Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9890 publikasjoner. Viser side 110 av 396:

Publikasjon  
År  
Kategori

Presentasjon av NILU for Romerike batteriverk

Guerreiro, Cristina; Bogra, Shelly

2022

Presentasjon av CIENS-prosjekt Kunnskapsstatus for tverrfaglig klima- og miljøforskning

Skjellum, Solrun Figenschau; Bartonova, Alena; Ruud, Audun; Slettemark, Britta

2021

Preparation and certification of a reference material on PCBs in pig fat and its application in quality control in monitoring laboratories during the Belgian

Bester, K.; de Vos, P.; Le Guern, L.; Harbeck, S.; Hendrickx, F.; Kramer, G.N.; Linsinger, T.; Mertens, I.; Schimmel, H.; Sejeroe-Olsen, B.; Pauwels, J.; De Poorter, G.; Rimkus, G.G.; Schlabach, M.

2001

Prenatal exposure to persistent organic pollutants and child overweight/obesity at 5-year follow-up: A prospective cohort study

Lauritzen, Hilde Brun; Larose, Tricia L; Øien, Torbjørn; Sandanger, Torkjel M; Odland, Jon Øyvind; van de Bor, Margot; Jacobsen, Geir Wenberg

BioMed Central (BMC)

2018

Preliminary results of the ACTRIS ACSM intercomparison study at the SIRTA French Atmospheric Supersite in the region of Paris. NILU PP

Crenn, V.; Frölich, R.; Sciare, J.; Croteau, P.L.; Favez, O.; Verlhac, S.; Belis, C.A.; Aas, W.; Äijälä, M.; Artiñano, B.; Baisnée, D.; Baltensprenger, U.; Bonnaire, N.; Bressi, M.; Canagaratna, M.; Canonaco, F.; Carbone, C.; Cavalli, F.; Coz, E.; Cubison, M.J.; Gietl, J.K.; Green, D.C.; Gros, V.; Heikkinen, L.; Lunder, C.; Minguillón, M.C.; Mocnik, G.; O'Dowd, C.D.; Ovadnevaite, J.; Petit, J-E.; Petralia, E.; Poulain, L.; Prevôt, A.S.H.; Priestman, M.; Riffault, V.; Ripoll, A.; Sarda-Estève, R.; Slowik, J.G.; Setyan, A.; Jayne, J.T.

2014

Preliminary results from the evaluation of the impact of bioethanol buses on urban air quality. NILU PP

Lopez-Aparicio, S.; Hak, C.; Schmidbauer, N.; Dye, C.; Manø, S.

2012

Preliminary evaluation of the relationship between IAQ and demand controlled ventilation.

Lopez-Aparicio, S.; Vogt, M.; Hak, C.; Dauge, F. R.; Holøs, S.; Mysen, M.

2017

Preliminary assessments under the 4th daughter directive. ETC/ACC Technical paper 2007/10

Barrett, K.

2007

Preliminary assessment report on the spatial mapping of air quality trends for Europe. ETC/ACC Tecnical paper, 2008/3

Denby, B.; Sundvor, I.; de Smet, P.; de Leeuw, F.

2008

Preface: Supplement on ELOISE II.

Pirrone, N.; Pacyna, J.M.; Munthe, J.; Barth, H.

2003

Predictors of per- and polyfluoroalkyl substances in a maternal population from Northern Norway.

Berg, V.; Nøst, T.H.; Huber, S.; Rylander, C.; Hansen, S.; Odland, J.Ø.; Sandanger, T.M.

2014

Predicting the student's perceptions of multi-domain environmental factors in a Norwegian school building: Machine learning approach

Alam, Azimil Gani; Bartonova, Alena; Høiskar, Britt Ann Kåstad; Fredriksen, Mirjam; Sharma, Jivitesh; Mathisen, Hans Martin; Yang, Zhirong; Gustavsen, Kai; Hart, Kent; Fredriksen, Tore; Cao, Guangyu

Poor Indoor Environmental Quality (IEQ) in schools significantly impacts students’ well-being, learning capabilities, and health. Perceived dissatisfaction rates (PD%) among students often remain high, even when indoor environmental variables appear well-controlled. This study aims to predict perceived dissatisfaction rates (PD%) across multi-domain environmental factors—thermal, acoustic, visual, and indoor air quality (IAQ)—using machine learning (ML) models. The research integrates sensor-based environmental measurements, outdoor weather data, building parameters, and 1437 student survey responses collected from three classrooms in a Norwegian school across multiple seasons. Statistical tests were used to pre-select relevant input variables, followed by the development and evaluation of multiple ML algorithms. Among the tested ML models, Random Forest (RF) demonstrated the highest predictive accuracy for PD%, outperforming multi-linear regression (MLR) and decision trees (DT), with R² values up to 0.91 for overall IEQ dissatisfaction (PDIEQ%). SHAP analysis revealed key predictors: CO₂ levels, VOCs, humidity, temperature, solar radiation, and room window orientation. IAQ, thermal comfort, and acoustic environment were the most influential factors affecting students' perceived well-being. Despite limitations as implementation in building level scale, the study demonstrates the feasibility of deploying predictive ML models under real-world constraints for improving IEQ monitoring system. The findings support practical strategies for adaptive indoor environmental management, particularly in educational settings, and provide a replicable framework for future research. Future research can expand to other climates, buildings, measurements, occupant levels, and ML training optimization.

Elsevier

2025

Predicting and validating the tracking of a volcanic ash cloud during the 2006 eruption of Mt. Augustine Volcano.

Webley, P.W.; Atkinson, D.; Collins, R.L.; Dean, K.; Fochesatto, J.; Sassen, K.; Cahill, C.F.; Prata, A.; Flynn, C.J.; Mizutani, K.

2008

Publikasjon
År
Kategori