Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 840 publikasjoner. Viser side 4 av 35:

Publikasjon  
År  
Kategori

Forecasting the Exceedances of PM2.5 in an Urban Area

Logothetis, Stavros-Andreas; Kosmopoulos, Georgios; Panagopoulos, Orestis; Salamalikis, Vasileios; Kazantzidis, Andreas

Particular matter (PM) constitutes one of the major air pollutants. Human exposure to fine PM (PM with a median diameter less than or equal to 2.5 μm, PM2.5) has many negative and diverse outcomes for human health, such as respiratory mortality, lung cancer, etc. Accurate air-quality forecasting on a regional scale enables local agencies to design and apply appropriate policies (e.g., meet specific emissions limitations) to tackle the problem of air pollution. Under this framework, low-cost sensors have recently emerged as a valuable tool, facilitating the spatiotemporal monitoring of air pollution on a local scale. In this study, we present a deep learning approach (long short-term memory, LSTM) to forecast the intra-day air pollution exceedances across urban and suburban areas. The PM2.5 data used in this study were collected from 12 well-calibrated low-cost sensors (Purple Air) located in the greater area of the Municipality of Thermi in Thessaloniki, Greece. The LSTM-based methodology implements PM2.5 data as well as auxiliary data, meteorological variables from the Copernicus Atmosphere Monitoring Service (CAMS), which is operated by ECMWF, and time variables related to local emissions to enhance the air pollution forecasting performance. The accuracy of the model forecasts reported adequate results, revealing a correlation coefficient between the measured PM2.5 and the LSTM forecast data ranging between 0.67 and 0.94 for all time horizons, with a decreasing trend as the time horizon increases. Regarding air pollution exceedances, the LSTM forecasting system can correctly capture more than 70.0% of the air pollution exceedance events in the study region. The latter findings highlight the model’s capabilities to correctly detect possible WHO threshold exceedances and provide valuable information regarding local air quality.

2024

The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2020

McGrath, Matthew J; Petrescu, Ana Maria Roxana; Peylin, Philippe; Andrew, Robbie; Matthews, Bradley; Dentener, Frank; Balkovič, Juraj; Bastrikov, Vladislav; Becker, Meike; Broquet, Gregoire; Ciais, Philippe; Fortems-Cheiney, Audrey; Ganzenmüller, Raphael; Grassi, Giacomo; Harrison, Ian; Jones, Carl Matthew; Knauer, Jürgen; Kuhnert, Matthias; Monteil, Guillaume; Munassar, Saqr; Palmer, Paul I.; Peters, Glen Philip; Qiu, Chunjing; Schelhaas, Mart-Jan; Tarasova, Oksana; Vizzarri, Matteo; Winkler, Karina; Balsamo, Gianpaolo; Berchet, Antoine; Briggs, Peter R; Brockmann, Patrick; Chevallier, Frédéric; Conchedda, Giulia; Monica, Crippa; Dellaert, Stijn N. C.; Gon, Hugo A.C. Denier van der; Filipek, Sara; Friedlingstein, Pierre; Fuchs, Richard; Gauss, Michael; Gerbig, Christoph; Guizzardi, Diego; Günther, Dirk; Houghton, Richard A; Janssens-Maenhout, Greet; Lauerwald, Ronny; Lerink, Bas; Luijkx, Ingrid T.; Moulas, Géraud; Muntean, Marilena; Nabuurs, Gert-Jan; Paquirissamy, Aurélie; Perugini, Lucia; Peters, Wouter; Pilli, Roberto; Pongratz, Julia; Regnier, Pierre; Scholze, Marko; Serengil, Yusuf; Smith, Peter; Solazzo, Efisio; Thompson, Rona Louise; Tubiello, Francesco N.; Vesala, Timo; Walther, Sophia

Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. ...

2023

Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions

Evangeliou, Nikolaos; Kylling, Arve; Eckhardt, Sabine; Myroniuk, Viktor; Stebel, Kerstin; Paugam, Ronan; Zibtsev, Sergiy; Stohl, Andreas

Highly unusual open fires burned in western Greenland between 31 July and 21 August 2017, after a period of warm, dry and sunny weather. The fires burned on peatlands that became vulnerable to fires by permafrost thawing. We used several satellite data sets to estimate that the total area burned was about 2345 ha. Based on assumptions of typical burn depths and emission factors for peat fires, we estimate that the fires consumed a fuel amount of about 117 kt C and emitted about 23.5 t of black carbon (BC) and 731 t of organic carbon (OC), including 141 t of brown carbon (BrC). We used a Lagrangian particle dispersion model to simulate the atmospheric transport and deposition of these species. We find that the smoke plumes were often pushed towards the Greenland ice sheet by westerly winds, and thus a large fraction of the emissions (30 %) was deposited on snow- or ice-covered surfaces. The calculated deposition was small compared to the deposition from global sources, but not entirely negligible. Analysis of aerosol optical depth data from three sites in western Greenland in August 2017 showed strong influence of forest fire plumes from Canada, but little impact of the Greenland fires. Nevertheless, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar data showed that our model captured the presence and structure of the plume from the Greenland fires. The albedo changes and instantaneous surface radiative forcing in Greenland due to the fire emissions were estimated with the SNICAR model and the uvspec model from the libRadtran radiative transfer software package. We estimate that the maximum albedo change due to the BC and BrC deposition was about 0.007, too small to be measured. The average instantaneous surface radiative forcing over Greenland at noon on 31 August was 0.03–0.04 W m−2, with locally occurring maxima of 0.63–0.77 W m−2 (depending on the studied scenario). The average value is up to an order of magnitude smaller than the radiative forcing from other sources. Overall, the fires burning in Greenland in the summer of 2017 had little impact on the Greenland ice sheet, causing a small extra radiative forcing. This was due to the – in a global context – still rather small size of the fires. However, the very large fraction of the emissions deposited on the Greenland ice sheet from these fires could contribute to accelerated melting of the Greenland ice sheet if these fires become several orders of magnitude larger under future climate.

2019

Role of autumn Arctic Sea ice in the subsequent summer precipitation variability over East Asia

Liu, Yang; Zhu, Yali; Wang, Huijun; Gao, Yongqi; Sun, Jianqi; Wang, Tao; Ma, Jiehua; Yurova, Alla; Li, Fei

2019

Evaluation of isoprene emissions from the coupled model SURFEX–MEGANv2.1

Oumami, Safae; Arteta, Joaquim; Guidard, Vincent; Tulet, Pierre; Hamer, Paul David

Isoprene, a key biogenic volatile organic compound, plays a pivotal role in atmospheric chemistry. Due to its high reactivity, this compound contributes significantly to the production of tropospheric ozone in polluted areas and to the formation of secondary organic aerosols.

The assessment of biogenic emissions is of great importance for regional and global air quality evaluation. In this study, we implemented the biogenic emission model MEGANv2.1 (Model of Emissions of Gases and Aerosols from Nature, version 2.1) in the surface model SURFEXv8.1 (SURface EXternalisée in French, version 8.1). This coupling aims to improve the estimation of biogenic emissions using the detailed vegetation-type-dependent treatment included in the SURFEX vegetation ISBA (Interaction between Soil Biosphere and Atmosphere) scheme. This scheme provides vegetation-dependent parameters such as leaf area index and soil moisture to MEGAN. This approach enables a more accurate estimation of biogenic fluxes compared to the stand-alone MEGAN model, which relies on average input values for all vegetation types.

The present study focuses on the assessment of the SURFEX–MEGAN model isoprene emissions. An evaluation of the coupled SURFEX–MEGAN model results was carried out by conducting a global isoprene emission simulation in 2019 and by comparing the simulation results with other MEGAN-based isoprene inventories. The coupled model estimates a total global isoprene emission of 443 Tg in 2019. The estimated isoprene is within the range of results obtained with other MEGAN-based isoprene inventories, ranging from 311 to 637 Tg. The spatial distribution of SURFEX–MEGAN isoprene is consistent with other studies, with some differences located in low-isoprene-emission regions.

Several sensitivity tests were conducted to quantify the impact of different model inputs and configurations on isoprene emissions. Using different meteorological forcings resulted in a ±5 % change in isoprene emissions using MERRA (Modern-Era Retrospective analysis for Research and Applications) and IFS (Integrated Forecasting System) compared with ERA5. The impact of using different emission factor data was also investigated. The use of PFT (plant functional type) spatial coverage and PFT-dependent emission potential data resulted in a 12 % reduction compared to using the isoprene emission potential gridded map. A significant reduction of around 38 % in global isoprene emissions was observed in the third sensitivity analysis, which applied a parameterization of soil moisture deficit, particularly in certain regions of Australia, Africa, and South America.

The significance of coupling the SURFEX and MEGAN models lies particularly in the ability of the coupled model to be forced with meteorological data from any period. This means, for instance, that this system can be used to predict biogenic emissions in the future. This aspect of our work is significant given the changes that biogenic organic compounds are expected to undergo as a result of changes in their climatic factors.

2024

Impact of snow initialization in subseasonal-to-seasonal winter forecasts with the Norwegian Climate Prediction Model

Li, Fei; Orsolini, Yvan; Keenlyside, Noel; Shen, Mao-Lin; Counillon, Francois; Wang, Yiguo

Snow initialization has been previously investigated as a potential source of predictability atthe subseasonal‐to‐seasonal (S2S) timescale in winter and spring, through its local radiative,thermodynamical, and hydrological feedbacks. However, previous studies were conducted with low‐topmodels over short periods only. Furthermore, the potential role of the land surface‐stratosphere connectionupon the S2S predictability had remained unclear. To this end, we have carried out twin 30‐memberensembles of 2‐month (November and December) retrospective forecasts over the period 1985–2016, witheither realistic or degraded snow initialization. A high‐top version of the Norwegian Climate PredictionModel is used, based on the Whole Atmosphere Community Climate Model, to insure improved couplingwith the stratosphere. In a composite difference of high versus low initial Eurasian snow, the surfacetemperature is strongly impacted by the presence of snow, and wave activityfluxes into the stratosphere areenhanced at a 1‐month lag, leading to a weakened polar vortex. Focusing further on 7 years characterized bya strongly negative phase of the Arctic Oscillation, wefind a weak snow feedback contributing to themaintenance of the negative Arctic Oscillation. By comparing the twin forecasts, we extracted the predictiveskill increment due to realistic snow initialization. The prediction of snow itself is greatly improved, andthere is increased skill in surface temperature over snow‐covered land in thefirst 10 days, and localized skillincrements in the mid‐latitude transition regions on the southernflanks of the snow‐covered land areas, atlead times longer than 30 days.

2019

SensEURCity: A multi-city air quality dataset collected for 2020/2021 using open low-cost sensor systems

Poppel, Martine Van; Schneider, Philipp; Peters, Jan; Yatkin, Sinan; Gerboles, Michel; Matheeussen, Christina; Bartonova, Alena; Davila, Silvije; Signorini, Marco; Vogt, Matthias; Dauge, Franck Rene; Skaar, Jøran Solnes; Haugen, Rolf

Low-cost air quality sensor systems can be deployed at high density, making them a significant candidate of complementary tools for improved air quality assessment. However, they still suffer from poor or unknown data quality. In this paper, we report on a unique dataset including the raw sensor data of quality-controlled sensor networks along with co-located reference data sets. Sensor data are collected using the AirSensEUR sensor system, including sensors to monitor NO, NO2, O3, CO, PM2.5, PM10, PM1, CO2 and meteorological parameters. In total, 85 sensor systems were deployed throughout a year in three European cities (Antwerp, Oslo and Zagreb), resulting in a dataset comprising different meteorological and ambient conditions. The main data collection included two co-location campaigns in different seasons at an Air Quality Monitoring Station (AQMS) in each city and a deployment at various locations in each city (also including locations at other AQMSs). The dataset consists of data files with sensor and reference data, and metadata files with description of locations, deployment dates and description of sensors and reference instruments.

2023

State of the Climate in 2023: The Arctic

Druckenmiller, Matthew L.; Thoman, Richard L.; Moon, Twila A.; Andreassen, Liss Marie; Ballinger, Thomas J.; Berner, Logan T.; Bernhard, Germar H.; Bhatt, Uma S.; Bigalke, Siiri; Bjerke, Jarle W.; Box, Jason E.; Brettschneider, Brian; Brubaker, Mike; Burgess, David; Butler, Amy H.; Christiansen, Hanne H; Dechame, Bertrand; Derksen, Chris; Divine, Dmitry; Jensen, Caroline Drost; Chereque, Alesksandra Elias; Epstein, Howard E.; Farrell, Sinead; Fausto, Robert S; Fettweis, Xavier; Fioletov, Vitali E.; Florentine, Caitlyn; Forbes, Bruce C.; Frost, Gerald V.; Gerland, Sebastian; Grooß, Jens-Uwe; Hanna, Edward; Hanssen-Bauer, Inger; Heatta, Maret Johansdatter; Hendricks, Stefan; Ialongo, Iolanda; Isaksen, Ketil; Jeuring, Jelmer; Jia, Gensuo; Johnsen, Bjørn; Kaleschke, Lars; Kim, Seong-Joong; Kohler, Jack; Labe, Zachary M.; Lader, Rick; Lakkala, Kaisa; Lara, Mark J.; Lee, Simon H.; Loomis, Bryant D.; Luks, Bartłomiej; Luojus, Kari; Macander, Matthew J.; Ricker, Robert; Svendby, Tove Marit; Tømmervik, Hans

2024

Small-scale spatial variability of flame retardants in indoor dust and implications for dust sampling

Jilkova, Simona; Melymuk, Lisa; Vojta, Šimon; Vykoukalová, Martina; Bohlin-Nizzetto, Pernilla; Klánova, Jana

2018

Quantification and assessment of methane emissions from offshore oil and gas facilities on the Norwegian continental shelf

Foulds, Amy; Allen, Grant; Shaw, Jacob T.; Bateson, Prudence; Barker, Patrick A.; Huang, Langwen; Pitt, Joseph R.; Lee, James D; Wilde, Shona E.; Dominutti, Pamela; Purvis, Ruth M.; Lowry, David; France, James L.; Fisher, Rebecca E.; Fiehn, Alina; Pühl, Magdalena; Bauguitte, Stéphane Jean-Bernard; Conley, Stephen A.; Smith, Mackenzie L.; Lachlan-Cope, Tom; Pisso, Ignacio; Schwietzke, Stefan

The oil and gas (O&G) sector is a significant source of methane (CH4) emissions. Quantifying these emissions remains challenging, with many studies highlighting discrepancies between measurements and inventory-based estimates. In this study, we present CH4 emission fluxes from 21 offshore O&G facilities collected in 10 O&G fields over two regions of the Norwegian continental shelf in 2019. Emissions of CH4 derived from measurements during 13 aircraft surveys were found to range from 2.6 to 1200 t yr−1 (with a mean of 211 t yr−1 across all 21 facilities). Comparing this with aggregated operator-reported facility emissions for 2019, we found excellent agreement (within 1σ uncertainty), with mean aircraft-measured fluxes only 16 % lower than those reported by operators. We also compared aircraft-derived fluxes with facility fluxes extracted from a global gridded fossil fuel CH4 emission inventory compiled for 2016. We found that the measured emissions were 42 % larger than the inventory for the area covered by this study, for the 21 facilities surveyed (in aggregate). We interpret this large discrepancy not to reflect a systematic error in the operator-reported emissions, which agree with measurements, but rather the representativity of the global inventory due to the methodology used to construct it and the fact that the inventory was compiled for 2016 (and thus not representative of emissions in 2019). This highlights the need for timely and up-to-date inventories for use in research and policy. The variable nature of CH4 emissions from individual facilities requires knowledge of facility operational status during measurements for data to be useful in prioritising targeted emission mitigation solutions. Future surveys of individual facilities would benefit from knowledge of facility operational status over time. Field-specific aggregated emissions (and uncertainty statistics), as presented here for the Norwegian Sea, can be meaningfully estimated from intensive aircraft surveys. However, field-specific estimates cannot be reliably extrapolated to other production fields without their own tailored surveys, which would need to capture a range of facility designs, oil and gas production volumes, and facility ages. For year-on-year comparison to annually updated inventories and regulatory emission reporting, analogous annual surveys would be needed for meaningful top-down validation. In summary, this study demonstrates the importance and accuracy of detailed, facility-level emission accounting and reporting by operators and the use of airborne measurement approaches to validate bottom-up accounting.

2022

Observed and Modeled Black Carbon Deposition and Sources in the Western Russian Arctic 1800−2014

Ruppel, Meri M.; Eckhardt, Sabine; Pesonen, Antto; Mizohata, Kenichiro; Oinonen, Markku J.; Stohl, Andreas; Andersson, August; Jones, Vivienne; Manninen, Sirkku; Gustafsson, Örjan

Black carbon (BC) particles contribute to climate warming by heating the atmosphere and reducing the albedo of snow/ice surfaces. The available Arctic BC deposition records are restricted to the Atlantic and North American sectors, for which previous studies suggest considerable spatial differences in trends. Here, we present first long-term BC deposition and radiocarbon-based source apportionment data from Russia using four lake sediment records from western Arctic Russia, a region influenced by BC emissions from oil and gas production. The records consistently indicate increasing BC fluxes between 1800 and 2014. The radiocarbon analyses suggest mainly (∼70%) biomass sources for BC with fossil fuel contributions peaking around 1960–1990. Backward calculations with the atmospheric transport model FLEXPART show emission source areas and indicate that modeled BC deposition between 1900 and 1999 is largely driven by emission trends. Comparison of observed and modeled data suggests the need to update anthropogenic BC emission inventories for Russia, as these seem to underestimate Russian BC emissions and since 1980s potentially inaccurately portray their trend. Additionally, the observations may indicate underestimation of wildfire emissions in inventories. Reliable information on BC deposition trends and sources is essential for design of efficient and effective policies to limit climate warming.

2021

The influence of residential wood combustion on the concentrations of PM2.5 in four Nordic cities

Kukkonen, Jaakko; Lopez-Aparicio, Susana; Segersson, David; Geels, Camilla; Kangas, Leena; Kauhaniemi, Mari; Maragkidou, Androniki; Jensen, Anne; Assmuth, Timo; Karppinen, Ari; Sofiev, Mikhail; Hellén, Heidi; Riikonen, Kari; Nikmo, Juha; Kousa, Anu; Niemi, Jarkko; Karvosenoja, Niko; Santos, Gabriela Sousa; Sundvor, Ingrid; Im, Ulas; Christensen, Jesper H.; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Nøjgaard, Jacob Klenø; Omstedt, Gunnar; Andersson, Camilla; Forsberg, Bertil; Brandt, Jørgen

Residential wood combustion (RWC) is an important contributor to air quality in numerous regions worldwide. This study is the first extensive evaluation of the influence of RWC on ambient air quality in several Nordic cities. We have analysed the emissions and concentrations of PM2.5 in cities within four Nordic countries: in the metropolitan areas of Copenhagen, Oslo, and Helsinki and in the city of Umeå. We have evaluated the emissions for the relevant urban source categories and modelled atmospheric dispersion on regional and urban scales. The emission inventories for RWC were based on local surveys, the amount of wood combusted, combustion technologies and other relevant factors. The accuracy of the predicted concentrations was evaluated based on urban concentration measurements. The predicted annual average concentrations ranged spatially from 4 to 7 µg m−3 (2011), from 6 to 10 µg m−3 (2013), from 4 to more than 13 µg m−3 (2013) and from 9 to more than 13 µg m−3 (2014), in Umeå, Helsinki, Oslo and Copenhagen, respectively. The higher concentrations in Copenhagen were mainly caused by the relatively high regionally and continentally transported background contributions. The annual average fractions of PM2.5 concentrations attributed to RWC within the considered urban regions ranged spatially from 0 % to 15 %, from 0 % to 20 %, from 8 % to 22 % and from 0 % to 60 % in Helsinki, Copenhagen, Umeå and Oslo, respectively. In particular, the contributions of RWC in central Oslo were larger than 40 % as annual averages. In Oslo, wood combustion was used mainly for the heating of larger blocks of flats. In contrast, in Helsinki, RWC was solely used in smaller detached houses. In Copenhagen and Helsinki, the highest fractions occurred outside the city centre in the suburban areas. In Umeå, the highest fractions occurred both in the city centre and its surroundings.

2020

The Global N2O model Intercomparison Project (NMIP): Objectives, simulation protocol and expected products

Tian, Hanqin; Yang, Jia; Lu, Chaoqun; Xu, Rongting; Canadell, Josep G.; Jackson, Robert; Arneth, Almut; Chang, Jinfeng; Chen, Guangsheng; Ciais, Philippe; Gerber, Stefan; Ito, Akihiko; Huang, Yuanyuan; Joos, Fortunat; Lienert, Sebastian; Messina, Palmira; Olin, Stefan; Pan, Shufen; Peng, Changhui; Saikawa, Eri; Thompson, Rona Louise; Vuichard, Nicolas; Winiwarter, Wilfried; Zaehle, Sönke; Zhang, Bowen; Zhang, Kerou; Zhu, Qiuan

2018

Stepping-up accurate quantification of chlorinated paraffins: Successful certification of the first matrix reference material

Ricci, Marina; Boer, Jacob de; Johansen, Jon Eigill; Huiling, Liu; Dumas, Pierre; Warner, Nicholas Alexander; Pērkons, Ingus; McGrath, Thomas Jacob; Borgen, Anders; Bjørneby, Stine Marie; Tomasko, Jakub; Steer, Helena; Lentjes, Anouk; Velzen, Martin van; Mourik, Louise van

Background
Chlorinated paraffins (CPs) are industrial chemicals categorised as persistent organic pollutants because of their toxicity, persistency and tendency to long-range transport, bioaccumulation and biomagnification. Despite having been the subject of environmental attention for decades, analytical methods for CPs still struggle reaching a sufficient degree of accuracy. Among the issues negatively impacting the quantification of CPs, the unavailability of well-characterised standards, both as pure substances and as matrix (certified) reference materials (CRMs), has played a major role. The focus of this study was to provide a matrix CRM as quality control tool to improve the comparability of CPs measurement results.

Results
We present the process of certification of ERM®-CE100, the first fish reference material assigned with certified values for the mass fraction of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively). The certification was performed in accordance with ISO 17034:2016 and ISO Guide 35:2017, with the value assignment step carried out via an intercomparison of laboratories of demonstrated competence in CPs analysis and applying procedures based on different analytical principles. After confirmation of the homogeneity and stability of the CRM, two certified values were assigned for SCCPs, depending on the calibrants used: 31 ± 9 μg kg−1 and 23 ± 7 μg kg−1. The MCCPs certified value was established as 44 ± 17 μg kg−1. All assigned values are relative to wet weight in the CRM that was produced as a fish paste to enhance similarity to routine biota samples.

Significance and novelty
The fish tissue ERM-CE100 is the first matrix CRM commercially available for the analysis of CPs, enabling analytical laboratories to improve the accuracy and the metrological traceability of their measurements. The certified CPs values are based on results obtained by both gas and liquid chromatography coupled with various mass spectrometric techniques, offering thus a broad validity to laboratories employing different analytical methods and equipment.

2024

Effect of demand-controlled ventilation strategies on indoor air pollutants in a classroom: A Norwegian case study

Yang, Aileen; Andersen, Kamilla Heimar; Hak, Claudia; Mikoviny, Tomas; Wisthaler, Armin; Holøs, Sverre Bjørn

The choice of the minimum ventilation rate (Vmin) in a demand-controlled ventilation strategy can influence energy demand but also introduce outdoor air pollutants. The latter may have direct health effects, as well as affect indoor chemical reactions. In this paper, we evaluate the effect of ventilation rates and operation hours on the level of CO2, nitrogen dioxide (NO2), and ozone (O3) in a classroom during normal use. We compared the baseline ventilation scenario (S0) with a Vmin of 430 m3/h with S1; Vmin of 150 m3/h for normal ventilation operation time (6:30-17:00) and continuous ventilation for 24h (S2). We found that S1 with reduced Vmin would lower the ozone concentration by 35% during the hours before occupancy compared to S0. Moreover, continuous ventilation during night time with a low Vmin resulted in almost as high O3 concentrations as the baseline ventilation scenario. As O3 reacts easily with certain VOCs to produce secondary organic aerosols, the level of Vmin and the ventilation duration would impact the indoor air quality upon entering the classroom.

2023

Rapid decline of carbon monoxide emissions in the Fenwei Plain in China during the three-year Action Plan on defending the blue sky

Jia, Mengwei; Jiang, Fei; Evangeliou, Nikolaos; Eckhardt, Sabine; Huang, Xin; Ding, Aijun; Stohl, Andreas

2023

Main sources controlling atmospheric burdens of persistent organic pollutants on a national scale

Halvorsen, Helene Lunder; Bohlin-Nizzetto, Pernilla; Eckhardt, Sabine; Gusev, Alexey; Krogseth, Ingjerd Sunde; Möckel, Claudia; Shatalov, Victor; Skogeng, Lovise Pedersen; Breivik, Knut

National long-term monitoring programs on persistent organic pollutants (POPs) in background air have traditionally relied on active air sampling techniques. Due to limited spatial coverage of active air samplers, questions remain (i) whether active air sampler monitoring sites are representative for atmospheric burdens within the larger geographical area targeted by the monitoring programs, and thus (ii) if the main sources affecting POPs in background air across a nation are understood. The main objective of this study was to explore the utility of spatial and temporal trends in concert with multiple modelling approaches to understand the main sources affecting polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in background air across a nation. For this purpose, a comprehensive campaign was carried out in summer 2016, measuring POPs in background air across Norway using passive air sampling. Results were compared to a similar campaign in 2006 to assess possible changes over one decade. We furthermore used the Global EMEP Multi-media Modeling System (GLEMOS) and the Flexible Particle dispersion model (FLEXPART) to predict and evaluate the relative importance of primary emissions, secondary emissions, long-range atmospheric transport (LRAT) and national emissions in controlling atmospheric burdens of PCB-153 on a national scale. The concentrations in air of both PCBs and most of the targeted OCPs were generally low, with the exception of hexachlorobenzene (HCB). A limited spatial variability for all POPs in this study, together with predictions by both models, suggest that LRAT dominates atmospheric burdens across Norway. Model predictions by the GLEMOS model, as well as measured isomeric ratios, further suggest that LRAT of some POPs are dictated by secondary emissions. Our results illustrate the utility of combining observations and mechanistic modelling approaches to help identify the main factors affecting atmospheric burdens of POPs across a nation, which, in turn, may be used to inform both national monitoring and control strategies.

2021

Multidecadal trend analysis of in situ aerosol radiative properties around the world

Coen, Martine Collaud; Andrews, Elisabeth; Alastuey, Andrés; Arsov, Todor Petkov; Backman, John; Brem, Benjamin T.; Bukowiecki, Nicolas; Couret, Cedric; Eleftheriadis, Konstantinos; Flentje, Harald; Fiebig, Markus; Gysel-Beer, Martin; Hand, Jenny; Hoffer, András; Hooda, Rakesh; Hueglin, Christoph; Joubert, Warren; Keywood, Melita; Kim, Jeong Eun; Kim, Sang-Woo; Labuschagne, Casper; Lin, Neng-Huei; Lin, Yong; Myhre, Cathrine Lund; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mayol-Bracero, Olga L.; Mihalopoulos, Nikos; Pandolfi, Marco; Prats, Natalia; Prenni, Anthony J.; Putaud, Jean-Philippe; Ries, Ludwig; Reisen, Fabienne; Sellegri, Karine; Sharma, Sangeeta; Sheridan, Patrick; Sherman, James Patrick; Sun, Junying; Titos, Gloria; Torres, Elvis; Tuch, Thomas; Weller, Rolf; Wiedensohler, Alfred; Zieger, Paul; Laj, Paolo

In order to assess the evolution of aerosol parameters affecting climate change, a long-term trend analysis of aerosol optical properties was performed on time series from 52 stations situated across five continents. The time series of measured scattering, backscattering and absorption coefficients as well as the derived single scattering albedo, backscattering fraction, scattering and absorption Ångström exponents covered at least 10 years and up to 40 years for some stations. The non-parametric seasonal Mann–Kendall (MK) statistical test associated with several pre-whitening methods and with Sen's slope was used as the main trend analysis method. Comparisons with general least mean square associated with autoregressive bootstrap (GLS/ARB) and with standard least mean square analysis (LMS) enabled confirmation of the detected MK statistically significant trends and the assessment of advantages and limitations of each method. Currently, scattering and backscattering coefficient trends are mostly decreasing in Europe and North America and are not statistically significant in Asia, while polar stations exhibit a mix of increasing and decreasing trends. A few increasing trends are also found at some stations in North America and Australia. Absorption coefficient time series also exhibit primarily decreasing trends. For single scattering albedo, 52 % of the sites exhibit statistically significant positive trends, mostly in Asia, eastern/northern Europe and the Arctic, 22 % of sites exhibit statistically significant negative trends, mostly in central Europe and central North America, while the remaining 26 % of sites have trends which are not statistically significant. In addition to evaluating trends for the overall time series, the evolution of the trends in sequential 10-year segments was also analyzed. For scattering and backscattering, statistically significant increasing 10-year trends are primarily found for earlier periods (10-year trends ending in 2010–2015) for polar stations and Mauna Loa. For most of the stations, the present-day statistically significant decreasing 10-year trends of the single scattering albedo were preceded by not statistically significant and statistically significant increasing 10-year trends. The effect of air pollution abatement policies in continental North America is very obvious in the 10-year trends of the scattering coefficient – there is a shift to statistically significant negative trends in 2009–2012 for all stations in the eastern and central USA. This long-term trend analysis of aerosol radiative properties with a broad spatial coverage provides insight into potential aerosol effects on climate changes.

2020

Contaminants in Atlantic walruses in Svalbard Part 1: Relationships between exposure, diet and pathogen prevalence

Scotter, Sophie Ellen; Tryland, Morten; Nymo, Ingebjørg Helena; Hanssen, Linda; Harju, Mikael; Lydersen, Christian; Kovacs, Kit M.; Klein, Jörn; Fisk, Aaron T.; Routti, Heli

This study investigated relationships between organohalogen compound (OHC) exposure, feeding habits, and pathogen exposure in a recovering population of Atlantic walruses (Odobenus rosmarus rosmarus) from the Svalbard Archipelago, Norway. Various samples were collected from 39 free-living, apparently healthy, adult male walruses immobilised at three sampling locations during the summers of 2014 and 2015. Concentrations of lipophilic compounds (polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers) were analysed in blubber samples, and concentrations of perfluoroalkylated substances (PFASs) were determined in plasma samples. Stable isotopes of carbon and nitrogen were measured in seven tissue types and surveys for three infectious pathogens were conducted. Despite an overall decline in lipophilic compound concentrations since this population was last studied (2006), the contaminant pattern was similar, including extremely large inter-individual variation. Stable isotope ratios of carbon and nitrogen showed that the variation in OHC concentrations could not be explained by some walruses consuming higher trophic level diets, since all animals were found to feed at a similar trophic level. Antibodies against the bacteria Brucella spp. and the parasite Toxoplasma gondii were detected in 26% and 15% of the walruses, respectively. Given the absence of seal-predation, T. gondii exposure likely took place via the consumption of contaminated bivalves. The source of exposure to Brucella spp. in walruses is still unknown. Parapoxvirus DNA was detected in a single individual, representing the first documented evidence of parapoxvirus in wild walruses. Antibody prevalence was not related to contaminant exposure. Despite this, dynamic relationships between diet composition, contaminant bioaccumulation and pathogen exposure warrant continuing attention given the likelihood of climate change induced habitat and food web changes, and consequently OHC exposure, for Svalbard walruses in the coming decades.

2019

Odds and ends of atmospheric mercury in Europe and over the North Atlantic Ocean: temporal trends of 25 years of measurements

Custódio, Danilo; Pfaffhuber, Katrine Aspmo; Spain, T. Gerard; Pankratov, Fidel F.; Strigunova, Iana; Molepo, Koketso; Skov, Henrik; Bieser, Johannes; Ebinghaus, Ralf

The global monitoring plan of the Minamata Convention on Mercury was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After 25 years of monitoring (since 1995), Mace Head is one of the atmospheric monitoring stations with the longest mercury record and has produced sufficient data for the analysis of temporal trends of total gaseous mercury (TGM) in Europe and the North Atlantic. Using concentration-weighted trajectories for atmospheric mercury measured at Mace Head as well as another five locations in Europe, Amderma, Andøya, Villum, Waldhof and Zeppelin, we identify the regional probabilistic source contribution factor and its changes for the period of 1996 to 2019. Temporal trends indicate that concentrations of mercury in the atmosphere in Europe and the North Atlantic have declined significantly over the past 25 years at a non-monotonic rate averaging 0.03  . Concentrations of TGM at remote marine sites were shown to be affected by continental long-range transport, and evaluation of reanalysis back trajectories displays a significant decrease in TGM in continental air masses from Europe in the last 2 decades. In addition, using the relationship between mercury and other atmospheric trace gases that could serve as a source signature, we perform factorization regression analysis, based on positive rotatable factorization to solve probabilistic mass functions. We reconstructed atmospheric mercury concentration and assessed the contribution of the major natural and anthropogenic sources. The results reveal that the observed downward trend in the atmospheric mercury is mainly associated with a factor with a high load of long-lived anthropogenic species.

2022

Differences in Trophic Level, Contaminant Load, and DNA Damage in an Urban and a Remote Herring Gull (Larus argentatus) Breeding Colony in Coastal Norway

Keilen, Ellen Kristine; Borgå, Katrine; Thorstensen, Helene Skjeie; Hylland, Ketil; Helberg, Morten; Warner, Nicholas Alexander; Bæk, Kine; Reiertsen, Tone Kristin; Ruus, Anders

Herring gulls (Larus argentatus) are opportunistic feeders, resulting in contaminant exposure depending on area and habitat. We compared contaminant concentrations and dietary markers between two herring gull breeding colonies with different distances to extensive human activity and presumed contaminant exposure from the local marine diet. Furthermore, we investigated the integrity of DNA in white blood cells and sensitivity to oxidative stress. We analyzed blood from 15 herring gulls from each colony—the urban Oslofjord near the Norwegian capital Oslo in the temperate region and the remote Hornøya island in northern Norway, on the Barents Sea coast. Based on d13C and d34S, the dietary sources of urban gulls differed, with some individuals having a marine and others a more terrestrial dietary signal. All remote gulls had a marine dietary signal and higher relative trophic level than the urban marine feeding gulls. Concentrations (mean ± standard deviation [SD]) of most persistent organic pollutants, such as polychlorinated biphenyl ethers (PCBs) and perfluorooctane sulfonic acid (PFOS), were higher in urban marine (PCB153 17 ± 17 ng/g wet weight, PFOS 25 ± 21 ng/g wet wt) than urban terrestrial feeders (PCB153 3.7 ± 2.4 ng/g wet wt, PFOS 6.7 ± 10 ng/g wet wt). Despite feeding at a higher trophic level (d15N), the remote gulls (PCB153 17 ± 1221 ng/g wet wt, PFOS 19 ± 1421 ng/g wet wt) were similar to the urban marine feeders. Cyclic volatile methyl siloxanes were detected in only a few gulls, except for decamethylcyclopentasiloxane in the urban colony, which was found in 12 of 13 gulls. Only hexachlorobenzene was present in higher concentrations in the remote (2.6 ± 0.42 ng/g wet wt) compared with the urban colony (0.34 ± 0.33 ng/g wet wt). Baseline and induced DNA damage (doublestreak breaks) was higher in urban than in remote gulls for both terrestrial and marine feeders.

2022

Error Prediction of Air Quality at Monitoring Stations Using Random Forest in a Total Error Framework

Lepioufle, Jean-Marie; Marsteen, Leif; Johnsrud, Mona

Instead of a flag valid/non-valid usually proposed in the quality control (QC) processes of air quality (AQ), we proposed a method that predicts the p-value of each observation as a value between 0 and 1. We based our error predictions on three approaches: the one proposed by the Working Group on Guidance for the Demonstration of Equivalence (European Commission (2010)), the one proposed by Wager (Journal of Machine Learning Research, 15, 1625–1651 (2014)) and the one proposed by Lu (Journal of Machine Learning Research, 22, 1–41 (2021)). Total Error framework enables to differentiate the different errors: input, output, structural modeling and remnant. We thus theoretically described a one-site AQ prediction based on a multi-site network using Random Forest for regression in a Total Error framework. We demonstrated the methodology with a dataset of hourly nitrogen dioxide measured by a network of monitoring stations located in Oslo, Norway and implemented the error predictions for the three approaches. The results indicate that a simple one-site AQ prediction based on a multi-site network using Random Forest for regression provides moderate metrics for fixed stations. According to the diagnostic based on predictive qq-plot and among the three approaches used in this study, the approach proposed by Lu provides better error predictions. Furthermore, ensuring a high precision of the error prediction requires efforts on getting accurate input, output and prediction model and limiting our lack of knowledge about the “true” AQ phenomena. We put effort in quantifying each type of error involved in the error prediction to assess the error prediction model and further improving it in terms of performance and precision.

2021

Real-time measurement of radionuclide concentrations and its impact on inverse modeling of 106Ru release in the fall of 2017

Tichý, Ondřej; Hýza, Miroslav; Evangeliou, Nikolaos; Šmídl, Václav

Low concentrations of 106Ru were detected across Europe at the turn of September and October 2017. The origin of 106Ru has still not been confirmed; however, current studies agree that the release occurred probably near Mayak in the southern Urals. The source reconstructions are mostly based on an analysis of concentration measurements coupled with an atmospheric transport model. Since reasonable temporal resolution of concentration measurements is crucial for proper source term reconstruction, the standard 1-week sampling interval could be limiting. In this paper, we present an investigation of the usability of the newly developed AMARA (Autonomous Monitor of Atmospheric Radioactive Aerosol) and CEGAM (carousel gamma spectrometry) real-time monitoring systems, which are based on the gamma-ray counting of aerosol filters and allow for determining the moment when 106Ru arrived at the monitoring site within approx. 1 h and detecting activity concentrations as low as several mBq m−3 in 4 h intervals. These high-resolution data were used for inverse modeling of the 106Ru release. We perform backward runs of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) atmospheric transport model driven with meteorological data from the Global Forecast System (GFS), and we construct a source–receptor sensitivity (SRS) matrix for each grid cell of our domain. Then, we use our least squares with adaptive prior covariance (LS-APC) method to estimate possible locations of the release and the source term of the release. With Czech monitoring data, the use of concentration measurements from the standard regime and from the real-time regime is compared, and a better source reconstruction for the real-time data is demonstrated in the sense of the location of the source and also the temporal resolution of the source. The estimated release location, Mayak, and the total estimated source term, 237±107 TBq, are in agreement with previous studies. Finally, the results based on the Czech monitoring data are validated with the IAEA-reported (International Atomic Energy Agency) dataset with a much better spatial resolution, and the agreement between the IAEA dataset and our reconstruction is demonstrated. In addition, we validated our findings also using the FLEXPART (FLEXible PARTicle dispersion) model coupled with meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF).

2021

Acceleration of global N2O emissions seen from two decades of atmospheric inversion

Thompson, Rona Louise; Lassaletta, Luis; Patra, Prabir K.; Wilson, Chris; Wells, Kelley C.; Gressent, Alicia; Koffi, Ernest N.; Chipperfield, Martyn P.; Winiwarter, Wilfried; Davidson, Eric A.; Tian, Hanqin; Canadell, Josep G.

2019

Publikasjon
År
Kategori