Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9887 publikasjoner. Viser side 325 av 396:

Publikasjon  
År  
Kategori

Improving Quality in Nanoparticle-Induced Cytotoxicity Testing by a Tiered Inter-Laboratory Comparison Study

Nelissen, Inge; Haase, Andrea; Anguissola, Sergio; Rocks, Louise; Jacobs, An; Willems, Hanny; Riebeling, Christian; Luch, Andreas; Piret, Jean-Pascal; Toussaint, Olivier; Trouiller, Benedicte; Lacroix, Ghislaine; Gutleb, Arno C.; Contal, Servane; Diabaté, Silvia; Weiss, Carsten; Lozano-Fernandez, Tamara; Gonzalez-Fernandez, Africa; Dusinska, Maria; Huk, Anna; Stone, Vicki; Kanase, Nilesh; Nocun, Marek; Stepnik, Maciej; Meschini, Stefania; Ammendolia, Maria Grazia; Lewinski, Nastassja; Riediker, Michael; Venturini, Marco; Benetti, Frederico; Topinka, Jan; Brzicova, Tana; Milani, Silvia; Rädler, Joachim; Salvati, Anna; Dawson, Kenneth A.

The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.

MDPI

2020

Past and Future Grand Challenges in Marine Ecosystem Ecology

Borja, Angel; Andersen, Jesper H; Arvanitidis, Christos D.; Basset, Alberto; Buhl-Mortensen, Lene; Carvalho, Susana; Dafforn, Katherine A.; Devlin, Michelle J.; Escobar-Briones, Elva G.; Grenz, Christian; Harder, Tilmann; Katsanevakis, Stelios; Liu, Dongyan; Metaxas, Anna; Moran, Xose Anxelu G; Newton, Alice; Piroddi, Chiara; Pochon, Xavier; Queiros, Ana M.; Snelgrove, Paul V. R.; Solidoro, Cosimo; St. John, Michael A.; Teixeira, Heliana

Frontiers Media S.A.

2020

The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

Ramonet, Michel; Ciais, Philippe; Apadula, F.; Bartyzel, Jakub; Bastos, Ana; Bergamaschi, Peter; Blanc, P. E.; Brunner, D; Caracciolo di Torchiarolo, L.; Calzolari, F.; Chen, H.; Chmura, L.; Colomb, A.; Conil, S.; Cristofanelli, P.; Cuevas, E.; Curcoll, R.; Delmotte, M.; di Sarra, A.; Emmenegger, L.; Forster, G.; Frumau, A.; Gerbig, C.; Gheusi, F; Hammer, S.; Haszpra, L.; Hatakka, J.; Hazan, L.; Heliasz, M.; Henne, S.; Hensen, A.; Hermansen, Ove; Keronen, P.; Kivi, R.; Kominkova, K.; Kubistin, D.; Laurent, O.; Laurila, T; Lavric, J. V.; Lehner, I.; Lehtinen, K. E. J.; Leskinen, A.; Leuenberger, M.; Levin, I.; Lindauer, M.; Lopez, M.; Myhre, Cathrine Lund; Mammarella, I; Manca, G; Manning, A; Marek, M. V.; Marklund, P.; Martin, D.; Meinhardt, F; Mihalopoulos, N.; Mölder, M.; Morguí, J.A.; Necki, J.; O'Doherty, S.; O'Dowd, C; Ottosson, M.; Philippon, N.; Piacentino, S.; Pichon, J.M.; Plass-Duelmer, C.; Resovsky, A.; Rivier, L; Rodo, X; Sha, M. K.; Scheeren, H. A.; Sferlazzo, D.; Spain, T. G.; Stanley, K. M.; Steinbacher, M.; Trisolino, P.; Vermeulen, A.; Vitkova, G.; Weyrauch, D.; Xueref-Remy, I.; Yala, K.; Kwok, C. Yvwer

During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018. Earlier data were retrieved for comparison from international databases or national networks. Here, we show that the usual summer minimum in CO2 due to the surface carbon uptake was reduced by 1.4 ppm in 2018 for the 10 stations located in the area most affected by the temperature anomaly, mostly in Northern Europe. Notwithstanding, the CO2 transition phases before and after July were slower in 2018 compared to 2017, suggesting an extension of the growing season, with either continued CO2 uptake by photosynthesis and/or a reduction in respiration driven by the depletion of substrate for respiration inherited from the previous months due to the drought. For stations with sufficiently long time series, the CO2 anomaly observed in 2018 was compared to previous European droughts in 2003 and 2015. Considering the areas most affected by the temperature anomalies, we found a higher CO2 anomaly in 2003 (+3 ppm averaged over 4 sites), and a smaller anomaly in 2015 (+1 ppm averaged over 11 sites) compared to 2018.

This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.

2020

Encounters in Citizen Science (keynote speech)

Castell, Nuria; Sherson, Jacob; Michelucci, Pietro; Mayer, Katja

2020

Ny forskning viser sammenheng mellom svevestøv og astma hos barn – nivået måles ikke

Hak, Claudia; Øvrevik, Johan; Låg, Marit (intervjuobjekter); Waaler, Ingrid Emilie (journalist)

2021

Dette kan være årsaken til kraftig metanbyks i lufta over Norge

Myhre, Cathrine Lund (intervjuobjekt); Fjeld, Iselin Elise (journalist)

2021

Plastic ingestion by the northern fulmar Fulmarus glacialis from Kongsfjorden

Collard, France; Tulatz, Felix; Gabrielsen, Geir W.; Herzke, Dorte; Krapp, Rupert; Langset, Magdalene; Bourgeon, Sophie

2021

AMAP Litter and Microplastics Monitoring Guidelines. Version 1.0.

Farmen, Eivind; Provencher, Jennifer; Aliani, Stefano; Baak, Julia; Bergmann, Melanie; Booth, Andy; Bourdages, Madelaine P.T.; Buhl-Mortensen, Lene; Feld, Louise; Gabrielsen, Geir W.; Galgani, Francois; Gerdts, Gunnar; Gomiero, Alessio; Granberg, Maria; Grøsvik, Bjørn Einar; Guls, Hermann Dreki; Hallanger, Ingeborg G.; Halldorson, Halldor P; Hamilton, Bonnie M.; Hammer, Sjurdur; Herzke, Dorte; Huserbråten, Mats; Jantunen, Liisa M.; Kögel, Tanja; Liboiron, Max; Linnebjerg, Jannie Fries; Lusher, Amy; Magnusson, Kerstin; Mallory, Mark L.; Flemming, R. Merkel; Murphy, Peter; Orihel, Diane; Peeken, Ilka; Pjogge, Liz; Primpke, Sebastian; Rochman, Chelsea M.; Strand, Jakob; Scholz-Böttcher, Barbara; Vermaire, Jesse C; Vorkamp, Katrin; Larsen, Jan René

AMAP

2021

The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies

Berchet, Antoine; Sollum, Espen; Thompson, Rona Louise; Pison, Isabelle; Thanwerdas, Joel; Broquet, Grégoire; Chevallier, Frédéric; Aalto, Tuula; Berchet, Adrien; Bergamaschi, Peter; Brunner, Dominik; Engelen, Richard; Fortems-Cheiney, Audrey; Gerbig, Christoph; Zwaaftink, Christine Groot; Haussaire, Jean-Matthieu; Henne, Stephan; Houweling, Sanne; Karstens, Ute; Kutsch, Werner L.; Luijkx, Ingrid T.; Monteil, Guillaume; Palmer, Paul I.; van Peet, Jacob C. A.; Peters, Wouter; Peylin, Philippe; Potier, Elise; Rödenbeck, Christian; Saunois, Marielle; Scholze, Marko; Tsuruta, Aki; Zhao, Yuanhong

Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry–transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.

2021

Sea Spray Aerosol (SSA) as a Source of Perfluoroalkyl Acids (PFAAs) to the Atmosphere: Field Evidence from Long-Term Air Monitoring

Sha, Bo; Johansson, Jana H.; Tunved, Peter; Bohlin-Nizzetto, Pernilla; Cousins, Ian T.; Salter, Matthew E.

The effective enrichment of perfluoroalkyl acids (PFAAs) in sea spray aerosols (SSA) demonstrated in previous laboratory studies suggests that SSA is a potential source of PFAAs to the atmosphere. In order to investigate the influence of SSA on atmospheric PFAAs in the field, 48 h aerosol samples were collected regularly between 2018 and 2020 at two Norwegian coastal locations, Andøya and Birkenes. Significant correlations (p < 0.05) between the SSA tracer ion, Na+, and PFAA concentrations were observed in the samples from both locations, with Pearson’s correlation coefficients (r) between 0.4–0.8. Such significant correlations indicate SSA to be an important source of atmospheric PFAAs to coastal areas. The correlations in the samples from Andøya were observed for more PFAA species and were generally stronger than in the samples from Birkenes, which is located further away from the coast and closer to urban areas than Andøya. Factors such as the origin of the SSA, the distance of the sampling site to open water, and the presence of other PFAA sources (e.g., volatile precursor compounds) can have influence on the contribution of SSA to PFAA in air at the sampling sites and therefore affect the observed correlations between PFAAs and Na+.

2021

Global predictions of primary soil salinization under changing climate in the 21st century

Hassani, Amirhossein; Azapagic, Adisa; Shokri, Nima

Soil salinization has become one of the major environmental and socioeconomic issues globally and this is expected to be exacerbated further with projected climatic change. Determining how climate change influences the dynamics of naturally-occurring soil salinization has scarcely been addressed due to highly complex processes influencing salinization. This paper sets out to address this long-standing challenge by developing data-driven models capable of predicting primary (naturally-occurring) soil salinity and its variations in the world’s drylands up to the year 2100 under changing climate. Analysis of the future predictions made here identifies the dryland areas of South America, southern and western Australia, Mexico, southwest United States, and South Africa as the salinization hotspots. Conversely, we project a decrease in the soil salinity of the drylands in the northwest United States, the Horn of Africa, Eastern Europe, Turkmenistan, and west Kazakhstan in response to climate change over the same period.

Springer Nature

2021

Fluorescent Nanocomposites: Hollow Silica Microspheres with Embedded Carbon Dots

Delic, Asmira; Mariussen, Espen; Roede, Erik Dobloug; Krivokapic, Alexander; Erbe, Andreas; Lindgren, Mikael; Benelmekki, Maria; Einarsrud, Mari-Ann

Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m2/g. High absolute zeta potential (−44 mV) at neutral pH demonstrates the high electrosteric stability of the nanocomposites in aqueous solution. Their fluorescence emission at 445 nm is remarkably stable in aqueous dispersion under a wide pH range (3–12) and in the dried state. The biocompatibility of the composite particles is excellent, as the particles were found to show low genotoxicity at exposures up to 10 μg/cm2.

Wiley-VCH

2021

Tidal and lower thermospheric mean meridional circulation response to stratospheric warmings

Limpasuvan, Varavut; Orsolini, Yvan J.; Zhang, Jiarong; Espy, Patrick Joseph; Hibbins, Robert

2021

European air quality maps for 2019. PM10, PM2.5, Ozone, NO2 and NOx Spatial estimates and their uncertainties

Horálek, Jan; Vlasakova, Leona; Schreiberova, Marketa; Markova, Jana; Schneider, Philipp; Kurfürst, Pavel; Tognet, Frédéric; Schovánková, Jana; Vlcek, Ondrej

The report provides the annual update of the European air quality concentration maps and population exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, SOMO35, SOMO10) and NO2 (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2019. The report contains also Phytotoxic ozone dose (POD) for wheat, potato and tomato maps and NOx annual average map for 2019. The POD map for tomato is presented for the first time in this regular mapping report. The trends in exposure estimates in the period 2005–2019 are summarized. The analysis is based on the interpolation of the annual statistics of the 2019 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2019 in comparison to the five-year average 2014-2018 using the difference maps.

ETC/ATNI

2021

An update on low-cost sensors for the measurement of atmospheric composition

Peltier, Richard E.; Castell, Nuria; Clements, Andrea L.; Dye, Tim; Hüglin, Christoph; Kroll, Jesse H.; Lung, Shih-Chun Candice; Ning, Zhi; Parsons, Matthew; Penza, Michèle; Reisen, Fabienne; Scheidemesser, Erika von; Arfire, Adrian; Boso, Àlex; Fu, Qingyan; Hagan, David; Henshaw, Geoff; Jayaratne, Rohan; Jones, Roderic; Kelly, Kerry; Kilaru, Vasu; Mead, Iq; Morawska, Lidia; Papale, Dario; Polidori, Andrea; Querol, Xavier; Seddon, Jessica; Schneider, Philipp; Tarasova, Oksana; Yu, Alfred LC; Zellweger, Christoph

The report reflects on the state of the art in terms of accuracy, reliability and reproducibility of different sensors used for the measurements of reactive and greenhouse gases, and aerosols, along with the key analytical principles and what has been learned so far about low-cost sensors from both laboratory studies and real-world tests (up to August 2020). In some cases, scientific literature that had been accepted, but not yet published in a final form, was included in this review. Some national and international government documents were also included in this synthesis. The report includes eight distinct sections, including an Introduction to the Report, Main Principles and Components, Evaluation Activities, Sensor Performance, Communicating LCS to Society, and Expert Consensus and Advice. Communicating LCS to Society is a new section to the original 2018 report and includes a consensus viewpoint on strategies for communicating LCS data and technologies more broadly to the lay public. This report also includes a set of specific expert consensus recommendations for LCS users across different user groups.

WMO

2021

Low-cost sensors and networks. Overview of current status by the Norwegian Reference Laboratory for Air Quality.

Castell, Nuria

The increase of the commercial availability of low-cost sensor technology to monitor atmospheric composition is contributing to the rapid adoption of such technology by both public authorities and self-organized initiatives (e.g. grass root movements, citizen science, etc.). Low-cost sensors (LCS) can provide real time measurements, in principle at lower cost than traditional monitoring reference stations, allowing higher spatial coverage than the current reference methods. However, data quality from LCS is lower than the one provided by reference methods. Also, the total cost of deploying a dense sensor network needs to consider the costs associated not only to the sensor platforms but also the costs associated for instance with deployment, maintenance and data transmission.
This report aims to give an overview of the current status of LCS technology in relation to commercialization, measuring capabilities and data quality, with especial emphasis on the challenges associated to the use of this novel technology, and the opportunities they open when correctly used.

NILU

2021

Kunnskapsstatus for tverrfaglig klima- og miljøforskning

Skjellum, Solrun Figenschau; Ruud, Audun; Slettemark, Brita; Bartonova, Alena; Lund, Mariann; Singsaas, Frode Thomassen; Aspøy, Håkon; Grossberndt, Sonja; Enge, Caroline; Sander, Gunnar

CIENS

2021

In silico unravelling of descriptors for cytotoxicity and genotoxicity for hazard identification of nanomaterials

El Yamani, Naouale; Gromelski, Maciej; Mariussen, Espen; Wyrzykowska, E.; Grabarek, D.; Puzyn, Tomasz; Dusinska, Maria; Rundén-Pran, Elise

Elsevier

2021

The who, why and where of Norway's CO2 emissions from tourist travel

Grythe, Henrik; Lopez-Aparicio, Susana

We present emissions from Norway’s tourist travel by the available transport modes, i.e., aviation, maritime (ferries and cruises) and land-based transport (road and railways). Our study includes detailed information on both domestic and international tourist travel within, from and to Norway. We have coupled statistics from several large surveys with detailed emission data to allow us to separate the purpose of the travel (holiday or business).

Total transport emissions for tourists in 2018 were estimated to be 8 530 kt, equivalent to 19% of the reported Norwegian national emissions. Of these emissions, international tourists visiting Norway were responsible for 3 273 kt , whereas travel by Norwegians accounted for 4 875 kt , most of which occur outside Norway’s reporting obligations. Aviation and maritime transport were found to be the largest emission sources, responsible for 71% and 21% of total emissions, respectively. The reduction due to the COVID-19 pandemic was approximately 60% in 2020, and was sustained throughout the year.

Our study shows that officially reported emissions, as limited to the countries territory, are not suitable for accurate evaluation of transport emissions related to tourism. A consumer or tourist-based calculation gives a marked redistribution of emission responsibility. Our results indicate that emissions from Norwegian residents travelling abroad are 1 602 kt higher than those from tourists coming to Norway. This is driven by frequent trips to popular tourist destinations such as Spain, Thailand, Turkey and Greece. Globally consumer based calculations would shift the responsibility of emissions by tourists to the large wealthy nations, with the most international tourists. The understanding of emission distributed by population group or market support in addition the developing of marketing strategies to attract low emission tourist markets and create awareness among the nations with higher shares of international tourist.

Elsevier

2021

SEVIRI Aerosol Optical Depth Validation Using AERONET and Intercomparison with MODIS in Central and Eastern Europe

Ajtai, Nicolae; Mereuta, Alexandru; Stefanie, Horatiu; Radovici, Andrei; Botezan, Camelia; Zawadzka-Manko, Olga; Stachlewska, Iwona S.; Stebel, Kerstin; Zehner, Claus

This paper presents the validation results of Aerosol Optical Depth (AOD) retrieved from the Spinning Enhanced Visible Infrared Radiometer (SEVIRI) data using the near-real-time algorithm further developed in the frame of the Satellite-based Monitoring Initiative for Regional Air quality (SAMIRA) project. The SEVIRI AOD was compared against multiple data sources: six stations of the Aerosol Robotic Network (AERONET) in Romania and Poland, three stations of the Aerosol Research Network in Poland (Poland–AOD) and Moderate Resolution Imaging Spectroradiometer (MODIS) data overlapping Romania, Czech Republic and Poland. The correlation values between a four-month dataset (June–September 2014) from SEVIRI and the closest temporally available data for both ground-based and satellite products were identified. The comparison of the SEVIRI AOD with the AERONET AOD observations generally shows a good correlation (r = 0.48–0.83). The mean bias is 0.10–0.14 and the root mean square error RMSE is between 0.11 and 0.15 for all six stations cases. For the comparison with Poland–AOD correlation values are 0.55 to 0.71. The mean bias is 0.04–0.13 and RMSE is between 0.10 and 0.14. As for the intercomparison to MODIS AOD, correlations values were generally lower (r = 0.33–0.39). Biases of −0.06 to 0.24 and RMSE of 0.04 to 0.28 were in good agreement with the ground–stations retrievals. The validation of SEVIRI AOD with AERONET results in the best correlations followed by the Poland–AOD network and MODIS retrievals. The average uncertainty estimates are evaluated resulting in most of the AOD values falling above the expected error range. A revised uncertainty estimate is proposed by including the observed bias form the AERONET validation efforts.

MDPI

2021

Spatial trends of chlorinated paraffins and dechloranes in air and soil in a tropical urban, suburban, and rural environment

Nipen, Maja; Vogt, Rolf David; Bohlin-Nizzetto, Pernilla; Borgå, Katrine; Mwakalapa, Eliezer Brown; Borgen, Anders; Jørgensen, Susanne Jøntvedt; Ntapanta, Samwel Moses; Mmochi, Aviti John; Schlabach, Martin; Breivik, Knut

There are large knowledge gaps concerning environmental levels and fate of many organic pollutants, particularly for chemicals of emerging concern in tropical regions of the Global South. In this study, we investigated the levels of chlorinated paraffins (CPs) and dechloranes in air and soil in rural, suburban, and urban regions in and around Dar es Salaam, Tanzania. Samples were also collected near the city's main municipal waste dumpsite and an electronic waste (e-waste) handling facility. In passive air samples, short chain CPs (SCCPs) dominated, with an average estimated concentration of 22 ng/m3, while medium chain CPs (MCCPs) had an average estimated concentration of 9 ng/m3. The average estimated air concentration of ∑dechloranes (Dechlorane Plus (DP) + Dechlorane 602 + Dechlorane 603) was three to four orders of magnitudes lower, 2 pg/m3. In soil samples, MCCPs dominated with an average concentration of 640 ng/g dw, followed by SCCPs with an average concentration of 330 ng/g dw, and ∑dechloranes with an average concentration of 0.9 ng/g dw. In both air and soil, DP was the dominating dechlorane compound. Urban pulses were observed for CPs and dechloranes in air and soil. CPs were in addition found in elevated levels at the municipal waste dumpsite and the e-waste handling facility, while DPs were found in elevated levels at the e-waste handling facility. This suggests that waste handling sites represent important emission sources for these pollutants. Investigations into seasonal trends and environmental fate of CPs and dechloranes showed that monsoonal rain patterns play a major role in governing air concentrations and mobility, particularly for the less volatile MCCPs and dechloranes. This study is the first to report levels of CPs in air from sub-Saharan Africa, and DP, Dechlorane 602, and Dechlorane 603 in soil from sub-Saharan Africa.

Springer

2021

Publikasjon
År
Kategori