Fant 9885 publikasjoner. Viser side 343 av 396:
Testing ethical impact assessment for nano risk governance
Risk governance of nanomaterials and nanotechnologies has been traditionally mainly limited to risk assessment, risk management and life cycle assessment. Recent approaches have experimented with widening the scope and including economic, social, and ethical aspects. This paper reports on tests and stakeholder feedback on fine-tuning the use of ethical impact assessment guidelines (RiskGONE D3.6) and online tools adapting the CEN Workshop Agreement part 2 CWA 17145-2:2017 (E)) to support risk governance of nanomaterials, in the RiskGONE project. The EIA guidelines and tools are intended to be used as one module in a multicriteria decision support framework for risk governance of nanomaterials, but may also be used for a stand-alone ethical impact assessment.
Nanomaterials are new forms of materials with structures at sizes between 1 and 100 nanometres (a millionth of a millimetre). They can be particles, tubes, platelets or other shaped structures. Nanomaterials can be applied in many different products, ranging from medicine to solar panels. Researchers, governments and stakeholders have been concerned with potential risks for human health and the environment for decades. Also, how nanomaterials behave during the production, use and waste processing of the products they are included in has been investigated in Life Cycle Analysis. However, ethical issues which may be raised by the use of nanomaterials in those products are usually not investigated. In this article, the procedure for an ethical impact assessment described in the CEN Workshop Agreement CWA 17145-@:2017 (E) is adapted to nanomaterials. Users who want to perform this assessment are guided through the procedure by online tools. The guidelines and tools were tested on several case studies and discussed with stakeholders, who commented on the criteria which should be used and on who could use the tools. This results in recommendations for improving the guidelines and online tools.
2024
2018
2009
2014
Emission inventories indicate that thallium, a highly toxic metal, is emitted during coal burning and cement production. These estimates have been established only for the 1980s and 1990s but up to now they have not been compared to long-term observations. Here we used alpine ice cores to document thallium pollution over Europe since ∼1850. Ice-core thallium concentrations increased from 1890 to 1910, and decreased after 1965 to concentrations that were half 1890 levels. Comparison of ice-core trends, estimated past emissions, and state-of-the-art atmospheric aerosol transport modeling suggest that coal burning was responsible for thallium pollution in Europe, particularly from 1920 to 1965 because of high coal consumption at that time. The subsequent decline resulted from decreased coal consumption and reduced emissions following technological improvements. The ice-core data suggest that the rapid growth of cement production that took place in Europe after 1950 had a limited impact on thallium pollution.
American Geophysical Union (AGU)
2022
2014
2013
2021
2021
2022
2022
2010
2011
2012
2012
2011
The 5-years assessment of air quality, the Norwegian experience. NILU OR
NILU og GIOS utfører prosjektet "Strengthening the air quality assessment system in Poland, based on Norwegian experience".
Denne rapporten beskriver norsk erfaring i forbindelse med klassifisering av soner sett i sammenheng med øvre og nedre vurderingsterskler som beskrevet i Artikkel 5 i EU-Direktivet 2008/50/EC og Artikkel 4 i Direktivet 2004/107/ EC. Dette er basert på de seneste vurderinger av luftkvalitet utført i Norge og gir en oversikt over tilgjengelig relevant informasjon og metoder som NILU foreslår brukt for en slik evaluering. En kort beskrivelse av Norges soneinndeling for vurdering av luftkvaliteten og målenettverk er også beskrevet.
2013
The 60-year record of total ozone from Tromsø: Re-evaluation procedure and first results. Air pollution research report, 73
2000
Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds. Results show that these soils can actively function as sinks of these compounds, despite their different physiochemical properties. Upper active layer possessed relatively higher uptake capacities; factors including soil moisture, organic matter, and microbial biomass carbon were identified as the main factors correlating with the uptake rates. Additionally, uptake coefficients for several compounds were calculated for their potential use in future model development. Correlation analysis and the varying coefficients indicate that the sink was likely biotic. The development of a deeper active layer under climate change may enhance the sink capacity and reduce the net emissions of volatile organic compounds from permafrost thaw.
Springer Nature
2025
2014
2023
2006