Fant 9759 publikasjoner. Viser side 31 av 391:
2016
2009
2010
2007
2023
2024
A freely available “in vitro dosimetry” web application is presented enabling users to predict the concentration of nanomaterials reaching the cell surface, and therefore available for attachment and internalization, from initial dispersion concentrations. The web application is based on the distorted grid (DG) model for the dispersion of engineered nanoparticles (NPs) in culture medium used for in vitro cellular experiments, in accordance with previously published protocols for cellular dosimetry determination. A series of in vitro experiments for six different NPs, with Ag and Au cores, are performed to demonstrate the convenience of the web application for calculation of exposure concentrations of NPs. Our results show that the exposure concentrations at the cell surface can be more than 30 times higher compared to the nominal or dispersed concentrations, depending on the NPs’ properties and their behavior in the cell culture medium. Therefore, the importance of calculating the exposure concentration at the bottom of the cell culture wells used for in vitro arrays, i.e., the particle concentration at the cell surface, is clearly presented, and the tool introduced here allows users easy access to such calculations. Widespread application of this web tool will increase the reliability of subsequent toxicity data, allowing improved correlation of the real exposure concentration with the observed toxicity, enabling the hazard potentials of different NPs to be compared on a more robust basis.
MDPI
2022
An Infrastructural Analysis of a Crowdsourcing Tool for Environmental Research
In this paper, we adopt information infrastructure design principles and concepts from the theory of critical mass to analyze and evaluate the socio-technical conditions that hindered the successful bootstrapping processes of a crowdsourcing tool for environmental research. The crowdsourcing tool was designed to improve the estimation of emissions from burning wood for residential heating in urban areas in Norway by collecting geolocation data on wood consumption and stove types. Our analysis identifies three groups of users, namely scientists, wood consumers (end users), and key stakeholders, that the IT capability of the tool needs to support. At this stage, we determined that the tool was more useful to the scientists than the other two groups, which was attributed to its low uptake. We uncovered various underlying issues through further analysis of means by which the tool becomes useful to key stakeholders. One particular issue concerned the tension between existing data collection practices, which are based on statistical methods, and the nature of crowdsourcing, which is based on the principle of open call with no sampling techniques. From our analysis, we concluded that developing crowdsourcing tools for research requires increasing the tool’s benefits for key stakeholders by addressing these underlying issues. Inferring from the theory of critical mass for collective action, we recommend that developers of crowdsourcing tools include a function that allows users to view the contributions of other users.
2018
2005
2001
2008
2023
2009
2009
2005
2015
2020
prismAId is an open-source tool designed to streamline systematic literature reviews by leveraging generative AI models for information extraction. It offers an accessible, efficient, and replicable method for extracting and analyzing data from scientific literature, eliminating the need for coding expertise. Supporting various review protocols, including PRISMA 2020, prismAId is distributed across multiple platforms – Go, Python, Julia, R – and provides user-friendly binaries compatible with Windows, macOS, and Linux. The tool integrates with leading large language models (LLMs) such as OpenAI’s GPT series, Google’s Gemini, Cohere’s Command, and Anthropic’s Claude, ensuring comprehensive and up-to-date literature analysis. prismAId facilitates systematic reviews, enabling researchers to conduct thorough, fast, and reproducible analyses, thereby advancing open science initiatives.
2025
2010