Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9831 publikasjoner. Viser side 356 av 394:

Publikasjon  
År  
Kategori

Arctic methane

Platt, Stephen Matthew

2021

Arctic influence and month-to-season scale predictability over northern Europe.

Benestad, R.E.; Senan, R.; Kindem, I.T.; Orsolini, Y.J.; Melsom, A.

2008

Arctic haze in a climate changing world: the 2010–2022 trend (HAZECLIC 2)

Traversi, Rita; Becagli, Silvia; Severi, Mirko; Mazzola, Mauro; Lupi, Angelo; Fiebig, Markus; Hermansen, Ove; Krejci, Radovan

2024

Arctic gas hydrate, environment and climate.

Mienert, J.; Andreassen, K.; Bünz, S.; Carroll, J.L.; Ferre, B.; Knies, J.; Panieri, G.; Rasmussen, T.; Myhre, C.L.

2015

Arctic food and energy security at the crossroads

Unc, Adrian; Najm, Majdi R. Abou; Aspholm, Paul Eric; Bolisetti, Tirupati; Charles, Colleen; Datta, Ranjan; Eggen, Trine; Flem, Belinda Eline; Hailu, Getu; Heimstad, Eldbjørg Sofie; Hurlbert, Margot; Karlsson, Meriam; Korsnes, Marius Støylen; Nash, Arthur; Parsons, David; Sajeevan, Radha Sivarajan; Shurpali, Narasinha J.; Valkenburg, Govert; Wilde, Danielle; Wu, Bing; Yanni, Sandra F.; Misra, Debasmita

Springer Nature

2025

Arctic contaminant occurrence and effects in a changing climate - a synthesis of the ArcRisk project results.

Munthe, J.; Brorström-Lunden, E.; Cousins, I.; Halsall, C.; Rautio, A.; Wilson, S.; Pacyna, J.; Pawlak, J.

2014

Arctic alpine ecosystems and people in a changing environment.

Orbaek, J.B.; Kallenborn, R.; Tombre, I.; Hegseth, E.N.; Falk-Petersen, S.; Hoel, A.H. (eds.)

2007

Bok

Arctic air pollution: New insights from POLARCAT-IPY.

Law, K.S.; Stohl, A.; Quinn, P.K.; Brock, C.; Burkhart, J.; Paris, J.-D.; Ancellet, G.; Singh, H.B.; Roiger, A.; Schlager, H.; Dibb, J.; Jacob, D.J.; Arnold, S.R.; Pelon, J.; Thomas, J.L.

2014

Arctic air pollution: Challenges and opportunities.

Arnold, S. R.; Law, K. S.; Brock, C. A.; Thomas, J. L.; Starkweather, S. M.; Salzen, K. von, Stohl, A.; Sharma, S.; Lund, M. T.; Flanner, M. G.; Petäjä, T.; Tanimoto, H.; Gamble, J.; Dibb, J. E.; Melamaed, M.; Johnson, N.; Fidel, M.; Tynkkynen, V.-P.; Baklanov, A.; Eckhardt, S.; Monks, S. A.; Browse, J.; Bozem, H.

2016

Arctic Air pollution

Tørseth, Kjetil

2019

Arctic aerosol physical and optical characterization during the POLARCAT spring campaign in Greenland. Poster presentation. NILU F

Quennehen, B.; Schwarzenboeck, A.; Jourdan, O.; Stohl A.; Ancellet, G.; Schmale, J.

2010

Arctic Aerosol Model Validation and Evidence for Deposition Ice Nucleation over Siberia

Zamora, Lauren M; Kahn, Ralph; Evangeliou, Nikolaos; Zwaaftink, Christine Groot

2021

Archetypes of Spatial Concentration Variability of Organic Contaminants in the Atmosphere: Implications for Identifying Sources and Mapping the Gaseous Outdoor Inhalation Exposome

Zhan, Faqiang; Li, Yuening; Shunthirasingham, Chubashini; Oh, Jenny; Lei, Ying Duan; Lu, Zhe; Ben Chaaben, Amina; Lee, Kelsey; Gobas, Frank A. P. C.; Hung, Hayley; Breivik, Knut; Wania, Frank

Whereas inhalation exposure to organic contaminants can negatively impact human health, knowledge of their spatial variability in the ambient atmosphere remains limited. We analyzed the extracts of passive air samplers deployed at 119 unique sites in Southern Canada between 2019 and 2022 for 353 organic vapors. Hierarchical clustering of the obtained data set revealed four archetypes of spatial concentration variability in the outdoor atmosphere, which are indicative of common sources and similar atmospheric dispersion behavior. “Point Source” signatures are characterized by elevated concentration in the vicinity of major release locations. A “Population” signature applies to compounds whose air concentrations are highly correlated with population density, and is associated with emissions from consumer products. The “Water Source” signature applies to substances with elevated levels in the vicinity of water bodies from which they evaporate. Another group of compounds displays a “Uniform” signature, indicative of a lack of major sources within the study area. We illustrate how such a data set, and the derived spatial patterns, can be applied to support the identification of sources, the quantification of atmospheric emissions, the modeling of air quality, and the investigation of potential inequities in inhalation exposure.

2024

Publikasjon
År
Kategori