, a Horizon 2020 funded project, created an impact assessment framework considering the role of citizen behaviour to create future scenarios, aiming to improve urban environments and the wellbeing and health of its inhabitants. This framework was applied to six pilot cases: Bristol, Amsterdam, Ljubljana, Sosnowiec, Aveiro Region and Liguria Region, considering three-time horizons: 2025, 2035 and 2050. The scenarios approach includes the Business As Usual (BAU) scenario and a Final Unified Policy Scenarios (FUPS) established by citizens, decision-makers, local planners and stakeholders based on data collected through a citizen and stakeholder co-creation process. Therefore, this paper aims to present the ClairCity outcomes, analysing the quantified impacts of selected measures in terms of emissions, air quality, population exposure, and health. Each case study has established a particular set of measures with different levels of ambition, therefore different levels of success were achieved towards the control and mitigation of their specific air pollution problems. The transport sector was the most addressed by the measures showing substantial improvements for NO2, already with the BAU scenarios, and overall, even better results when applying the citizen-led FUPS scenarios. In some cases, due to a lack of ambition for the residential and commercial sector, the results were not sufficient to fulfil the WHO guidelines. Overall, it was found in all cities that the co-created scenarios would lead to environmental improvements in terms of air quality and citizens’ health compared to the baseline year of 2015. However, in some cases, the health impacts were lower than air quality due to the implementation of the measures not affecting the most densely populated areas. Benefits from the FUPS comparing to the BAU scenario were found to be highest in Amsterdam and Bristol, with further NO2 and PM10 emission reductions around 10%–16% by 2025 and 19%–28% by 2050, compared to BAU.

2021

Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments

Jakobczyk, Pawel; Skowierzak, Grzegorz; Kaczmarzyk, Iwona; Nadolska, Malgorzata; Wcislo, Anna; Lota, Katarzyna; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel; Lota, Gregorz; Ryl, Jacek

Carbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modification processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased kinetics of acetaminophen degradation in aqueous environments. The utilised oxidation techniques deliver single-step, straightforward, eco-friendly, and stable physiochemical reformation of carbon felt surfaces. The modifications caused minor changes in both the specific surface area and total pore volume corresponding with the surface morphology.

A pristine carbon felt electrode was capable of decomposing up to 70% of the acetaminophen in a 240 min electrolysis process, while the oxygen-plasma treated electrode achieved a removal yield of 99.9% estimated utilising HPLC-UV-Vis. Here, the electro-induced incineration kinetics of acetaminophen resulted in a rate constant of 1.54 h−1, with the second-best result of 0.59 h−1 after oxidation in 30% H2O2. The kinetics of acetaminophen removal was synergistically studied by spectroscopic and electrochemical techniques, revealing various reaction pathways attributed to the formation of intermediate compounds such as p-aminophenol and others.

The enhancement of the electrochemical oxidation rates towards acetaminophen was attributed to the appearance of surface carbonyl species. Our results indicate that the best-performing plasma-chemical treated CFE follows a heterogeneous mechanism with only approx. 40% removal due to direct electro-oxidation. The degradation mechanism of acetaminophen at the treated carbon felt anodes was proposed based on the detected intermediate products. Estimation of the cost-effectiveness of removal processes, in terms of energy consumption, was also elaborated. Although the study was focussed on acetaminophen, the achieved results could be adapted to also process emerging, hazardous pollutant groups such as anti-inflammatory pharmaceuticals.

2022

Consumption of Free Chlorine in an Aqueduct Scheme with Low Protection: Case Study of the New Aqueduct Simbrivio-Castelli (NASC), Italy

Torretta, Vincenzo; Tolkou, Athanasia K.; Katsoyiannis, Ioannis A.; Katsoyiannis, Athanasios A.; Trulli, Ettore; Magaril, Elena; Rada, Elena Cristina

The safety of high quality drinking water supply relies on the quantities to be delivered, on the complexity of the water supply systems, and on the widespread phenomena of the contamination of water bodies. These parameters indicate the need for the development of an application that will allow the quick acquisition of data on strategic management. This is requires both the analysis of factors related to the hydraulic operation of the plants and the characteristics of water quality. The present paper aims to evaluate the use of models that predict data for water quality in a distribution system. The assessment is made in order to consider the use of the model as a support tool for the management system of a supply network and to optimize the quality of the provided service. The improvement of the control system related to the operations of disinfection, in particular, in the case of long pipelines, is absolutely mandatory in order to ensure the safety of public health and respect for the environment at high levels.

2018

The SCCS scientific advice on the safety of nanomaterials in cosmetics

Bernauer, Ulrike; Bodin, Laurent; Chaudhry, Qasim; Coenraads, Pieter Jan; Dusinska, Maria; Gaffet, Eric; Panteri, Eirini; Rogiers, Vera; Rousselle, Christophe; Stepnik, Maciej; Vanhaecke, Tamara; Wijnhoven, Susan; Goetz, Natalie von; Jong, Wim H. de

2021

Limits to graphite supply in a transition to a post-fossil society

Barre, Francis Isidore; Billy, Romain Guillaume; Lopez, Fernando Aguilar; Mueller, Daniel Beat

Transitioning to electric vehicles (EVs) powered by lithium-ion batteries (LIBs) aims at reducing emissions in the transportation sector, thereby decreasing fuel oil use and crude oil extraction. Yet, synthetic graphite, a crucial anode material for LIBs, is produced from needle coke, a byproduct of oil refining. This dependency could lead to bottlenecks in battery anode production. We found no obvious supply constraints for synthetic graphite in slow electrification scenarios based on different International Energy Agency scenarios. In contrast, net zero scenarios reveal drastic limitations in synthetic graphite supply, due to fast electrification and declining needle coke production. Natural graphite can mitigate supply limitations but faces environmental concerns, long development time and geopolitical concerns. Securing graphite supply while reaching the net zero goals requires comprehensive strategies combining (1) systematic graphite recycling, (2) overcoming current technical challenges, and (3) behavioral shifts towards reduced vehicle ownership and smaller vehicles.

2024

Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010

Tsyro, Svetlana; Aas, Wenche; Colette, Augustin; Andersson, Camilla; Bessagnet, Bertrand; Ciarelli, Giancarlo; Couvidat, Florian; Cuvelier, Kees; Manders, Astrid; Mar, Kathleen; Mircea, Mihaela; Otero, Noelia; Pay, Maria-Teresa; Raffort, Valentin; Roustan, Yelva; Theobald, Mark, R.; Vivanco, Marta García; Fagerli, Hilde; Wind, Peter; Briganti, Gino; Cappelletti, Andrea; D'Isidoro, Massimo; Adani, Mario

The Eurodelta-Trends (EDT) multi-model experiment, aimed at assessing the efficiency of emission mitigation measures in improving air quality in Europe during 1990–2010, was designed to answer a series of questions regarding European pollution trends; i.e. were there significant trends detected by observations? Do the models manage to reproduce observed trends? How close is the agreement between the models and how large are the deviations from observations? In this paper, we address these issues with respect to particulate matter (PM) pollution. An in-depth trend analysis has been performed for PM10 and PM2.5 for the period of 2000–2010, based on results from six chemical transport models and observational data from the EMEP (Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) monitoring network. Given harmonization of set-up and main input data, the differences in model results should mainly result from differences in the process formulations within the models themselves, and the spread in the model-simulated trends could be regarded as an indicator for modelling uncertainty.

The model ensemble simulations indicate overall decreasing trends in PM10 and PM2.5 from 2000 to 2010, with the total reductions of annual mean concentrations by between 2 and 5 (7 for PM10) µg m−3 (or between 10 % and 30 %) across most of Europe (by 0.5–2 µg m−3 in Fennoscandia, the north-west of Russia and eastern Europe) during the studied period. Compared to PM2.5, relative PM10 trends are weaker due to large inter-annual variability of natural coarse PM within the former. The changes in the concentrations of PM individual components are in general consistent with emission reductions. There is reasonable agreement in PM trends estimated by the individual models, with the inter-model variability below 30 %–40 % over most of Europe, increasing to 50 %–60 % in the northern and eastern parts of the EDT domain.

Averaged over measurement sites (26 for PM10 and 13 for PM2.5), the mean ensemble-simulated trends are −0.24 and −0.22 µg m−3 yr−1 for PM10 and PM2.5, which are somewhat weaker than the observed trends of −0.35 and −0.40 µg m−3 yr−1 respectively, partly due to model underestimation of PM concentrations. The correspondence is better in relative PM10 and PM2.5 trends, which are −1.7 % yr−1 and −2.0 % yr−1 from the model ensemble and −2.1 % yr−1 and −2.9 % yr−1 from the observations respectively. The observations identify significant trends (at the 95 % confidence level) for PM10 at 56 % of the sites and for PM2.5 at 36 % of the sites, which is somewhat less that the fractions of significant modelled trends. Further, we find somewhat smaller spatial variability of modelled PM trends with respect to the observed ones across Europe and also within individual countries.

The strongest decreasing PM trends and the largest number of sites with significant trends are found for the summer season, according to both the model ensemble and observations. The winter PM trends are very weak and mostly insignificant. Important reasons for that are the very modest reductions and even increases in the emissions of primary PM from residential heating in winter. It should be kept in mind that all findings regarding modelled versus observed PM trends are limited to the regions where the sites are located.

The analysis reveals considerable variability of the role of the individual aerosols in PM10 trends across European countries. The multi-model simulations, supported by available observations, point to decreases in concentrations playing an overall dominant role. Also, we see...

2022

Ammonia emission estimates using CrIS satellite observations over Europe

Ding, Jieying; A, Ronald van der; Eskes, Henk; Dammers, Enrico; Shephard, Mark; Kruit, Roy Wichink; Guevara, Marc; Tarrasón, Leonor

Over the past century, ammonia (NH3) emissions have increased with the growth of livestock and fertilizer usage. The abundant NH3 emissions lead to secondary fine particulate matter (PM2.5) pollution, climate change, and a reduction in biodiversity, and they affect human health. Up-to-date and spatially and temporally resolved information on NH3 emissions is essential to better quantify their impact. In this study we applied the existing Daily Emissions Constrained by Satellite Observations (DECSO) algorithm to NH3 observations from the Cross-track Infrared Sounder (CrIS) to estimate NH3 emissions. Because NH3 in the atmosphere is influenced by nitrogen oxides (NOx), we implemented DECSO to estimate NOx and NH3 emissions simultaneously. The emissions are derived over Europe for 2020 on a spatial resolution of 0.2°×0.2° using daily observations from both CrIS and the TROPOspheric Monitoring Instrument (TROPOMI; on the Sentinel-5 Precursor (S5P) satellite). Due to the limited number of daily satellite observations of NH3, monthly emissions of NH3 are reported. The total NH3 emissions derived from observations are about 8 Tg yr−1, with a precision of about 5 %–17 % per grid cell per year over the European domain (35–55° N, 10° W–30° E). The comparison of the satellite-derived NH3 emissions from DECSO with independent bottom-up inventories and in situ observations indicates a consistency in terms of magnitude on the country totals, with the results also being comparable regarding the temporal and spatial distributions. The validation of DECSO over Europe implies that we can use DECSO to quickly derive fairly accurate monthly emissions of NH3 over regions with limited local information on NH3 emissions.

2024

Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols

Moschos, Vaios; Dzepina, Katja; Bhattu, Deepika; Lamkaddam, Houssni; Casotto, Roberto; Daellenbach, Kaspar R.; Canonaco, Francesco; Rai, Pragati; Aas, Wenche; Becagli, Silvia; Calzolai, Giulia; Eleftheriadis, Konstantinos; Moffett, Claire E.; Schnelle-Kreis, Jürgen; Seviri, Mirko; Sharma, Sangeeta; Skov, Henrik; Vestenius, Mika; Zhang, Wendy; Hakola, Hannele; Hellén, Heidi; Huang, Lin; Jaffrezo, Jean-Luc; Massling, Andreas; Nøjgaard, Jacob Klenø; Petäjä, Tuukka; Popovicheva, Olga; Sheesley, Rebecca J.; Traversi, Rita; Yttri, Karl Espen; Schmale, Julia; Prévôt, André S. H.; Baltensperger, Urs; Haddad, Imad El

Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.

2022

Observed recent change in climate and potential for decay of Norwegian wood structures

Grøntoft, Terje

The wood rot decay of structures and buildings in Norway represents high costs. This paper reports the observed trends for the potential rot decay of Norwegian wood structures in the cities of Oslo and Bergen over the recent 55 years, calculated as the “wood rot climate index” developed by Scheffer, and compares the reports with previous reported values based on climate change modelling. The observed change in the wood rot climate index was close to the modelling result. Bergen is exposed directly to the westerly Atlantic winds and has among the highest rain amounts in Norway, whereas Oslo is shielded by the Scandinavian mountain chain and has much less rain. The change in the wood rot climate index since 1961 was about 20% in both cities, but the trend in the index (climate index change per year) was about 80% stronger in Bergen. The absolute index changes were largest in the summer; then spring (50 to 60% of the summer increase); and small, zero, or even negative (autumn in Oslo) in the remaining seasons. The relative changes were higher in the spring than summer and very high in Bergen in the winter from a low value. The change to positive index values in the spring and winter indicates temperature and humidity conditions favoring the growth of wood rot and, thus, extended the rot duration through the year. The expected increase in the future wood rot decay potential in Norway shows the need for increased focus on adaption measures to reduce the related damages and costs.

2019

Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies

Möckel, Claudia; Breivik, Knut; Nøst, Therese Haugdahl; Sankoh, Alhaji; Jones, Kevin C.; Sweetman, Andrew

Organic contaminants (polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and chlorinated paraffins (CPs)) and heavy metals and metalloids (Ag, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Zn) were analysed in surface soil samples from the Agbogbloshie e-waste processing and dumping site in Accra (Ghana). In order to identify which of the pollutants are likely to be linked specifically to handling of e-waste, samples were also collected from the Kingtom general waste site in Freetown (Sierra Leone). The results were compared using principal component analyses (PCA). PBDE congeners found in technical octa-BDE mixtures, highly chlorinated PCBs and several heavy metals (Cu, Pb, Ni, Cd, Ag and Hg) showed elevated concentrations in the soils that are likely due to contamination by e-waste. PCAs associated those compounds with pyrogenic PAHs, suggesting that burning of e-waste, a common practice to isolate valuable metals, may cause this contamination. Moreover, other contamination pathways, especially incorporation of waste fragments into the soil, also appeared to play an important role in determining concentrations of some of the pollutants in the soil. Concentrations of several of these compounds were extremely high (especially PBDEs, heavy metals and SCCPs) and in some cases exceeded action guideline levels for soil. This indicates that exposure to these contaminants via the soil alone is potentially harmful to the recyclers and their families living on waste sites. Many organic contaminants and other exposure pathways such as inhalation are not yet included in such guidelines but may also be significant, given that deposition from the air following waste burning was identified as a major pollutant source.

2020

Environmental impacts of a chemical looping combustion power plant

Thorne, Rebecca Jayne; Bouman, Evert; Sundseth, Kyrre; Sanchez, Maria Asuncion Aranda; Czakiert, Tomasz; Pacyna, Jozef M; Pacyna, Elisabeth G; Krauz, Mariusz; Celińska, Agnieszka

Chemical Looping Combustion (CLC) is a promising CO2 capture option since it inherently separates CO2 from other flue components, theoretically with low energy penalty. Here, a Life Cycle Assessment model was developed of a theoretical hybrid CLC (HCLC) power plant facility utilising experimental data for CuO based oxygen carrier (OC) production and oxygen capacity. Power plant models with and without post-combustion CO2 capture, recognised as the most mature capture technology, acted as environmental performance targets. Results show that when OC is produced at lab-scale without optimisation, almost all (>99.9%) lifecycle impacts per kWh electricity from an HCLC plant derive from the specific OC material used, giving a total of ˜700 kg CO2eq/kWh. This is related to high electrical input required for OC processing, as well as high OC losses during production and from plant waste. Only when processing parameters are optimised and OC recycling from plant waste is implemented - reducing fresh OC needs – is the environmental impact lower than the conventional technologies studied (e.g. 0.2 kg CO2 eq/kWh vs. ˜0.3-1 kg CO2 eq/kWh, respectively). Further research should thus focus on identifying OCs that do not require energy intensive processing and can endure repeated cycles, allowing for recycling.

2019

An In Vitro Dosimetry Tool for the Numerical Transport Modeling of Engineered Nanomaterials Powered by the Enalos RiskGONE Cloud Platform

Cheimarios, Nikolaos; Pem, Barbara; Tsoumanis, Andreas; Ilic, Krunoslav; Vrček, Ivana Vinković; Melagraki, Georgia; Bitounis, Dimitrios; Isigonis, Panagiotis; Dusinska, Maria; Lynch, Iseult; Demokritou, Philip; Afantitis, Antreas

A freely available “in vitro dosimetry” web application is presented enabling users to predict the concentration of nanomaterials reaching the cell surface, and therefore available for attachment and internalization, from initial dispersion concentrations. The web application is based on the distorted grid (DG) model for the dispersion of engineered nanoparticles (NPs) in culture medium used for in vitro cellular experiments, in accordance with previously published protocols for cellular dosimetry determination. A series of in vitro experiments for six different NPs, with Ag and Au cores, are performed to demonstrate the convenience of the web application for calculation of exposure concentrations of NPs. Our results show that the exposure concentrations at the cell surface can be more than 30 times higher compared to the nominal or dispersed concentrations, depending on the NPs’ properties and their behavior in the cell culture medium. Therefore, the importance of calculating the exposure concentration at the bottom of the cell culture wells used for in vitro arrays, i.e., the particle concentration at the cell surface, is clearly presented, and the tool introduced here allows users easy access to such calculations. Widespread application of this web tool will increase the reliability of subsequent toxicity data, allowing improved correlation of the real exposure concentration with the observed toxicity, enabling the hazard potentials of different NPs to be compared on a more robust basis.

2022

Investigating lightweight and interpretable machine learning models for efficient and explainable stress detection

Ghose, Debasish; Chatterjee, Ayan; Balapuwaduge, Indika A.M.; Lin, Yuan; Dash, Soumya P.

Stress is a common human reaction to demanding circumstances, and prolonged and excessive stress can have detrimental effects on both mental and physical health. Heart rate variability (HRV) is widely used as a measure of stress due to its ability to capture variations in the time intervals between heartbeats. However, achieving high accuracy in stress detection through machine learning (ML), using a reduced set of statistical features extracted from HRV, remains a significant challenge. In this study, we aim to address these challenges by proposing lightweight ML models that can effectively detect stress using minimal HRV features and are computationally efficient enough for IoT deployment. We have developed ML models incorporating efficient feature selection techniques and hyper-parameter tuning. The publicly available SWELL-KW dataset has been utilized for evaluating the performance of our models. Our results demonstrate that lightweight models such as k-NN and Decision Tree can achieve competitive accuracy while ensuring lower computational demands, making them ideal for real-time applications. Promisingly, among the developed models, the k-nearest neighbors (k-NN) algorithm has emerged as the best-performing model, achieving an accuracy score of 99.3% using only three selected features. To confirm real-world deployability, we benchmarked the best model on an 8 GB NVIDIA Jetson Orin Nano edge device, where it retained 99.26% accuracy and completed training in 31 s. Furthermore, our study has incorporated local interpretable model-agnostic explanations to provide comprehensive insights into the predictions made by the k-NN-based architecture.

2025

Clean air policies are key for successfully mitigating Arctic warming

Salzen, Knut von; Whaley, Cynthia; Anenberg, Susan C.; Dingenen, Rita Van; Klimont, Zbigniew; Flanner, Mark G.; Mahmood, Rashed; Arnold, Stephen R.; Beagley, Stephen; Chien, Rong-You; Christensen, Jesper H.; Eckhardt, Sabine; Ekman, Annica M. L.; Evangeliou, Nikolaos; Faluvegi, Greg; Fu, Joshua S.; Gauss, Michael; Gong, Wanmin; Hjorth, Jens; Im, Ulas; Krishnan, Srinath; Kupiainen, Kaarle; Kuhn, Thomas; Langner, Joakim; Law, Kathy S.; Marelle, Louis; Oliviè, Dirk Jan Leo; Onishi, Tatsuo; Oshima, Naga; Paunu, Ville-Veikko; Peng, Yiran; Plummer, David; Pozzoli, Luca; Rao-Skirbekk, Shilpa; Raut, Jean-Christophe; Sand, Maria; Schmale, Julia; Sigmond, Michael; Thomas, Manu Anna; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; Wang, Minqi; Winter, Barbara

A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.

2022

Publikasjon
År
Kategori