Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10000 publikasjoner. Viser side 287 av 400:

Publikasjon  
År  
Kategori

Dynamical climate predictions at the Bjerknes Center

Wang, Yiguo; Counillon, Francois; Keenlyside, Noel; kimmritz, Madlen; Bethke, Ingo; Langehaug, Helene R.; Li, Fei

2018

Sminkerester funnet i fisk utenfor Svalbard

Warner, Nicholas Alexander (intervjuobjekt); Juell, Ingrid Henriksen; Steinholt, Martin (journalister)

2018

Du kan stole på målingene i Bergen

Høiskar, Britt Ann Kåstad; Tørnkvist, Kjersti Karlsen

2018

Miljøgifter i innemiljøer

Bohlin-Nizzetto, Pernilla

2018

E-region nitric oxide response to energetic electron precipitation

Smith-Johnsen, Christine; Tyssøy, Hilde Nesse; Marsh, Daniel R.; Hendrickx, Koen; Orsolini, Yvan

2018

Discounting the effect of meteorology on trends in surface ozone: Development of statistical tools

Solberg, Sverre; Walker, Sam-Erik; Schneider, Philipp; Guerreiro, Cristina; Colette, Augustin

This report presents the results using a statistical method to single out the influence of interannual meteorological variability on surface ozone. The reason for using such a tool is two-fold: Firstly, to explain the ozone levels in one specific year in terms of weather anomalies and secondly, to estimate the part of long-term ozone trends that is due to the meteorology alone. The method is a so-called GAM (generalized additive model), which could be regarded an advanced multiple regression method relating daily ozone levels to certain meteorological variables. The performance of the method was evaluated by comparing observed ozone data with those predicted by the GAM. This revealed a good to very good agreement in central Europe and Germany in particular. For southern Europe the performance was poorer. The method indicated that meteorology contributed to the downward trend in ozone seen at most sites for both 1990-2000 and 2000-2010.

ETC/ACM

2018

Air quality in Europe - 2018 report

Guerreiro, Cristina; Ortiz, Alberto Gonzalez; Leeuw, Frank de; Viana, Mar; Colette, Augustin

The current report presents an updated overview and analysis of air quality in Europe from 2000 to 2016. It reviews the progress made towards meeting the air quality standards established in the two EU Ambient Air Quality Directives and towards the World Health Organization (WHO) air quality guidelines (AQGs). It also presents the latest findings and estimates on population and ecosystem exposure to the air pollutants with the greatest impacts and effects. The evaluation of the status of air quality is based mainly on reported ambient air measurements, in conjunction with modelling data and data on anthropogenic emissions and their evolution over time.

European Environment Agency

2018

Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP)

Wong, Fiona; Shoeib, Mahiba; Katsoyiannis, Athanasios; Eckhardt, Sabine; Stohl, Andreas; Bohlin-Nizzetto, Pernilla; Li, Henrik; Fellin, Phil; Su, Yushan; Hung, Hayley

Long-term Arctic air monitoring of per- and polyfluoroalkyl substances (PFASs) is essential in assessing their long-range transport and for evaluating the effectiveness of chemical control initiatives. We report for the first time temporal trends of neutral and ionic PFASs in air from three arctic stations: Alert (Canada, 2006–2014); Zeppelin (Svalbard, Norway, 2006–2014) and Andøya (Norway, 2010–2014). The most abundant PFASs were the perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorobutanoic acid (PFBA), and fluorotelomer alcohols (FTOHs). All of these chemicals exhibited increasing trends at Alert with doubling times (t2) of 3.7 years (y) for PFOA, 2.9 y for PFOS, 2.5 y for PFBA, 5.0 y for 8:2 FTOH and 7.0 y for 10:2 FTOH. In contrast, declining or non-changing trends, were observed for PFOA and PFOS at Zeppelin (PFOA, half-life, t1/2 = 7.2 y; PFOS t1/2 = 67 y), and Andøya (PFOA t1/2 = 1.9 y; PFOS t1/2 = 11 y). The differences in air concentrations and in time trends between the three sites may reflect the differences in regional regulations and source regions. We investigate the source region for particle associated compounds using the Lagrangian particle dispersion model FLEXPART. Model results showed that PFOA and PFOS are impacted by air masses originating from the ocean or land. For instance, PFOA at Alert and PFOS at Zeppelin were dominated by oceanic air masses whereas, PFOS at Alert and PFOA at Zeppelin were influenced by air masses transported from land.

2018

Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic)

Skaar, Jøran Solnes; Ræder, Erik Magnus; Lyche, Jan Ludvig; Ahrens, Lutz; Kallenborn, Roland

A combination of local (i.e. firefighting training facilities) and remote sources (i.e., long-range transport) are assumed to be responsible for the occurrence of per- and polyfluoroalkyl substances (PFASs) in Svalbard (Norwegian Arctic). However, no systematic elucidation of local PFASs sources have been conducted yet. Therefore, a survey was performed aiming at identifying local PFASs pollution sources on the island of Spitsbergen (Svalbard, Norway). Soil, fresh water (lake, draining rivers), sea water, melt-water run-off, surface snow and coastal sediment samples were collected from Longyearbyen (Norwegian mining town), Ny-Ålesund (research facility) and the Lake Linnévatnet area (background site) during several campaigns (2014-2016) and analysed for 14 individual target PFASs. For background site (Linnévatnet area, sampling during April to June 2015), ∑PFAS levels ranged from 0.4 – 4 ng/L in surface lake water (n = 20). PFAS in melt water from the contributing glaciers showed similar concentrations (~4 ng/L, n = 2). The short chain perfluorobutanoate (PFBA) was predominant in lake water (60-80% of the ∑PFASs), meltwater (20-30 %) and run-off water (40 %). Long range transport is assumed to be the major PFAS source. In Longyearbyen, 5 water samples (i.e. 2 seawater, 3 run-off) were collected near the local firefighting training site (FFTS) in November 2014 and June 2015, respectively. The highest PFAS levels were found in FFTS melt water run-off (118 ng/L). PFOS was the most abundant compound in the FFTS meltwater run-off (53 – 58 % PFASs). At the research station Ny-Ålesund, sea water (n = 6), soil (n = 9) and fresh water (n = 10) were collected in June 2016. Low ∑PFAS concentrations were determined for sea water (5 - 6 ng/L), whereas high ∑PFAS concentrations were found in run-off water (113 – 119 ng/L) and soil (211 – 800 ng/g dry weight (dw)) collected close to the local FFTS. In addition, high ∑PFAS levels (127 ng/L) were also found in fresh water from lake Solvatnet close to former sewage treatment facility. Overall, at both FFTS affected sites (soil, water), PFOS was the most abundant compound (60 – 69% of ∑PFASs). FFTS and landfill locations were identified as major PFASs sources for Svalbard settlements.

2018

A multi-model comparison of meteorological drivers of surface ozone over Europe

Otero, Noelia; Sillmann, Jana; Mar, Kathleen; Rust, Henning W.; Solberg, Sverre; Andersson, Camilla; Engardt, Magnuz; Bergström, Robert; Bessagnet, Bertrand; Colette, Augustin; Couvidat, Florian; Cuvelier, Cornelius; Tsyro, Svetlana; Fagerli, Hilde; Schaap, Martijn; Manders, Astrid; Mircea, Mihaela; Briganti, Gino; Cappelletti, Andrea; Adani, Mario; D'Isidoro, Massimo; Pay, María Teresa; Theobald, Mark; Vivanco, Marta G.; Wind, Peter; Ojha, Narendra; Raffort, Valentin; Butler, Tim

The implementation of European emission abatement strategies has led to a significant reduction in the emissions of ozone precursors during the last decade. Ground-level ozone is also influenced by meteorological factors such as temperature, which exhibit interannual variability and are expected to change in the future. The impacts of climate change on air quality are usually investigated through air-quality models that simulate interactions between emissions, meteorology and chemistry. Within a multi-model assessment, this study aims to better understand how air-quality models represent the relationship between meteorological variables and surface ozone concentrations over Europe. A multiple linear regression (MLR) approach is applied to observed and modelled time series across 10 European regions in springtime and summertime for the period of 2000–2010 for both models and observations. Overall, the air-quality models are in better agreement with observations in summertime than in springtime and particularly in certain regions, such as France, central Europe or eastern Europe, where local meteorological variables show a strong influence on surface ozone concentrations. Larger discrepancies are found for the southern regions, such as the Balkans, the Iberian Peninsula and the Mediterranean basin, especially in springtime. We show that the air-quality models do not properly reproduce the sensitivity of surface ozone to some of the main meteorological drivers, such as maximum temperature, relative humidity and surface solar radiation. Specifically, all air-quality models show more limitations in capturing the strength of the ozone–relative-humidity relationship detected in the observed time series in most of the regions, for both seasons. Here, we speculate that dry-deposition schemes in the air-quality models might play an essential role in capturing this relationship. We further quantify the relationship between ozone and maximum temperature (mo3 − T, climate penalty) in observations and air-quality models. In summertime, most of the air-quality models are able to reproduce the observed climate penalty reasonably well in certain regions such as France, central Europe and northern Italy. However, larger discrepancies are found in springtime, where air-quality models tend to overestimate the magnitude of the observed climate penalty.

2018

Chemical impacts of energetic particle precipitation in the middle atmosphere

Orsolini, Yvan; Smith-Johnsen, Christine; Marsh, Dan; Stordal, Frode

2018

Luften vi puster

Grossberndt, Sonja; Liu, Hai-Ying

2018

Four years of NewRaptor: results from in ovo exposure in model species and field sampling in raptors

Briels, Nathalie; Ciesielski, Tomasz Maciej; Løseth, Mari Engvig; Jenssen, Bjørn Munro; Eulaers, I.; Sonne, C.; Nygård, Torgeir; Johnsen, Trond Vidar; Gómez-Ramírez, P.; Garcia-Fernandez, A.; Martinez, J.; Bustnes, Jan Ove; Poma, G.; Malarvannan, G.; Covaci, A.; Herzke, Dorte; Styrishave, B.; Jaspers, Veerle

2018

Spatial distribution of short- and medium-chain chlorinated paraffins in European background air

Möckel, Claudia; Halvorsen, Helene Lunder; Pedersen, Lovise Skogeng; Krogseth, Ingjerd Sunde; Bohlin-Nizzetto, Pernilla; Borgen, Anders; Schlabach, Martin; Breivik, Knut

2018

VOC measurements 2016

Solberg, Sverre; Claude, Anja; Reimann, Stefan

This report presents VOC measurements carried out during 2016 at EMEP monitoring sites. In total, 19 sites reported VOC data from EMEP VOC sites this year. Some of the data sets are considered preliminary and are not included in the report.

The monitoring of NMHC (non-methane hydrocarbons) has become more diverse with time in terms of instrumentation. Starting in the early 1990s with standardized methods based on manual sampling in steel canisters with subsequent analyses at the lab, the methods now consist of a variety of instruments and measurement principles, including automated continuous monitors and manual flask samples. For oxygenated VOCs (OVOCs), sampling in DNPH-tubes with subsequent lab-analyses is still the only method in use at EMEP sites.

Within the EU infrastructure project ACTRIS-2, data quality issues related to measurements of VOC have been an important topic. Many of the institutions providing VOC data to EMEP have participated in the ACTRIS-2 project, either as formal partners or on a voluntary basis. Participation in ACTRIS-2 has meant an extensive effort with data checking including detailed discussions between the ACTRIS community and individual participants. There is no doubt that this extensive effort has benefited the EMEP program and has led to improved data quality in general.

Comparison between median levels in 2016 compared to the medians of the previous 10-years period, revealed a similar north-to-south pattern for several species.

Changes in instrumentation, procedures, station network etc. during the last two decades make it difficult to provide a rigorous and pan-European assessment of long-term trends of the observed VOCs. In this report we have estimated the long-term trends in NMHC over the 2000-2016 period at six selected sites by two independent statistical methods. These estimates indicate marked differences in the trends for the individual species. Small or non-significant trends were found for ethane over this period followed by propane which also showed fairly small reductions. On the other hand, components linked to road traffic (ethene, ethyne and toluene) showed the strongest drop in mean concentrations, up to 60-80% at some stations. The trend in n-butane was between these two groups of species with an estimated drop in the annual mean concentration of 20-40% over the 2000-2016 period

NILU

2018

Validation of new satellite aerosol optical depth retrieval algorithm using Raman lidar observations at radiative transfer laboratory in Warsaw

Zawadzka, Olga; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Nemuc, Anca; Stebel, Kerstin

During an exceptionally warm September of 2016, the unique, stable weather conditions over Poland allowed for an extensive testing of the new algorithm developed to improve the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth (AOD) retrieval. The development was conducted in the frame of the ESA-ESRIN SAMIRA project. The new AOD algorithm aims at providing the aerosol optical depth maps over the territory of Poland with a high temporal resolution of 15 minutes. It was tested on the data set obtained between 11-16 September 2016, during which a day of relatively clean atmospheric background related to an Arctic airmass inflow was surrounded by a few days with well increased aerosol load of different origin. On the clean reference day, for estimating surface reflectance the AOD forecast available on-line via the Copernicus Atmosphere Monitoring Service (CAMS) was used. The obtained AOD maps were validated against AODs available within the Poland-AOD and AERONET networks, and with AOD values obtained from the PollyXT-UW lidar. of the University of Warsaw (UW).

2018

Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

Dalsøren, Stig Bjørløw; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

2018

A European aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28 ACTRIS sites

Pandolfi, Marco; Alados-Arboledas, Lucas; Alastuey, Andrés; Andrade, Marcos; Angelov, Christo; Artiñano, Begoña; Backman, John; Baltensprenger, Urs; Bonasoni, Paolo; Bukowiecki, Nicolas; Coen, Martine Collaud; Conil, Sébastien; Coz, Esther; Crenn, Vincent; Dudoitis, Vadimas; Ealo, Marina; Eleftheriadis, Kostas; Favez, Olivier; Fetfatzis, Prodromos; Fiebig, Markus; Flentje, Harald; Ginot, Patrick; Gysel, Martin; Henzing, Bas; Hoffer, András; Smejkalova, Adela Holubova; Kalapov, Ivo; Kalivitis, Nikos; Kouvarakis, Giorgos; Kristensson, Adam; Kulmala, Markku; Lihavainen, Heikki; Lunder, Chris Rene; Luoma, Krista; Lyamani, Hassan; Marinoni, Angela; Mihalopoulos, Nikos; Moerman, Marcel; Nicolas, José; O'Dowd, Colin; Petäjä, Tuukka; Petit, Jean Eudes; Pichon, Jean-Marc; Prokopciuk, Nina; Putaud, Jean-Philippe; Rodriguez, Sergio; Sciare, Jean; Sellegri, Karine; Swietlicki, Erik; Titos, Gloria; Tuch, Thomas; Tunved, Peter; Ulevičius, Vidmantas; Vaishya, Aditya; Vána, Milan; Virkkula, Aki; Vratolis, Stergios; Weingartner, Ernest; Wiedensohler, Alfred; Laj, Paolo

This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ångström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intra-annual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.

2018

Social-environmental analysis of methane in the South China Sea and bordering countries

Tseng, Hsiao-Chun; Newton, Alice; Chen, Chen-Tung Arthur; Borges, Alberto V.; DelValls, T. Angel

2018

The operational system for forecasting of volcanic ash in Norwegian air space

Fagerli, Hilde; Klein, Heiko; Nyiri, Agnes; Steensen, Birthe Marie Rødssæteren; Schulz, Michael; Mortier, Augustin; Borg, Anette Lauen; Bustamante, Alvaro Moises Valdebenito; Kristiansen, Nina Iren; Kylling, Arve; Sollum, Espen; Eckhardt, Sabine; Stohl, Andreas; Tørseth, Kjetil

2018

Publikasjon
År
Kategori