Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 787 publikasjoner. Viser side 4 av 33:

Publikasjon  
År  
Kategori

Unexpected anthropogenic emission decreases explain recent atmospheric mercury concentration declines

Feinberg, Aryeh; Selin, Noelle E.; Braban, Christine F.; Chang, Kai-Lan; Custódio, Danilo; Jaffe, Daniel A.; Kyllönen, Katriina; Landis, Matthew S.; Leeson, Sarah R.; Luke, Winston; Molepo, Koketso M.; Murovec, Marijana; Nerentorp Mastromonaco, Michelle G.; Pfaffhuber, Katrine Aspmo; Rüdiger, Julian; Sheu, Guey-Rong; St Louis, Vincent L.

2024

Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison

Malm, Louise; Liigand, Jaanus; Aalizadeh, Reza; Alygizakis, Nikiforos; Ng, Kelsey; Fro̷kjær, Emil Egede; Nanusha, Mulatu Yohannes; Hansen, Martin; Plassmann, Merle; Bieber, Stefan; Letzel, Thomas; Balest, Lydia; Abis, Pier Paolo; Mazzetti, Michele; Kasprzyk-Hordern, Barbara; Ceolotto, Nicola; Kumari, Sangeeta; Hann, Stephan; Kochmann, Sven; Steininger-Mairinger, Teresa; Soulier, Coralie; Mascolo, Giuseppe; Murgolo, Sapia; Garcia-Vara, Manuel; López de Alda, Miren; Hollender, Juliane; Arturi, Katarzyna; Coppola, Gianluca; Peruzzo, Massimo; Joerss, Hanna; van der Neut-Marchand, Carla; Pieke, Eelco N.; Gago-Ferrero, Pablo; Gil-Solsona, Ruben; Licul-Kucera, Viktória; Roscioli, Claudio; Valsecchi, Sara; Luckute, Austeja; Christensen, Jan H.; Tisler, Selina; Vughs, Dennis; Meekel, Nienke; Talavera Andújar, Begoña; Aurich, Dagny; Schymanski, Emma L.; Frigerio, Gianfranco; Macherius, André; Kunkel, Uwe; Bader, Tobias; Rostkowski, Pawel; Gundersen, Hans; Valdecanas, Belinda; Davis, W. Clay; Schulze, Bastian; Kaserzon, Sarit; Pijnappels, Martijn; Esperanza, Mar; Fildier, Aurélie; Vulliet, Emmanuelle; Wiest, Laure; Covaci, Adrian; Macan Schönleben, Alicia; Belova, Lidia; Celma, Alberto; Bijlsma, Lubertus; Caupos, Emilie; Mebold, Emmanuelle; Le Roux, Julien; Troia, Eugenie; de Rijke, Eva; Helmus, Rick; Leroy, Gaëla; Haelewyck, Niels; Chrastina, David; Verwoert, Milan; Thomaidis, Nikolaos S.; Kruve, Anneli

Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor-IE and MLR-IE). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor-IE approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.

American Chemical Society (ACS)

2024

The FAIR principles as a key enabler to operationalize safe and sustainable by design approaches

Karakoltzidis, Achilleas; Battistelli, Chiara Laura; Bossa, Cecilia; Bouman, Evert; Garmendia Aguirre, Irantzu; Iavicoli, Ivo; Jeddi, Maryam Zare; Karakitsios, Spyros; Leso, Veruscka; Løfstedt, Magnus; Magagna, Barbara; Sarigiannis, Denis; Schultes, Erik; Soeteman-Hernández, Lya G.; Subramanian, Vrishali; Nymark, Penny

Safe and sustainable development of chemicals, (advanced) materials, and products is at the heart of achieving a healthy future environment in line with the European Green Deal and the Chemicals Strategy for Sustainability. Recently, the Joint Research Center (JRC) of the European Commission (EC) developed the safe and sustainable by design (SSbD) framework for definition of criteria and evaluation procedure proposed to be established in Research and Innovation (R&I) activities. The framework aims to support the design of chemicals, materials and products that provide desirable functions (or services), while simultaneously minimizing the risk for harmful impacts to human health and the environment. While many industrial sectors already consider such aspects during R&I, the framework aims to harmonize safety and sustainability assessment across diverse sectors and innovation strategies to meet the mentioned overarching policy goals. A cornerstone to successfully implement and operationalize the SSbD framework lies in the availability of high-quality data and tools, and their interoperability, aspects which also play a key role in ensuring transparency and thereby trust in the assessment outcomes. Availability of data and tools depend on their machine-actionability in terms of findability, accessibility, interoperability, and reusability, in line with the FAIR principles. The principles were developed in order to harmonize digitalization across all data domains, supporting unanticipated data-driven “seamless” integration of information and generation of new knowledge. Here we discuss the essentiality of FAIR data and tools to operationalize SSbD providing views and examples of activities within the European Partnership for the Assessment of Risks from Chemicals (PARC). The discussion covers five areas previously brought up in relation to the SSbD framework, and which are highly dependent on implementation of the FAIR principles; (i) digitalization to leverage innovation towards a green transition; (ii) existing data sources and their interoperability; (iii) navigating SSbD with data from new scientific developments (iv) transparency and trust through automated assessment of data quality and uncertainty; and (v) “seamless” integration of SSbD tools.

Royal Society of Chemistry (RSC)

2024

Archetypes of Spatial Concentration Variability of Organic Contaminants in the Atmosphere: Implications for Identifying Sources and Mapping the Gaseous Outdoor Inhalation Exposome

Zhan, Faqiang; Li, Yuening; Shunthirasingham, Chubashini; Oh, Jenny; Lei, Ying Duan; Lu, Zhe; Ben Chaaben, Amina; Lee, Kelsey; Gobas, Frank A. P. C.; Hung, Hayley; Breivik, Knut; Wania, Frank

Whereas inhalation exposure to organic contaminants can negatively impact human health, knowledge of their spatial variability in the ambient atmosphere remains limited. We analyzed the extracts of passive air samplers deployed at 119 unique sites in Southern Canada between 2019 and 2022 for 353 organic vapors. Hierarchical clustering of the obtained data set revealed four archetypes of spatial concentration variability in the outdoor atmosphere, which are indicative of common sources and similar atmospheric dispersion behavior. “Point Source” signatures are characterized by elevated concentration in the vicinity of major release locations. A “Population” signature applies to compounds whose air concentrations are highly correlated with population density, and is associated with emissions from consumer products. The “Water Source” signature applies to substances with elevated levels in the vicinity of water bodies from which they evaporate. Another group of compounds displays a “Uniform” signature, indicative of a lack of major sources within the study area. We illustrate how such a data set, and the derived spatial patterns, can be applied to support the identification of sources, the quantification of atmospheric emissions, the modeling of air quality, and the investigation of potential inequities in inhalation exposure.

2024

Ammonia emission estimates using CrIS satellite observations over Europe

Ding, Jieying; van der A, Ronald; Eskes, Henk; Dammers, Enrico; Shephard, Mark; Kruit, Roy Wichink; Guevara, Marc; Tarrasón, Leonor

Over the past century, ammonia (NH3) emissions have increased with the growth of livestock and fertilizer usage. The abundant NH3 emissions lead to secondary fine particulate matter (PM2.5) pollution, climate change, and a reduction in biodiversity, and they affect human health. Up-to-date and spatially and temporally resolved information on NH3 emissions is essential to better quantify their impact. In this study we applied the existing Daily Emissions Constrained by Satellite Observations (DECSO) algorithm to NH3 observations from the Cross-track Infrared Sounder (CrIS) to estimate NH3 emissions. Because NH3 in the atmosphere is influenced by nitrogen oxides (NOx), we implemented DECSO to estimate NOx and NH3 emissions simultaneously. The emissions are derived over Europe for 2020 on a spatial resolution of 0.2°×0.2° using daily observations from both CrIS and the TROPOspheric Monitoring Instrument (TROPOMI; on the Sentinel-5 Precursor (S5P) satellite). Due to the limited number of daily satellite observations of NH3, monthly emissions of NH3 are reported. The total NH3 emissions derived from observations are about 8 Tg yr−1, with a precision of about 5 %–17 % per grid cell per year over the European domain (35–55° N, 10° W–30° E). The comparison of the satellite-derived NH3 emissions from DECSO with independent bottom-up inventories and in situ observations indicates a consistency in terms of magnitude on the country totals, with the results also being comparable regarding the temporal and spatial distributions. The validation of DECSO over Europe implies that we can use DECSO to quickly derive fairly accurate monthly emissions of NH3 over regions with limited local information on NH3 emissions.

2024

Feathers as integrated archives of environmental stress: Direct and indirect effects of metal exposure and dietary ecology on physiological stress in a terrestrial raptor

Hansen, Elisabeth; Bustnes, Jan Ove; Herzke, Dorte; Bangjord, Georg; Ballesteros, Manuel; Bårdsen, Bård-Jørgen; Bollinger, Eric; Schulz, Ralf; Eulaers, Igor; Bourgeon, Sophie

Metal pollution is a global environmental issue with adverse biological effects on wildlife. Long-term studies that span declines in metal emissions due to regulation, resulting in varying levels of environmental contamination, are therefore well-suited to investigate effects of toxic metals, while also facilitating robust analysis by incorporating fluctuating environmental conditions and food availability. Here, we examined a resident population of tawny owls in Norway between 1986 and 2019. Tail feathers from females were collected annually, resulting in over 1000 feathers. Each feather served as an archive of local environmental conditions during molt, including the presence of metals, and their dietary ecology, proxied by stable isotopes of nitrogen (δ15N) and carbon (δ13C), as well as corticosterone levels (CORTf), the primary avian glucocorticoid and a measure of physiological stress. We analyzed feathers to examine how exposure to toxic metal(loid)s (Al, As, Cd, Hg, and Pb) and variability in dietary proxies modulate CORTf. Using structural equation modelling, we found that increased Al concentrations and δ15N values, linked directly to increased CORTf. In opposite, we found that increased Hg concentrations and δ13C related to decreased CORTf concentrations. δ15N was indirectly linked to CORTf through Al and Hg, while δ13C was indirectly linked to CORTf through Hg. This supports our hypothesis that metal exposure and dietary ecology may individually or jointly influence physiological stress. Notably, our results suggest that dietary ecology has the potential to mediate the impact of metals on CORTf, highlighting the importance of considering multiple variables, direct and indirect effects, when assessing stress in wildlife. In conclusion, feathers represent an excellent non-destructive biomonitoring strategy in avian wildlife, providing valuable insights not easily accessible using other methods. Further research is warranted to fully comprehend implications of alterations in CORTf on the tawny owl's health and fitness.

Elsevier

2024

Surface warming in Svalbard may have led to increases in highly active ice-nucleating particles

Tobo, Yutaka; Adachi, Kouji; Kawai, Kei; Matsui, Hitoshi; Ohata, Sho; Oshima, Naga; Kondo, Yutaka; Hermansen, Ove; Uchida, Masaki; Inoue, Jun; Koike, Makoto

The roles of Arctic aerosols as ice-nucleating particles remain poorly understood, even though their effects on cloud microphysics are crucial for assessing the climate sensitivity of Arctic mixed-phase clouds and predicting their response to Arctic warming. Here we present a full-year record of ice-nucleating particle concentrations over Svalbard, where surface warming has been anomalously faster than the Arctic average. While the variation of ice-nucleating particles active at around −30 °C was relatively small, those active at higher temperatures (i.e., highly active ice-nucleating particles) tended to increase exponentially with rising surface air temperatures when the surface air temperatures rose above 0 °C and snow/ice-free barren and vegetated areas appeared in Svalbard. The aerosol population relevant to their increase was largely characterized by dust and biological organic materials that likely originated from local/regional terrestrial sources. Our results suggest that highly active ice-nucleating particles could be actively released from Arctic natural sources in response to surface warming.

Springer Nature

2024

Monitoring aerosol optical depth during the Arctic night: Instrument development and first results

Mazzola, Mauro; Stone, Robert S.; Kouremeti, Natalia; Vitale, Vito; Gröbner, Julian; Stebel, Kerstin; Hansen, Georg Heinrich; Stone, Thomas C.; Ritter, Christoph; Pulimeno, Simone

Moon-photometric measurements were made at two locations in the Arctic during winter nights using two different modified Sun photometers; a Carter Scott SP02 and a Precision Filter Radiometer (PFR) developed at PMOD/WRC. Values of aerosol optical depth (AOD) were derived from spectral irradiance measurements made at four wavelengths for each of the devices. The SP02 was located near Barrow, Alaska and recorded data from November 2012 to March 2013, spanning five lunar cycles, while the PFR was deployed to Ny-Ålesund, Svalbard each winter from February 2014 to February 2019 for a total of 56 measurement periods. A methodology was developed to process the raw data, involving calibration of the instruments and normalizing measured spectral irradiance values in accordance with site-specific determinations of the extraterrestrial atmospheric irradiance (ETI) as Moon phase cycled. Uncertainties of the derived AOD values were also evaluated and found to be in the range, 0.006–0.030, depending on wavelength and which device was evaluated.
The magnitudes of AOD determined for the two sites were in general agreement with those reported in the literature for sunlit periods just before and after the dark periods of Arctic night. Those for the PFR were also compared with data obtained using star photometers and a Cimel CE318-T, recently deployed to Ny-Ålesund, showing that Moon photometry is viable as a means to monitor AOD during the Arctic night. Such data are valuable for more complete assessments of the role aerosols play in modulating climate, the validation of AOD derived using various remote sensing techniques, and applications related to climate modeling.

Elsevier

2024

State of the Climate in 2023 : Global Climate

Dunn, Robert J.H.; Blannin, Josh; Gobron, Nadine; Miller, John B.; Willett, Kate M.; Ades, Melanie; Adler, Robert; Alexe, Mihai; Allan, Richard P.; Anderson, John; Anneville, Orlane; Aono, Yasuyuki; Arguez, Anthony; Armenteras Pasqual, Dolors; Arosio, Carlo; Asher, Elizabeth; Augustine, John A.; Azorin-Molina, Cesar; Baez-Villanueva, Oscar M.; Barichivich, J.; Beck, Hylke E.; Bellouin, Nicolas; Benedetti, Angela; Blenkinsop, Stephen; Bock, Olivier; Bodin, Xavier; Bonte, Olivier; Bosilovich, Michael G.; Boucher, Olivier; Buehler, Stefan A.; Byrne, Michael P.; Campos, Diego; Cappucci, Fabrizio; Carrea, Laura; Chang, Kai-Lan; Christiansen, Hanne H; Christy, John R.; Chung, Eui-Seok; Ciasto, Laura M.; Clingan, Scott; Coldewey-Egbers, Melanie; Cooper, Owen R.; Cornes, Richard C.; Covey, Curt; Crétaux, Jean-Francois; Crimmins, Theresa; Crotwell, Molly; Culpepper, Joshua; Cusicanqui, Diego; Isaksen, Ketil; Kääb, Andreas; Kaiser, Johannes

American Meteorological Society (AMS)

2024

State of the Climate in 2023: The Arctic

Druckenmiller, Matthew L.; Thoman, Richard L.; Moon, Twila A.; Andreassen, Liss Marie; Ballinger, Thomas J.; Berner, Logan T.; Bernhard, Germar H.; Bhatt, Uma S.; Bigalke, Siiri; Bjerke, Jarle W.; Box, Jason E.; Brettschneider, Brian; Brubaker, Mike; Burgess, David; Butler, Amy H.; Christiansen, Hanne H; Dechame, Bertrand; Derksen, Chris; Divine, Dmitry; Drost Jensen, Caroline; Elias Chereque, Alesksandra; Epstein, Howard E.; Farrell, Sinead; Fausto, Robert S; Fettweis, Xavier; Fioletov, Vitali E.; Florentine, Caitlyn; Forbes, Bruce C.; Frost, Gerald V.; Gerland, Sebastian; Grooß, Jens-Uwe; Hanna, Edward; Hanssen-Bauer, Inger; Heatta, Maret Johansdatter; Hendricks, Stefan; Ialongo, Iolanda; Isaksen, Ketil; Jeuring, Jelmer; Jia, Gensuo; Johnsen, Bjørn; Kaleschke, Lars; Kim, Seong-Joong; Kohler, Jack; Labe, Zachary M.; Lader, Rick; Lakkala, Kaisa; Lara, Mark J.; Lee, Simon H.; Loomis, Bryant D.; Luks, Bartłomiej; Luojus, Kari; Macander, Matthew J.; Ricker, Robert; Svendby, Tove Marit; Tømmervik, Hans

American Meteorological Society (AMS)

2024

Machine Learning-Based Retrieval of Total Ozone Column Amount and Cloud Optical Depth from Irradiance Measurements

Sztipanov, Milos; Krizsán, Levente; Li, Wei; Stamnes, Jakob J.; Svendby, Tove Marit; Stamnes, Knut

A machine learning algorithm combined with measurements obtained by a NILU-UV irradiance meter enables the determination of total ozone column (TOC) amount and cloud optical depth (COD). In the New York City area, a NILU-UV instrument on the rooftop of a Stevens Institute of Technology building (40.74° N, −74.03° E) has been used to collect data for several years. Inspired by a previous study [Opt. Express 22, 19595 (2014)], this research presents an updated neural-network-based method for TOC and COD retrievals. This method provides reliable results under heavy cloud conditions, and a convenient algorithm for the simultaneous retrieval of TOC and COD values. The TOC values are presented for 2014–2023, and both were compared with results obtained using the look-up table (LUT) method and measurements by the Ozone Monitoring Instrument (OMI), deployed on NASA’s AURA satellite. COD results are also provided.

MDPI

2024

Global nitrous oxide budget (1980–2020)

Tian, Hanqin; Pan, Naiqing; Thompson, Rona Louise; Canadell, Josep G. ; Suntharalingam, Parvadha; Regnier, Pierre; Davidson, Eric A.; Prather, Michael; Ciais, Philippe; Muntean, Marilena; Pan, Shufen; Winiwarter, Wilfried; Zaehle, Sonke; Zhou, Feng; Jackson, Robert B. ; Bange, Hermann W.; Berthet, Sarah; Bian, Zihao; Bianchi, Daniele; Bouwman, Alexander F.; Buitenhuis, Erik T.; Dutton, Geoffrey; Hu, Minpeng; Ito, Akihiko; Jain, Atul K.; Jeltsch-Thömmes, Aurich; Joos, Fortunat; Kou-Giesbrecht, Sian; Krummel, Paul B. ; Lan, Xin; Landolfi, Angela; Lauerwald, Ronny; Li, Ya; Lu, Chaoqun; Maavara, Taylor; Manizza, Manfredi; Millet, Dylan B.; Mühle, Jens; Patra, Prabir K. ; Peters, Glen Philip; Qin, Xiaoyu; Raymond, Peter; Resplandy, Laure; Rosentreter, Judith A. ; Shi, Hao; Sun, Qing; Tonina, Daniele; Tubiello, Francesco N.; Van Der Werf, Guido R. ; Vuichard, Nicolas; Wang, Junjie; Wells, Kelley C.; Western, Luke M.; Wilson, Chris; Yang, Jia; Yao, Yuanzhi; You, Yongfa; Zhu, Qing

Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance that has been accumulating in the atmosphere since the preindustrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 ppb (parts per billion) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr−1 in both 2020 and 2021. According to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6), the relative contribution of N2O to the total enhanced effective radiative forcing of greenhouse gases was 6.4 % for 1750–2022. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), our global N2O budget incorporates both natural and anthropogenic sources and sinks and accounts for the interactions between nitrogen additions and the biogeochemical processes that control N2O emissions. We use bottom-up (BU: inventory, statistical extrapolation of flux measurements, and process-based land and ocean modeling) and top-down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions have increased 40 % (or 1.9 Tg N yr−1) in the past 4 decades (1980–2020). Direct agricultural emissions in 2020 (3.9 Tg N yr−1, best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources, including fossil fuel and industry, waste and wastewater, and biomass burning (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1) . For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.5 (lower–upper bounds: 10.6–27.0) Tg N yr−1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr−1. For the 2010–2019 period, the annual BU decadal-average emissions for both natural and anthropogenic sources were 18.2 (10.6–25.9) Tg N yr−1 and TD emissions were 17.4 (15.8–19.20) Tg N yr−1. The once top emitter Europe has reduced its emissions by 31 % since the 1980s, while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the importance of reducing anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose the establishment of a global network for monitoring and modeling N2O from the surface through to the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al., 2023).

2024

Roadmap for action for advancing aggregate exposure to chemicals in the EU

Lamon, L.; Doyle, J.; Paini, A.; Moeller, R.; Viegas, S.; Cubadda, F.; Hoet, P.; van Nieuwenhuyse, A.; Louro, H.; Dusinska, Maria; Galea, K. S.; Canham, R.; Martins, C.; Gama, A.; Teófilo, V.; Diniz-da-Costa, M.; João Silva, M.; Ventura, C.; Alvito, P.; El Yamani, Naouale; Ghosh, M.; Duca, R. C.; Siccardi, M.; Rundén-Pran, Elise; McNamara, C.; Price, P.

The European Food Safety Authority (EFSA) has a goal to efficiently conduct aggregate exposure assessments (AEAs) for chemicals using both exposure models and human biomonitoring (HBM) data by 2030. To achieve EFSA's vision, a roadmap for action for advancing aggregate exposure (AE) in the EU was developed. This roadmap was created by performing a series of engagement and data collection activities to map the currently available methods, data, and tools for assessing AE of chemicals, against the needs and priorities of EFSA. This allowed for the creation of a AEA framework, identification of data and knowledge gaps in our current capabilities, and identification of the challenges and blockers that would hinder efforts to fill the gaps. The roadmap identifies interdependent working areas (WAs) where additional research and development are required to achieve EFSA's goal. It also proposes future collaboration opportunities and recommends several project proposals to meet EFSA's goals. Eight proposal projects supported by SWOT analysis are presented for EFSA's consideration. The project proposals inform high-level recommendations for multi-annual and multi-partner projects. Recommendations to improve stakeholder engagement and communication of EFSA's work on AEA were gathered by surveying stakeholders on specific actions to improve EFSA's communication on AE, including webinars, virtual training, social media channels, and newsletters.

2024

Towards reliable data: Validation of a machine learning-based approach for microplastics analysis in marine organisms using Nile red staining

Meyers, Nelle; Everaert, Gert; Hostens, Kris; Schmidt, Natascha; Herzke, Dorte; Fuda, Jean-Luc; Janssen, Colin R.; De Witte, Bavo

Elsevier

2024

Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations

Choi, Haklim; Redington, Alison L.; Park, Hyeri; Kim, Jooil; Thompson, Rona Louise; Mühle, Jens; Salameh, Peter K.; Harth, Christina M.; Weiss, Ray F.; Manning, Alistair J.; Park, Sunyoung

Hydrofluorocarbons (HFCs) are powerful anthropogenic greenhouse gases (GHGs) with high global-warming potentials (GWPs). They have been widely used as refrigerants, insulation foam-blowing agents, aerosol propellants, and fire suppression agents. Since the mid-1990s, emissions of HFCs have been increasing rapidly as they are used in many applications to replace ozone-depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) whose consumption and production have been phased out under the Montreal Protocol (MP). Due to the high GWP of HFCs, the Kigali Amendment to the MP requires the phasedown of production and consumption of HFCs to gradually achieve an 80 %–85 % reduction by 2047, starting in 2019 for non-Article 5 (developed) countries with a 10 % reduction against each defined baseline and later schedules for Article 5 (developing) countries. In this study, we have examined long-term high-precision measurements of atmospheric abundances of five major HFCs (HFC-134a, HFC-143a, HFC-32, HFC-125, and HFC-152a) at Gosan station, Jeju Island, South Korea, from 2008 to 2020. Background abundances of HFCs gradually increased, and the inflow of polluted air masses with elevated abundances from surrounding source regions were detected over the entire period. From these pollution events, we inferred regional and country-specific HFC emission estimates using two independent Lagrangian particle dispersion models and Bayesian inversion frameworks (FLEXPART-FLEXINVERT+ and NAME-InTEM). The spatial distribution of the derived “top-down” (measurement based) emissions for all HFCs shows large fluxes from megacities and industrial areas in the region. Our most important finding is that HFC emissions in eastern China and Japan have sharply increased from 2016 to 2018. The contribution of East Asian HFC emissions to the global total increased from 9 % (2008–2014) to 13 % (2016–2020). In particular, HFC emissions in Japan (Annex I country) rose rapidly from 2016 onward, with accumulated total inferred HFC emissions being ∼ 114 Gg yr−1, which is ∼ 76 Gg yr−1 higher for 2016–2020 than the “bottom-up” (i.e., based on activity data and emission factors) emissions of ∼ 38 Gg yr−1 reported to the United Nations Framework Convention on Climate Change (UNFCCC). This is likely related to the increase in domestic demand in Japan for refrigerants and air-conditioning-system-related products and incomplete accounting. A downward trend of HFC emissions that started in 2019 reflects the effectiveness of the F-gas policy in Japan. Eastern China and South Korea, though not obligated to report to the UNFCCC, voluntarily reported emissions, which also show differences between top-down and bottom-up emission estimates, demonstrating the need for atmospheric measurements, comprehensive data analysis, and accurate reporting for precise emission management. Further, the proportional contribution of each country's CO2-equivalent HFC emissions has changed over time, with HFC-134a decreasing and HFC-125 increasing. This demonstrates the transition in the predominant HFC substances contributing to global warming in each country.

2024

5 years of Sentinel-5P TROPOMI operational ozone profiling and geophysical validation using ozonesonde and lidar ground-based networks

Keppens, Arno; Di Pede, Serena; Hubert, Daan; Lambert, Jean-Christopher; Veefkind, Pepijn; Sneep, Maarten; De Haan, Johan; Ter Linden, Mark; Leblanc, Thierry; Compernolle, Steven; Verhoelst, Tijl; Granville, José; Nath, Oindrila; Fjæraa, Ann Mari; Boyd, Ian; Niemeijer, Sander; Van Malderen, Roeland; Smit, Herman G. J.; Duflot, Valentin; Godin-Beekmann, Sophie; Johnson, Bryan J.; Steinbrecht, Wolfgang; Tarasick, David W.; Kollonige, Debra E.; Stauffer, Ryan M.; Thompson, Anne M.; Dehn, Angelika; Zehner, Claus

The Sentinel-5 Precursor (S5P) satellite operated by the European Space Agency has carried the TROPOspheric Monitoring Instrument (TROPOMI) on a Sun-synchronous low-Earth orbit since 13 October 2017. The S5P mission has acquired more than 5 years of TROPOMI nadir ozone profile data retrieved from the level 0 to 1B processor version 2.0 and the level 1B to 2 optimal-estimation-based processor version 2.4.0. The latter is described in detail in this work, followed by the geophysical validation of the resulting ozone profiles for the period May 2018 to April 2023. Comparison of TROPOMI ozone profile data to co-located ozonesonde and lidar measurements used as references concludes to a median agreement better than 5 % to 10 % in the troposphere. The bias goes up to −15 % in the upper stratosphere (35–45 km) where it can exhibit vertical oscillations. The comparisons show a dispersion of about 30 % in the troposphere and 10 % to 20 % in the upper troposphere to lower stratosphere and in the middle stratosphere, which is close to mission requirements. Chi-square tests of the observed differences confirm on average the validity of the ex ante (prognostic) satellite and ground-based data uncertainty estimates in the middle stratosphere above about 20 km. Around the tropopause and below, the mean chi-square value increases up to about four, meaning that the ex ante TROPOMI uncertainty is underestimated. The information content of the ozone profile retrieval is characterised by about five to six vertical subcolumns of independent information and a vertical sensitivity (i.e. the fraction of the information that originates from the measurement) nearly equal to unity at altitudes from about 20 to 50 km, decreasing rapidly at altitudes above and below. The barycentre of the retrieved information is usually close to the nominal retrieval altitude in the 20–50 km altitude range, with positive and negative offsets of up to 10 km below and above this range, respectively. The effective vertical resolution of the profile retrieval usually ranges within 10–15 km, with a minimum close to 7 km in the middle stratosphere. Increased sensitivities and higher effective vertical resolutions are observed at higher solar zenith angles (above about 60°), as can be expected, and correlate with higher retrieved ozone concentrations. The vertical sensitivity of the TROPOMI tropospheric ozone retrieval is found to depend on the solar zenith angle, which translates into a seasonal and meridian dependence of the bias with respect to reference measurements. A similar although smaller effect can be seen for the viewing zenith angle. Additionally, the bias is negatively correlated with the surface albedo for the lowest three ozone subcolumns (0–18 km), despite the albedo's apparently slightly positive correlation with the retrieval degrees of freedom in the signal. For the 5 years of TROPOMI ozone profile data that are available now, an overall positive drift is detected for the same three subcolumns, while a negative drift is observed above (24–32 km), resulting in a negligible vertically integrated drift.

2024

Carbon and Greenhouse Gas Budgets of Europe: Trends, Interannual and Spatial Variability, and Their Drivers

Lauerwald, Ronny; Bastos, Ana; McGrath, Matthew J.; Petrescu, Ana Maria Roxana; Ritter, François; Andrew, Robbie; Berchet, Antoine; Broquet, Grégoire; Brunner, Dominik; Chevallier, Frédéric; Cescatti, Alessandro; Filipek, Sara; Fortems-Cheiney, Audrey; Forzieri, Giovanni; Friedlingstein, Pierre; Fuchs, Richard; Gerbig, Christoph; Houweling, Sanne; Ke, Piyu; Lerink, Bas J. W.; Li, Wanjing; Li, Wei; Li, Xiaojun; Luijkx, Ingrid; Monteil, Guillaume; Munassar, Saqr; Nabuurs, Gert-Jan; Patra, Prabir K.; Peylin, Philippe; Pongratz, Julia; Regnier, Pierre; Saunois, Marielle; Schelhaas, Mart-Jan; Scholze, Marko; Sitch, Stephen; Thompson, Rona Louise; Tian, Hanqin; Tsuruta, Aki; Wilson, Chris; Wigneron, Jean-Pierre; Yao, Yitong; Zaehle, Sönke; Ciais, Philippe

In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO2-eq. yr−1 (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO2-eq. yr−1, dominated by a CO2 sink that was partially counterbalanced by net emissions of CH4 and N2O. For CH4 and N2O, we find good agreement between BU and top-down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net-emissions have declined by 1.2 Pg CO2-eq. yr−1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. A large part of the European CO2 and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net-emissions of CO2 and of all GHGs combined.

American Geophysical Union (AGU)

2024

The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O

Sun, Qing; Joos, Fortunat; Lienert, Sebastian; Berthet, Sarah; Carroll, Dustin; Gong, Cheng; Ito, Akihiko; Jain, Atul K.; Kou-Giesbrecht, Sian; Landolfi, Angela; Manizza, Manfredi; Pan, Naiqing; Prather, Michael; Regnier, Pierre; Resplandy, Laure; Séférian, Roland; Shi, Hao; Suntharalingam, Parvadha; Thompson, Rona Louise; Tian, Hanqin; Vuichard, Nicolas; Zaehle, Sönke; Zhu, Qing

Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.

American Geophysical Union (AGU)

2024

Engagement of early career researchers in collaborative assessments of IPCC reports: achievements and insights

Moreno-Ibáñez, Marta; Casado, Mathieu; Gremion, Gwenaëlle; Rabanal, Valentina; Adojoh, Onema; Anoruo, Chukwuma; Arshad, Adnan; Bahar, Faten Attig; Bello, Cinthya; Bergstedt, Helena; Caccavo, Jilda Alicia; Champollion, Nicolas; Choy, Emily S.; De Los Ríos, María Fernanda; Detlef, Henrieka; Dey, Rahul; Gamal, Gamil; Guímaro, Hugo R.; Hancock, Susana; Hansen, Christel; Hare, Vincent; Höfer, Juan; Jabir, Thajudeen; Jain, Shipra; Jawak, Shridhar Digambar; Latonin, Mikhail; Martin, Joseph; Fredy Mojica, Jhon; O’Hara, Ryan; Onafeso, Olumide; Prasath, R. Arun; Alves, Eduardo Queiroz; Raez-Villanueva, Sergio; Rosenbaum, Paul; Ruiz-Pereira, Sebastián; Savaglia, Valentina; van Soest, Maud; Vural, Deniz

The participation of a diverse –in terms of geography, discipline and gender– group of Early Career Researchers (ECRs) in the peer review process can help alleviate the workload of senior researchers and counteract the perceptual biases that the latter tend to show. Moreover, ECRs can benefit from developing skills that are often not included in educational programs. From 2018 to 2021, the Association of Polar Early Career Scientists, in collaboration with other associations, organized six group reviews of the Intergovernmental Panel on Climate Change (IPCC) reports by a total of more than 600 ECRs from over 70 different countries. This study aims to evaluate this group review in terms of its contribution to the production of scientific knowledge, and as a career development opportunity for ECRs. The data analyzed consists of application forms, review comments, and feedback surveys that were collected during each review process. The results of this study show that, overall, the group reviews were a success in terms of the experience of ECRs and their contribution to the peer review of the IPCC reports. Most survey respondents considered the general organization of the group reviews satisfactory and expressed interest in participating in future group reviews. However, most participants did not engage in discussions with their peers, which constitutes a missed opportunity to engage in active learning and the shared production of knowledge. ECRs made a significant contribution to the review of the IPCC reports by producing an average of 2,422 ± 532 comments per group review, 36% of which were substantive. PhD students were shown to be as proficient reviewers as postdoctoral researchers and faculty reviewers. More importantly, the diversity of reviewers in terms of geography and discipline, together with the fact that they are ECRs, can help produce more balanced scientific reports since they bring new perspectives, thus counteracting the biases that senior researchers have. These group reviews could be improved by providing more comprehensive training and facilitating communication among reviewers so that they can engage in meaningful exchanges. We conclude that the IPCC should formalize the inclusion of ECRs in future reviews of the IPCC reports.

Frontiers Media S.A.

2024

Spatial Source Contribution and Interannual Variation in Deposition of Dust Aerosols Over the Chinese Loess Plateau

Haugvaldstad, Ove Westermoen; Tang, Hui; Kaakinen, Anu; Bohm, Katja; Zwaaftink, Christine Groot; Grythe, Henrik; Stevens, Thomas; Zhang, Zhongshi; Stordal, Frode

The Chinese Loess Plateau (CLP) in northern China is home to one of the most prominent loess records in the world, reflecting past eolian dust activity in East Asia. However, their interpretation is hampered by ambiguity in the origin of loess-forming dust and an incomplete understanding of the circulation forcing dust accumulation. In this study, we used a novel modeling approach combining a dust emission model FLEXDUST with simulated back trajectories from FLEXPART to trace the dust back to where it was emitted. Over 21 years (1999–2019), we modeled back trajectories for fine (∼2 μm) and super-coarse (∼20 μm) dust particles at six CLP sites during the peak dust storm season from March to May. FLEXPART source-receptor relationships are combined with the dust emission inventory from FLEXDUST to create site-dependent high-resolution maps of the source contribution of deposited dust. The nearby dust emission areas were found to be the main source of dust to the CLP. Dust deposition across the CLP was found to predominantly occur via wet removal, with also some super-coarse dust from distant emission regions being wet deposited following high-level tropospheric transport. The high topography located on the downwind side of the emission area plays an essential role in forcing the emitted super-coarse dust upward. On an interannual scale, the phase of the Arctic Oscillation in the preceding winter was found to have a strong association with the spring deposition rate on the CLP, while the strength of the East Asian Winter Monsoon was less influential.

American Geophysical Union (AGU)

2024

Winter Tracking Data Suggest that Migratory Seabirds Transport Per- and Polyfluoroalkyl Substances to Their Arctic Nesting Site

Leandri-Breton, Don-Jean; Jouanneau, William; Legagneux, Pierre; Tarroux, Arnaud; Moe, Børge; Angelier, Frédéric; Blévin, Pierre; Bråthen, Vegard Sandøy; Fauchald, Per; Gabrielsen, Geir Wing; Herzke, Dorte; Nikiforov, Vladimir; Elliott, Kyle H.; Chastel, Olivier

Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9–C12) and heavier burdens of longer chain PFCAs (C13–C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.

2024

Increases in Global and East Asian Nitrogen Trifluoride (NF3) Emissions Inferred from Atmospheric Observations

Liu, Yu; Sheng, Jianxiong; Rigby, Matthew; Ganesan, Anita L.; Kim, Jooil; Western, Luke M.; Mühle, Jens; Park, Sunyoung; Park, Hyeri; Weiss, Ray F. ; Salameh, Peter K.; O'Doherty, Simon; Young, Dickon; Krummel, Paul B. ; Vollmer, Martin K.; Reimann, Stefan; Lunder, Chris Rene; Prinn, Ronald G.

Nitrogen trifluoride (NF3) is a potent and long-lived greenhouse gas that is widely used in the manufacture of semiconductors, photovoltaic cells, and flat panel displays. Using atmospheric observations from eight monitoring stations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and inverse modeling with a global 3-D atmospheric chemical transport model (GEOS-Chem), we quantify global and regional NF3 emission from 2015 to 2021. We find that global emissions have grown from 1.93 ± 0.58 Gg yr–1 (± one standard deviation) in 2015 to 3.38 ± 0.61 Gg yr–1 in 2021, with an average annual increase of 10% yr–1. The available observations allow us to attribute significant emissions to China (0.93 ± 0.15 Gg yr–1 in 2015 and 1.53 ± 0.20 Gg yr–1 in 2021) and South Korea (0.38 ± 0.07 Gg yr–1 to 0.65 ± 0.10 Gg yr–1). East Asia contributes around 73% of the global NF3 emission increase from 2015 to 2021: approximately 41% of the increase is from emissions from China (with Taiwan included), 19% from South Korea, and 13% from Japan. For Japan, which is the only one of these three countries to submit annual NF3 emissions to UNFCCC, our bottom-up and top-down estimates are higher than reported. With increasing demand for electronics, especially flat panel displays, emissions are expected to further increase in the future.

2024

Combining Advanced Analytical Methodologies to Uncover Suspect PFAS and Fluorinated Pharmaceutical Contributions to Extractable Organic Fluorine in Human Serum (Tromsø Study)

Cioni, Lara; Nikiforov, Vladimir; Benskin, Jonathan P.; Coelho, Ana Carolina; Dudášová, Silvia; Lauria, Melanie; Lechtenfeld, Oliver J.; Plassmann, Merle M.; Reemtsma, Thorsten; Sandanger, Torkjel Manning; Herzke, Dorte

A growing number of studies have reported that routinely monitored per- and polyfluoroalkyl substances (PFAS) are not sufficient to explain the extractable organic fluorine (EOF) measured in human blood. In this study, we address this gap by screening pooled human serum collected over 3 decades (1986–2015) in Tromsø (Norway) for >5000 PFAS and >300 fluorinated pharmaceuticals. We combined multiple analytical techniques (direct infusion Fourier transform ion cyclotron resonance mass spectrometry, liquid chromatography-Orbitrap-high-resolution mass spectrometry, and total oxidizable precursors assay) in a three-step suspect screening process which aimed at unequivocal suspect identification. This approach uncovered the presence of one PFAS and eight fluorinated pharmaceuticals (including some metabolites) in human serum. While the PFAS suspect only accounted for 2–4% of the EOF, fluorinated pharmaceuticals accounted for 0–63% of the EOF, and their contribution increased in recent years. Although fluorinated pharmaceuticals often contain only 1–3 fluorine atoms, our results indicate that they can contribute significantly to the EOF. Indeed, the contribution from fluorinated pharmaceuticals allowed us to close the organofluorine mass balance in pooled serum from 2015, indicating a good understanding of organofluorine compounds in humans. However, a portion of the EOF in human serum from 1986 and 2007 still remained unexplained.

2024

Intercorrelations of Chlorinated Paraffins, Dechloranes, and Legacy Persistent Organic Pollutants in 10 Species of Marine Mammals from Norway, in Light of Dietary Niche

Andvik, Clare Margaret; Jourdain, Eve Marie; Borgen, Anders; Lyche, Jan Ludvig; Karoliussen, Richard; Haug, Tore; Borgå, Katrine

Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63–98%), and MCCPs dominated the total CP load (42–68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.

2024

Publikasjon
År
Kategori