Fant 9747 publikasjoner. Viser side 364 av 390:
2023
Total ozone trends at three northern high-latitude stations
After the decrease of ozone-depleting substances (ODSs) as a consequence of the Montreal Protocol, it is still challenging to detect a recovery in the total column amount of ozone (total ozone) at northern high latitudes. To assess regional total ozone changes in the “ozone-recovery” period (2000–2020) at northern high latitudes, this study investigates trends from ground-based total ozone measurements at three stations in Norway (Oslo, Andøya, and Ny-Ålesund). For this purpose, we combine measurements from Brewer spectrophotometers, ground-based UV filter radiometers (GUVs), and a SAOZ (Système d'Analyse par Observation Zénithale) instrument. The Brewer measurements have been extended to work under cloudy conditions using the global irradiance (GI) technique, which is also presented in this study. We derive trends from the combined ground-based time series with the multiple linear regression model from the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) project. We evaluate various predictors in the regression model and found that tropopause pressure and lower-stratospheric temperature contribute most to ozone variability at the three stations. We report significantly positive annual trends at Andøya (0.9±0.7 % per decade) and Ny-Ålesund (1.5±0.1 % per decade) and no significant annual trend at Oslo (0.1±0.5 % per decade) but significantly positive trends in autumn at all stations. Finally we found positive but insignificant trends of around 3 % per decade in March at all three stations, which may be an indication of Arctic springtime ozone recovery. Our results contribute to a better understanding of regional total ozone trends at northern high latitudes, which is essential to assess how Arctic ozone responds to changes in ODSs and to climate change.
2023
2023
The impact of moisture transport and sources on precipitation stable isotopes (δ18O and d-excess) in the central Himalayas are crucial to understanding the climatic archives. However, this is still unclear due to the lack of in-situ observations. Here we present measurements of stable isotopes in precipitation at two stations (Yadong and Pali) in the central Himalayas during 2014–2015. Combined with simulations from the dispersion model FLEXPART, we investigate effects on precipitation stable isotopes related to changes in moisture sources and convections in the region, and possible influence by El Niño. Our results suggest that the moisture supplies related to evaporation over northeastern India and moisture losses related to convective activities over the Bay of Bengal (BoB) and Bangladesh region play important roles in changes in δ18O and d-excess in precipitation in the Yadong Valley. Outgoing longwave radiation and moisture flux divergence analysis further confirm that the contribution from continental evaporation dominates the moisture supply in the central Himalayas with a lesser contribution from convection over the BoB during the 2015 monsoon season compared with 2014. A change in the altitude effect is observed in 2015, which is more significant than the temperature and precipitation amount effect during the observation period. These findings provide valuable insights into climatic interpretations of paleo-isotopic archives with an isotopic response to changes in moisture transport to the central Himalayas.
American Geophysical Union (AGU)
2023
Satellite remote sensing of Arctic fires - a literature and data review
The main aim of this report is to prepare for the proposed SGA #17 of the Caroline Herschel Framework Partnership Agreement on Copernicus User Uptake Work Programme 2020 named “Arctic peat- and forest-fire information system”. First, we summarize the scientific background of wildfires in the Arctic and the Northern boreal zone and describe observations of long-range transport of forest fire pollution. This is followed by an overview of satellite data and resources available for fire monitoring in these regions. This covers the fire ECVs, as well as smoke plume tracers. Furthermore, we list CAMS and CEMS resources, i.e., GWIS, EFFIS (including the latest country report for Norway), and GFAS, as well as other fire emission inventories. Knowledge gaps and limitations of satellite remote sen.sing, future missions, Norwegian user uptake and user groups are described.
NILU
2023
This paper examines the potential impact of citizen science on achieving SDGs in cities. The analysis focuses on projects funded through the European Research Framework Programmes that utilize citizen science practices to involve cities and citizens in addressing sustainability issues. We analyzed a total of 44 projects active between 2016 and 2027, encompassing both ongoing and completed projects. Instead of relying solely on existing literature, we utilized a project database called CORDIS to gather project information. This approach allowed us to develop a comprehensive framework by utilizing uniformly classified data from the database, which is not typically available in literature. Using a four-stage framework analysis method, we assessed the projects' thematic areas, goals, types of solution promoted or tested to address sustainability challenges, methodologies employed, and the impacts achieved or expected. Through this analysis, we identified successful collaborations between citizen science and cities, showcasing examples of effective practice where citizens and cities co-created and tested solutions that contribute to SDGs. This highlights the active role that citizens, as participants or citizen scientists, play in the transition toward SDGs. This study focuses on more than 100 European cities that have been involved in EU-funded research projects implementing and planning to conduct citizen science activities, which directly and indirectly link to various SDGs. Our findings reveal that citizen science practices in cities predominantly address SDG3 (Good health and wellbeing), 11 (Sustainable cities and communities), and 13 (Climate action). Cities that engage citizens in co-creating solutions can enhance their capacity to improve quality of life and reduce climate and environmental impacts. Citizen engagement at the city and community levels can bolster efforts toward achieving SDGs and monitoring progress on a city-wide scale. However, to fully integrate citizen science and its contribution to cities in achieving SDGs, further research is needed to align the SDGs formulated at the national level with those at the city level. This entails exploring how citizen science can align with SDGs indicators and the quantification of SDG targets. Such efforts will facilitate the mainstreaming of citizen science and its potential to drive progress toward SDGs in cities.
Frontiers Media S.A.
2023
2023
2023
In this study, we use the Whole Atmosphere Community Climate Model, forced by present-day atmospheric composition and coupled to a Slab Ocean Model, to simulate the state of the climate under grand solar minimum forcing scenarios. Idealized experiments prescribe time-invariant solar irradiance reductions that are either uniform (percentage-wise) across the total solar radiation spectrum (TOTC) or spectrally localized in the ultraviolet (UV) band (SCUV). We compare the equilibrium condition of these experiments with the equilibrium condition of a control simulation, forced by perpetual solar maximum conditions. In SCUV, we observe large stratospheric cooling due to ozone reduction. In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH), this is accompanied by a weakening of the polar night jet during the cold season. In TOTC, dynamically induced polar stratospheric cooling is observed in the transition seasons over the NH, without any ozone deficit. The global temperature cooling values, compared with the control climate, are 0.55±0.03 K in TOTC and 0.39±0.03 K in SCUV. The reductions in total meridional heat transport outside of the subtropics are similar in the two experiments, especially in the SH. Despite substantial differences in stratospheric forcing, similarities exist between the two experiments, such as cloudiness; meridional heating transport in the SH; and strong cooling in the NH during wintertime, although this cooling affects two different regions, namely, North America in TOTC and the Euro–Asian continent in SCUV.
MDPI
2023
This report presents the results of the environmental burden of disease (or health risk) assessment related to air pollution in 2021. The estimates include all-cause mortality and cause-specific mortality and morbidity health outcomes, with ten risk-outcome pairs considered for the cause-specific estimates. Cause-specific mortality and morbidity estimates are combined to allow assessing the overall impact on population health based on a common indicator, the disability-adjusted life year. Using estimates disaggregated by mortality and morbidity components allows for the identification of the related shares across European countries.
ETC/HE
2023
American Meteorological Society
2023
2023
2023
Electronic waste is a source of both legacy and emerging flame retardants to the environment, especially in regions where sufficient waste handling systems are lacking. In the present study, we quantified the occurrence of short- and medium chain chlorinated paraffins (SCCPs and MCCPs) and dechloranes in household chicken (Gallus domesticus) eggs and soil collected near waste disposal sites on Zanzibar and the Tanzanian mainland. Sampling locations included an e-waste facility and the active dumpsite of Dar es Salaam, a historical dumpsite in Dar es Salaam, and an informal dumpsite on Zanzibar. We compared concentrations and contaminant profiles between soil and eggs, as free-range chickens ingest a considerable amount of soil during foraging, with potential for maternal transfer to the eggs. We found no correlation between soil and egg concentrations or patterns of dechloranes or CPs. CPs with shorter chain lengths and higher chlorination degree were associated with soil, while longer chain lengths and lower chlorination degree were associated with eggs. MCCPs dominated the CP profile in eggs, with median concentrations ranging from 500 to 900 ng/g lipid weight (lw) among locations. SCCP concentrations in eggs ranged from below the detection limit (LOD) to 370 ng/g lw. Dechlorane Plus was the dominating dechlorane compound in all egg samples, with median concentrations ranging from 0.5 to 2.8 ng/g lw. SCCPs dominated in the soil samples (400–21300 ng/g soil organic matter, SOM), except at the official dumpsite where MCCPs were highest (65000 ng/g SOM). Concentrations of dechloranes in soil ranged from below LOD to 240 ng/g SOM, and the dominating compounds were Dechlorane Plus and Dechlorane 603. Risk assessment of CP levels gave margins of exposure (MOE) close to or below 1000 for SCCPs at one location.
Pergamon Press
2023
2023
Rapid growth in urbanization and industrialization leads to an increase in air pollution and poor air quality. Because of its adverse effects on the natural environment and human health, it’s been declared a “silent public health emergency”. To deal with this global challenge, accurate prediction of air pollution is important for stakeholders to take required actions. In recent years, deep learning-based forecasting models show promise for more effective and efficient forecasting of air quality than other approaches. In this study, we made a comparative analysis of various deep learning-based single-step forecasting models such as long short term memory (LSTM), gated recurrent unit (GRU), and a statistical model to predict five air pollutants namely Nitrogen Dioxide (NO 2 ), Ozone (O 3 ), Sulphur Dioxide (SO 2 ), and Particulate Matter (PM2.5, and PM10). For empirical evaluation, we used a publicly available dataset collected in Northern Ireland, using an air quality monitoring station situated in Belfast city centre. It measures the concentration of air pollutants. The performance of forecasting models is evaluated based on three performance metrics: (a) root mean square error (RMSE), (b) mean absolute error (MAE) and (c) R-squared ( R2 ). The result shows that deep learning models consistently achieved the least RMSE compared to the statistical models with a value of 0.59. In addition, the deep learning model is also found to have the highest R2 score of 0.856.
IEEE (Institute of Electrical and Electronics Engineers)
2023
Volcanoes are known to be important emitters of atmospheric gases and aerosols, which for certain volcanoes can include halogen gases and in particular HBr. HBr emitted in this way can undergo rapid atmospheric oxidation chemistry (known as the bromine explosion) within the volcanic emission plume, leading to the production of bromine oxide (BrO) and ozone depletion. In this work, we present the results of a modelling study of a volcanic eruption from Mt Etna that occurred around Christmas 2018 and lasted 6 d. The aims of this study are to demonstrate and evaluate the ability of the regional 3D chemistry transport model Modèle de Chimie Atmosphérique de Grande Echelle (MOCAGE) to simulate the volcanic halogen chemistry in this case study, to analyse the variability of the chemical processes during the plume transport, and to quantify its impact on the composition of the troposphere at a regional scale over the Mediterranean basin.
The comparison of the tropospheric SO2 and BrO columns from 25 to 30 December 2018 from the MOCAGE simulation with the columns derived from the TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements shows a very good agreement for the transport of the plume and a good consistency for the concentrations if considering the uncertainties in the flux estimates and the TROPOMI columns. The analysis of the bromine species' partitioning and of the associated chemical reaction rates provides a detailed picture of the simulated bromine chemistry throughout the diurnal cycle and at different stages of the volcanic plume's evolution. The partitioning of the bromine species is modulated by the time evolution of the emissions during the 6 d of the eruption; by the meteorological conditions; and by the distance of the plume from the vent, which is equivalent to the time since the emission. As the plume travels further from the vent, the halogen source gas HBr becomes depleted, BrO production in the plume becomes less efficient, and ozone depletion (proceeding via the Br+O3 reaction followed by the BrO self-reaction) decreases. The depletion of HBr relative to the other prevalent hydracid HCl leads to a shift in the relative concentrations of the Br− and Cl− ions, which in turn leads to reduced production of Br2 relative to BrCl.
The MOCAGE simulations show a regional impact of the volcanic eruption on the oxidants OH and O3 with a reduced burden of both gases that is caused by the chemistry in the volcanic plume. This reduction in atmospheric oxidation capacity results in a reduced CH4 burden. Finally, sensitivity tests on the composition of the emissions carried out in this work show that the production of BrO is higher when the volcanic emissions of sulfate aerosols are increased but occurs very slowly when no sulfate and Br radicals are assumed to be in the emissions. Both sensitivity tests highlight a significant impact on the oxidants in the troposphere at the regional scale of these assumptions.
All the results of this modelling study, in particular the rapid formation of BrO, which leads to a significant loss of tropospheric ozone, are consistent with previous studies carried out on the modelling of volcanic halogens.
2023
Arctic Tropospheric Ozone Trends
Observed trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), are estimated using available surface and ozonesonde profile data for 1993–2019, using a coherent methodology, and compared to modeled trends (1995–2015) from the Arctic Monitoring Assessment Program SLCF 2021 assessment. Increases in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent decreasing trends in surface carbon monoxide, are generally captured by multi-model median trends. Wintertime increases are also estimated in the free troposphere at most Arctic sites, with decreases during spring months. Winter trends tend to be overestimated by the multi-model medians. Springtime surface ozone increases in northern coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are not always reproduced. Possible reasons for observed changes and model performance are discussed including decreasing precursor emissions, changing ozone dry deposition, and variability in large-scale meteorology.
American Geophysical Union (AGU)
2023