Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9887 publikasjoner. Viser side 320 av 396:

Publikasjon  
År  
Kategori

Source apportionment of black carbon in Oslo (Norway) and Vinca (Serbia)

Platt, Stephen Matthew; Yttri, Karl Espen; Hak, Claudia; Jovasevic-Stojanovic, Milena

2023

Source apportionment of carbonaceous aerosol - Quantitative estimates based on 14C- and tracer analysis. NILU F

Yttri, K.E.; Simpson, D.; Puxbaum, H.; Stenström, K.; Svendby, T.

2008

Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling

Winiger, P.; Barrett, T. E.; Sheesley, R. J.; Huang, L.; Sharma, S.; Barrie, L. A.; Yttri, Karl Espen; Evangeliou, Nikolaos; Eckhardt, Sabine; Stohl, Andreas; Klimont, Z.; Heyes, C.; Semiletov, I. P.; Dudarev, O. V.; Charkin, A.; Shakhova, N.; Holmstrand, H.; Andersson, A.; Gustafsson, Ö.

Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.

2019

Source apportionment of PM2,5 at Abu Dhabi sites. NILU PP

Hak, C.; Lopez-Aparicio, S.

2013

Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites.

Yttri, K.E.; Simpson, D.; Nøjgaard, J.K.; Kristensen, K.; Genberg, J.; Stenström, K.; Swietlicki, E.; Hillamo, R.; Aurela, M.; Bauer, H.; Offenberg, J.H.; Jaoui, M.; Dye, C.; Eckhardt, S.; Burkhart, J.F.; Stohl, A.; Glasius, M.

2011

Source apportionment on PM2.5 aerosols measured in the urban area of Belgrade.

Cvetkovic, A.; Jovasevic-Stojanovic, M.; Bartonova, A.; Markovic, D.A.

2011

Source apportionment to support air quality management practices. A fitness-for-purpose guide (V 4.0).

Clappier, A.; Thunis, P.; Pirovano, G.; Riffault, V.; Gilardoni, S.; Pisoni, E.; Guerreiro, Cristina; Monteiro, A.; Dupont, H; Waersted, E.; Hellebust, S.; Stocker, J.; Eriksson, A.; Angyal, A.; Bonafe, G.; Montanari, F.; Matejovica, J.; Bartzis, J.; Gianelle, V.

Information on the origin of pollution is an essential element of air quality management that helps identifying measures to control air pollution. In this document, we review the most widely used source-apportionment (SA) methods for air quality management. The focus is on particulate matter but examples are provided for NO2 as well. Using simple theoretical examples, we explain the differences between these methods and the circumstances where they give different results and thus possibly different conclusions for air quality management. These differences are a consequence of the assumptions that underpin each methodology and determine/limit their range of applicability. We show that ignoring these underlying assumptions is a risk for efficient/successful air quality management when the methods are used outside their scope or range of applicability.

Publications Office for the European Union

2022

Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches

Thunis, Philippe; Clappier, A.; Tarrasón, Leonor; Cuvelier, Cornelis; Monteiro, Ana; Pisoni, Enrico; Wesseling, Joost; Belis, Claudio A.; Pirovano, Guido; Janssen, Stijn; Guerreiro, Cristina; Peduzzi, Emanuela

Information on the origin of pollution constitutes an essential step of air quality management as it helps identifying measures to control air pollution. In this work, we review the most widely used source-apportionment methods for air quality management. Using theoretical and real-case datasets we study the differences among these methods and explain why they result in very different conclusions to support air quality planning. These differences are a consequence of the intrinsic assumptions that underpin the different methodologies and determine/limit their range of applicability. We show that ignoring their underlying assumptions is a risk for efficient/successful air quality management as these methods are sometimes used beyond their scope and range of applicability. The simplest approach based on increments (incremental approach) is often not suitable to support air quality planning. Contributions obtained through mass-transfer methods (receptor models or tagging approaches built in air quality models) are appropriate to support planning but only for specific pollutants. Impacts obtained via “brute-force” methods are the best suited but it is important to assess carefully their application range to make sure they reproduce correctly the prevailing chemical regimes.

Elsevier

2019

Source Attribution of VOCs in the Canadian Oil Sands using Hierarchical Clustering

Makar, Paul; Liggio, John; Leithead, Amy; Wentzell, Jeremy; Stroud, Craig; Soares, Joana; Akingunola, Ayodeji; Zhang, Junhua; Moran, Michael; Li, Shao-Meng

2019

Source attribution using FLEXPART and carbon monoxide emission inventories: SOFT-IO version 1.0.

Sauvage, B.; Fontaine, A.; Eckhardt, S.; Auby, A.; Boulanger, D.; Petetin, H.; Paugam, R.; Athier, G.; Cousin, J.-M.; Darras, S.; Nédélec, P.; Stohl, A.; Turquety, S.; Cammas, J.-P.; Thouret, V.

2017

Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008.

Schmale, J.; Schneider, J.; Ancellet, G.; Quennehen, B.; Stohl, A.; Sodemann, H.; Burkhart, J. F.; Hamburger, T.; Arnold, S. R.; Schwarzenboeck, A.; Borrmann, S.; Law, K. S.

2011

Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008.

Schmale, J.; Schneider, J.; Ancellet, G.; Quennehen, B.; Stohl, A.; Sodemann, H.; Burkhart, J.; Hamburger, T.; Arnold, S.R.; Schwarzenböck, A.; Borrmann, S.; Law, K.S.

2011

Publikasjon
År
Kategori