Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9887 publikasjoner. Viser side 314 av 396:

Publikasjon  
År  
Kategori

Towards better exploitation of Satellite data for monitoring Air Quality in Norway using downscaling techniques

Stebel, Kerstin; Schneider, Philipp; Kylling, Arve; Svendby, Tove Marit

2020

Anne-Cathrine (42) måler lufta du puster inn

Nilsen, Anne-Cathrine (intervjuobjekt); HÅKONSEN, KATHARINA DALE (journalist)

2020

Hvervens sensor har begrenset verdi

Høiskar, Britt Ann Kåstad; Tørnkvist, Kjersti Karlsen

2020

Camera observation and modelling of 4D tracer dispersion in the atmosphere

Stebel, Kerstin; Cassiani, Massimo; Ardeshiri, Hamidreza; Bernardo, Cirilo; Dinger, Anna Solvejg; Kylling, Arve; Park, Soon-Young; Pisso, Ignacio; Schmidbauer, Norbert; Stohl, Andreas

2020

Forslag til norsk overvåkingsnettverk for å oppfylle NEC‐direktivets krav om å overvåke effekter av luftforurensing

Garmo, Øyvind Aaberg; Bakkestuen, Vegar; Solberg, Sverre; Timmermann, Volkmar; Simpson, David; Vollsnes, Ane Victoria; Aarrestad, Per Arild; Ranneklev, Sissel Brit

Norge har et eksisterende overvåkingsnettverk for å måle effekter av luftforurensninger som forsuring, overgjødsling og
ozoneksponering i økosystemer. Ved eventuell implementering av nytt NEC‐direktiv «takdirektiv» (2016/2284/EU) må Norge
rapportere inn overvåkingsnettverk og resultater fra overvåking av effekter av luftforurensninger i økosystemer.
I denne rapporten er dagens overvåkingsnettverk vurdert med hensyn til de krav som stilles i nytt NEC‐direktiv. Resultater viste
at for innsjøer og elver er dagens overvåkingsnettverk relatert til forsuring tilfredsstillende. For overgjødsling av skog, skogsjord
og terrestrisk natur er det behov for oppgraderinger av overvåkingsnettverket. I forhold til ozonskader i vegetasjon er det behov
for oppgraderinger av dagens overvåkingsnettverk.
Det vil påløpe kostnader for opprettelse av nye overvåkingsstasjoner og oppgraderinger av dagens overvåkingsnettverk.
Estimerte kostnader for å dekke mangler i eksisterende overvåkingsnettverk er angitt i rapporten.

NIVA

2020

ClairCity: Citizen-led air pollution reduction in cities. D7.4 Final City Policy Package – Ljubljana.

Slingerland, Stephan; Artola, Irati; Bolscher, Hans; Barnes, Jo; Boushel, Corra; Fogg-Rogers, Laura; Hayes, Enda; Rodrigues, Vera; Oliveira, Kevin; Lopes, Myriam; Vanherle, Kris; Csobod, Eva; Trozzi, Carlo; Piscitello, Enzo; Knudsen, Svein; Soares, Joana

The ClairCity Horizon2020 project aims to contribute to citizen-inclusive air quality and carbon policy making in middle-sized European cities. It does so by investigating citizens’ current behaviours as well as their preferred future behaviours and policy measures in six European cities1 through an extensive citizen and stakeholder engagement process. The project also models the possible future impacts of citizens’ policy preferences and examines implementation possibilities for these measures in the light of the existing institutional contexts in each city (Figure 0-1). This report summarises the main policy results for Ljubljana.

ClairCity Project

2020

Source Quantification of South Asian Black Carbon Aerosols with Isotopes and Modeling

Dasari, Sanjeev; Andersson, August; Stohl, Andreas; Evangeliou, Nikolaos; Bikkina, Srinivas; Holmstrand, Henry; Budhavant, Krishnakant; Salam, Abdus; Gustafsson, Örjan

Black carbon (BC) aerosols perturb climate and impoverish air quality/human health—affecting ∼1.5 billion people in South Asia. However, the lack of source-diagnostic observations of BC is hindering the evaluation of uncertain bottom-up emission inventories (EIs) and thereby also models/policies. Here, we present dual-isotope-based (Δ14C/δ13C) fingerprinting of wintertime BC at two receptor sites of the continental outflow. Our results show a remarkable similarity in contributions of biomass and fossil combustion, both from the site capturing the highly populated highly polluted Indo-Gangetic Plain footprint (IGP; Δ14C-fbiomass = 50 ± 3%) and the second site in the N. Indian Ocean representing a wider South Asian footprint (52 ± 6%). Yet, both sites reflect distinct δ13C-fingerprints, indicating a distinguishable contribution of C4-biomass burning from peninsular India (PI). Tailored-model-predicted season-averaged BC concentrations (700 ± 440 ng m–3) match observations (740 ± 250 ng m–3), however, unveiling a systematically increasing model-observation bias (+19% to −53%) through winter. Inclusion of BC from open burning alone does not reconcile predictions (fbiomass = 44 ± 8%) with observations. Direct source-segregated comparison reveals regional offsets in anthropogenic emission fluxes in EIs, overestimated fossil-BC in the IGP, and underestimated biomass-BC in PI, which contributes to the model-observation bias. This ground-truthing pinpoints uncertainties in BC emission sources, which benefit both climate/air-quality modeling and mitigation policies in South Asia.

2020

Satellite validation strategy assessments based on the AROMAT campaigns

Merlaud, Alexis; Belegante, Livio; Constantin, Daniel-Eduard; Den Hoed, Mirjam; Meier, Andreas Carlos; Allaart, Marc; Ardelean, Magdalena; Arseni, Maxim; Bösch, Tim; Brenot, Hugues; Calcan, Andreea; Dekemper, Emmanuel; Donner, Sebastian; Dörner, Steffen; Dragomir, Mariana Carmelia Balanica; Georgescu, Lucian; Nemuc, Anca; Nicolae, Doina; Pinardi, Gaia; Richter, Andreas; Rosu, Adrian; Ruhtz, Thomas; Schönhardt, Anja; Schuettemeyer, Dirk; Shaiganfar, Reza; Stebel, Kerstin; Tack, Frederik; Vajaiac, Sorin Nicolae; Vasilescu, Jeni; Vanhamel, Jurgen; Wagner, Thomas; Van Roozendael, Michel

The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaigns took place in Romania in September 2014 and August 2015. They focused on two sites: the Bucharest urban area and large power plants in the Jiu Valley. The main objectives of the campaigns were to test recently developed airborne observation systems dedicated to air quality studies and to verify their applicability for the validation of space-borne atmospheric missions such as the TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P). We present the AROMAT campaigns from the perspective of findings related to the validation of tropospheric NO2, SO2, and H2CO. We also quantify the emissions of NOx and SO2 at both measurement sites.

We show that tropospheric NO2 vertical column density (VCD) measurements using airborne mapping instruments are well suited for satellite validation in principle. The signal-to-noise ratio of the airborne NO2 measurements is an order of magnitude higher than its space-borne counterpart when the airborne measurements are averaged at the TROPOMI pixel scale. However, we show that the temporal variation of the NO2 VCDs during a flight might be a significant source of comparison error. Considering the random error of the TROPOMI tropospheric NO2 VCD (σ), the dynamic range of the NO2 VCDs field extends from detection limit up to 37 σ (2.6×1016 molec. cm−2) and 29 σ (2×1016 molec. cm−2) for Bucharest and the Jiu Valley, respectively. For both areas, we simulate validation exercises applied to the TROPOMI tropospheric NO2 product. These simulations indicate that a comparison error budget closely matching the TROPOMI optimal target accuracy of 25 % can be obtained by adding NO2 and aerosol profile information to the airborne mapping observations, which constrains the investigated accuracy to within 28 %. In addition to NO2, our study also addresses the measurements of SO2 emissions from power plants in the Jiu Valley and an urban hotspot of H2CO in the centre of Bucharest. For these two species, we conclude that the best validation strategy would consist of deploying ground-based measurement systems at well-identified locations.

2020

A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories

Laj, Paolo; Bigi, Alessandro; Rose, Clemence; Andrews, Elisabeth; Myhre, Cathrine Lund; Coen, Martine Collaud; Lin, Yong; Wiedensohler, Alfred; Schulz, Michael; Ogren, John A.; Fiebig, Markus; Gliss, Jonas; Mortier, Augustin; Pandolfi, Marco; Petäjä, Tuukka; Kim, Sang-Woo; Aas, Wenche; Putaud, Jean-Philippe; Mayol-Bracero, Olga; Keywood, Melita; Labrador, Lorenzo; Aalto, Pasi; Ahlberg, Erik; Arboledas, Lucas Alados; Alastuey, Andrés; Andrade, Marcos; Artiñano, Begoña; Ausmeel, Stina; Arsov, Todor; Asmi, Eija; Backman, John; Baltensprenger, Urs; Bastian, Susanne; Bath, Olaf; Beukes, Johan Paul; Brem, Benjamin T.; Bukowiecki, Nicolas; Conil, Sébastien; Couret, Cedric; Day, Derek; Dayantolis, Wan; Degorska, Anna; Eleftheriadis, Konstantinos; Fetfatzis, Prodromos; Favez, Olivier; Flentje, Harald; Gini, Maria I.; Gregorič, Asta; Gysel-Beer, Martin; Hallar, A. Gannet; Hand, Jenny; Hoffer, András; Hueglin, Christoph; Hooda, Rakesh K.; Hyvärinen, Antti; Kalapov, Ivo; Kalivitis, Nikos; Kasper-Giebl, Anne; Kim, Jeong Eun; Kouvarakis, Giorgos; Kranjc, Irena; Krejci, Radovan; Kulmala, Markku; Labuschagne, Casper; Lee, Hae-Jung; Lihavainen, Heikki; Lin, Neng-Huei; Löschau, Gunter; Luoma, Krista; Marinoni, Angela; Dos Santos, Sebastiao Martins; Meinhardt, Frank; Merkel, Maik; Metzger, Jean-Marc; Mihalopoulos, Nikolaos; Nguyen, Nhat Anh; Ondráček, Jakub; Pérez, Noemi; Perrone, Maria Rita; Petit, Jean-Eudes; Picard, David; Pichon, Jean-Marc; Pont, Veronique; Prats, Natalia; Prenni, Anthony; Reisen, Fabienne; Romano, Salvatore; Sellegri, Karine; Sharma, Sangeeta; Schauer, Gerhard; Sheridan, Patrick; Sherman, James Patrick; Schütze, Maik; Schwerin, Andreas; Sohmer, Ralf; Sorribas, Mar; Steinbacher, Martin; Sun, Junying; Titos, Gloria; Toczko, Barbara

Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.

2020

Atmospheric sub-domain progress report

Myhre, Cathrine Lund; Boulanger, Damien; Rivier, Leo; Fiebig, Markus

2020

Multidecadal trend analysis of aerosol radiative properties at a global scale

Coen, Martine Collaud; Andrews, Elisabeth; Myhre, Cathrine Lund; Hand, Jenny; Pandolfi, Marco; Laj, Paolo; SARGAN team, The

2020

Reflecting on Ethical, Legal and Societal Aspects of Nanosafety

Malsch, Ineke; Panagiotis, Isigonis; Bouman, Evert; Afantitis, Antreas; Melagraki, Georgia; Lynch, Iseult; Cimpan, Mihaela-Roxana; Dusinska, Maria

2020

Scenarioet som skremmer verden

Benestad, Rasmus; Evangeliou, Nikolaos (intervjuobjekter); Rasmussen, Espen; Hem, Mikal (journalister)

2020

Your Car Is Spewing Microplastics That Blow Around the World

Evangeliou, Nikolaos (intervjuobjekt); Simon, Matt (journalist)

2020

Feasibility study for asphalt rubber pavements in Norway. ‘Rubber Road’ feasibility study.

Bouman, Evert; Meland, Sondre; Furuseth, Ingvild Skumlien; Tarrasón, Leonor

RubberRoad proposes to use rubber from used tires in the production of asphalt for road and bicycle ways. This recycling approach has not gained much attention in Norway despite its apparent advantages, such as noise reduction, increased durability, safer shock impact, and reduced climate and environmental impacts. The Life Cycle Analysis carried out during this project feasibility study has demonstrated a series of environmental benefits in the use of rubber in asphalt production. It has also helped identify relevant knowledge gaps related to the use phase of the rubberized asphalt and its impact to noise, air and micro-plastic pollution. Better understanding of these effects would probably result in even larger environmental benefits of rubberized asphalt with respect to standard asphalt production. However, while the tire recycling industry is generally positive to the disposal of used tires in asphalt production, additional incentives need to be put in place for the Norwegian asphalt producers to consider actively contributing to this development.

NILU

2020

A Synthesis Inversion to Constrain Global Emissions of Two Very Short Lived Chlorocarbons: Dichloromethane, and Perchloroethylene

Claxton, Tom; Hossaini, R.; Wilson, C.; Montzka, Stephen A.; Chipperfield, Martyn P.; Wild, Oliver; Bednarz, Ewa M.; Carpenter, Lucy J.; Andrews, Stephen J.; Hackenberg, Sina C.; Mühle, Jens; Oram, David; Park, Sunyoung; Park, Mi-Kyung; Atlas, Elliot; Navarro, Maria; Schauffler, Sue; Sherry, David; Vollmer, Martin K.; Schuck, Tanja; Engel, Andreas; Krummel, Paul B.; Maione, Michela; Arduini, Jgor; Saito, Takuya; Yokouchi, Yoko; O'Doherty, Simon; Young, Dickon; Lunder, Chris Rene

Dichloromethane (CH2Cl2) and perchloroethylene (C2Cl4) are chlorinated very short lived substances (Cl‐VSLS) with anthropogenic sources. Recent studies highlight the increasing influence of such compounds, particularly CH2Cl2, on the stratospheric chlorine budget and therefore on ozone depletion. Here, a multiyear global‐scale synthesis inversion was performed to optimize CH2Cl2 (2006–2017) and C2Cl4 (2007–2017) emissions. The approach combines long‐term surface observations from global monitoring networks, output from a three‐dimensional chemical transport model (TOMCAT), and novel bottom‐up information on prior industry emissions. Our posterior results show an increase in global CH2Cl2 emissions from 637 ± 36 Gg yr−1 in 2006 to 1,171 ± 45 Gg yr−1 in 2017, with Asian emissions accounting for 68% and 89% of these totals, respectively. In absolute terms, Asian CH2Cl2 emissions increased annually by 51 Gg yr−1 over the study period, while European and North American emissions declined, indicating a continental‐scale shift in emission distribution since the mid‐2000s. For C2Cl4, we estimate a decrease in global emissions from 141 ± 14 Gg yr−1 in 2007 to 106 ± 12 Gg yr−1 in 2017. The time‐varying posterior emissions offer significant improvements over the prior. Utilizing the posterior emissions leads to modeled tropospheric CH2Cl2 and C2Cl4 abundances and trends in good agreement to those observed (including independent observations to the inversion). A shorter C2Cl4 lifetime, from including an uncertain Cl sink, leads to larger global C2Cl4 emissions by a factor of ~1.5, which in some places improves model‐measurement agreement. The sensitivity of our findings to assumptions in the inversion procedure, including CH2Cl2 oceanic emissions, is discussed.

American Geophysical Union (AGU)

2020

Atmospheric new particle formation characteristics in the Arctic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018

Lee, Haebum; Lee, Kwangyul; Lunder, Chris Rene; Krejci, Radovan; Aas, Wenche; Park, Jiyeon; Park, Ki-Tae; Lee, Bang Yong; Yoon, Young Jun; Park, Kihong

We conducted continuous measurements of nanoparticles down to 3 nm size in the Arctic at Mount Zeppelin, Ny Ålesund, Svalbard, from October 2016 to December 2018, providing a size distribution of nanoparticles (3–60 nm). A significant number of nanoparticles as small as 3 nm were often observed during new particle formation (NPF), particularly in summer, suggesting that these were likely produced near the site rather than being transported from other regions after growth. The average NPF frequency per year was 23 %, having the highest percentage in August (63 %). The average formation rate (J) and growth rate (GR) for 3–7 nm particles were 0.04 cm−3 s−1 and 2.07 nm h−1, respectively. Although NPF frequency in the Arctic was comparable to that in continental areas, the J and GR were much lower. The number of nanoparticles increased more frequently when air mass originated over the south and southwest ocean regions; this pattern overlapped with regions having strong chlorophyll a concentration and dimethyl sulfide (DMS) production capacity (southwest ocean) and was also associated with increased NH3 and H2SO4 concentration, suggesting that marine biogenic sources were responsible for gaseous precursors to NPF. Our results show that previously developed NPF occurrence criteria (low loss rate and high cluster growth rate favor NPF) are also applicable to NPF in the Arctic.

2020

Slow Eastward-Propagating Planetary Waves Prior to Sudden Stratospheric Warmings

Rhodes, C. Todd; Limpasuvan, Varavut; Orsolini, Yvan

2020

Impact of Medium-Energy Electron Precipitation on Ozone and Middle Atmosphere Dynamics in WACCM Simulations

Guttu, Sigmund; Orsolini, Yvan J.; Stordal, Frode; Limpasuvan, Varavut; Marsh, Daniel R.

2020

The N2O Budget

Thompson, Rona Louise

2020

Embedding Ethical Impact Assessment in Nanosafety Decision Support

Malsch, Ineke; Isigonis, Panagiotis; Dusinska, Maria; Bouman, Evert

Wiley-VCH

2020

Funn av mikroplast fra biler i Arktis overrasker forskere

Grythe, Henrik; Herzke, Dorte (intervjuobjekter); Aarsæther, Aslaug (journalist)

2020

Publikasjon
År
Kategori