Fant 9887 publikasjoner. Viser side 320 av 396:
2019
2009
2008
Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling
Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.
2019
2007
2007
2009
2007
2007
2007
2012
2008
2011
2011
2011
Information on the origin of pollution is an essential element of air quality management that helps identifying measures to control air pollution. In this document, we review the most widely used source-apportionment (SA) methods for air quality management. The focus is on particulate matter but examples are provided for NO2 as well. Using simple theoretical examples, we explain the differences between these methods and the circumstances where they give different results and thus possibly different conclusions for air quality management. These differences are a consequence of the assumptions that underpin each methodology and determine/limit their range of applicability. We show that ignoring these underlying assumptions is a risk for efficient/successful air quality management when the methods are used outside their scope or range of applicability.
Publications Office for the European Union
2022
Information on the origin of pollution constitutes an essential step of air quality management as it helps identifying measures to control air pollution. In this work, we review the most widely used source-apportionment methods for air quality management. Using theoretical and real-case datasets we study the differences among these methods and explain why they result in very different conclusions to support air quality planning. These differences are a consequence of the intrinsic assumptions that underpin the different methodologies and determine/limit their range of applicability. We show that ignoring their underlying assumptions is a risk for efficient/successful air quality management as these methods are sometimes used beyond their scope and range of applicability. The simplest approach based on increments (incremental approach) is often not suitable to support air quality planning. Contributions obtained through mass-transfer methods (receptor models or tagging approaches built in air quality models) are appropriate to support planning but only for specific pollutants. Impacts obtained via “brute-force” methods are the best suited but it is important to assess carefully their application range to make sure they reproduce correctly the prevailing chemical regimes.
Elsevier
2019
2017
2011
2011