Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 9998 publikasjoner. Viser side 391 av 400:

Publikasjon  
År  
Kategori

Recent Global Trends in Urban Nitrogen Dioxide Observed from Space

Schneider, Philipp; Hassani, Amirhossein; Walker, Sam-Erik; Solberg, Sverre; Stebel, Kerstin

2025

A worldwide aerosol phenomenology: Elemental and organic carbon in PM2.5 and PM10

Putaud, Jean-Philippe; Cavalli, Fabrizia; Yttri, Karl Espen; Chow, Judith C.; Watson, John G.; Sinha, Baerbel; Venkataraman, Chandra; Ikemori, Fumikazu; Jaffrezo, Jean-Luc; Uzu, Gaelle; Moreno, Isabel; Krejci, Radovan; Laj, Paolo; Gupta, Tarun; Hu, Min; Kim, Sang-Woo; Mayol-Bracero, Olga; Quinn, Patricia; Aas, Wenche; Alastuey, Andres; Andrade, Marcos; Angelucci, Monica; Anurag, Gupta; Beukes, J. Paul; Bhardwaj, Ankur; Chatterjee, Abhijit; Chaudhary, Pooja; Chhangani, Anil Kumar; Conil, Sébastien; Degorska, Anna; Devaliya, Sandeep; Dhandapani, Abisheg; Duhan, Sandeep Singh; Dumka, Umesh Chandra; Habib, Gazala; Hamzavi, Zahra; Haswani, Diksha; Herrmann, Hartmut; Holubova, Adela; Hueglin, Christoph; Imran, Mohd; Jehangir, Arshid; Kapoor, Taveen Singh; Karanasiou, Angeliki; Khaiwal, Ravindra; Kim, Jeongeun; Kolesa, Tanja; Kozakiewicz, Joanna; Kranjc, Irena; Laura, Jitender Singh; Lian, Yang; Liu, Junwen; Manwani, Pooja; Mardoñez-Balderrama, Valeria; Marticorena, Béatrice; Matsuki, Atsushi; Mor, Suman; Mukherjee, Sauryadeep; Murthy, Sadashiva; Muthalagu, Akila; Najar, Tanveer Ahmad; Kumar, Radhakrishnan Naresh; Pandithurai, Govindan; Perez, Noemi; Phairuang, Worradorn; Phuleria, Harish C.; Poulain, Laurent; Prasad, Laxmi; Pullokaran, Delwin; Qadri, Adnan Mateen; Qureshi, Asif; Ramírez, Omar; Roy, Sayantee; Rüdiger, Julian; Saikia, Binoy K.; Saikia, Prasenjit; Sauvage, Stéphane; Savvides, Chrysanthos; Sharma, Renuka; Singh, Tanbir; Singh, Gyanesh Kumar; Spoor, Ronald; Srivastava, Atul Kumar; Raman, Ramya Sunder; Zyl, Pieter G. Van; Vecchiocattivi, Marco; Voiron, Céline; Xin, Jinyuan; Yadav, Kajal

Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) concentrations in the inhalable (PM10) and fine (PM2.5) size fractions are measured worldwide, albeit with different analytical methods. These measurements from many researchers were collected and analyzed for Africa, America, Asia, and Europe for 2012–2019. EC/PM, OC/PM, and OC/EC ratios were examined based on region, site type, and season to infer potential sources and impacts. These analyses demonstrate that carbonaceous materials are important PM constituents throughout the world. Mean EC/PM ratios were lowest in PM10 in Sahelian Africa and Europe (∼0.01), highest (>0.07) in PM2.5 at urban sites in North America, South America, and Japan. Mean OC/PM ratios were lowest in PM10 in the Sahel (∼0.06) and in PM2.5 in China and Thailand (0.10), and highest in central and eastern Europe (∼0.3) and North America (∼0.4). OC/EC ratios were elevated in western and northern Europe, and at regional background sites in North America. EC/PM increased with PM10 in Thailand, while OC/PM increased with higher PM mass in Thailand, India, and North America, highlighting the specific contribution of carbonaceous aerosols to PM pollution in these regions. At European and North American background sites, OC/EC ratios increased with PM mass. Higher OC/EC ratios in dry periods indicate influence of wildfires, prescribed burns, and secondary aerosol formation. Elevated wintertime EC/PM ratios coincide with residential heating in temperate climate zones.

2025

Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual report 2024

Svendby, Tove Marit; Fjæraa, Ann Mari; Schulze, Dorothea; Bäcklund, Are; Johnsen, Bjørn

This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2024 was characterized by high total ozone values most of the year, especially in the Arctic stations in March. For Ny-Ålesund, 2024 showed the highest annual average total ozone value since systematic ground-based ozone measurements started in 1997.

NILU

2025

Task Offloading Optimization for UAV-Aided NOMA Networks With Coexistence of Near-Field and Far-Field Communications

Bui, Tinh Thanh; Do, Thinh Quang; Huynh, Dang Van; Do-Duy, Tan; Nguyen, Long D.; Cao, Tuan-Vu; Sharma, Vishal; Duong, Trung Q.

2025

Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer

Chatterjee, Ayan; Riegler, Michael Alexander; Ganesh, K.; Halvorsen, Pål

Heart Rate Variability (HRV) serves as a vital marker of stress levels, with lower HRV indicating higher stress. It measures the variation in the time between heartbeats and offers insights into health. Artificial intelligence (AI) research aims to use HRV data for accurate stress level classification, aiding early detection and well-being approaches. This study’s objective is to create a semantic model of HRV features in a knowledge graph and develop an accurate, reliable, explainable, and ethical AI model for predictive HRV analysis. The SWELL-KW dataset, containing labeled HRV data for stress conditions, is examined. Various techniques like feature selection and dimensionality reduction are explored to improve classification accuracy while minimizing bias. Different machine learning (ML) algorithms, including traditional and ensemble methods, are employed for analyzing both imbalanced and balanced HRV datasets. To address imbalances, various data formats and oversampling techniques such as SMOTE and ADASYN are experimented with. Additionally, a Tree-Explainer, specifically SHAP, is used to interpret and explain the models’ classifications. The combination of genetic algorithm-based feature selection and classification using a Random Forest Classifier yields effective results for both imbalanced and balanced datasets, especially in analyzing non-linear HRV features. These optimized features play a crucial role in developing a stress management system within a Semantic framework. Introducing domain ontology enhances data representation and knowledge acquisition. The consistency and reliability of the Ontology model are assessed using Hermit reasoners, with reasoning time as a performance measure. HRV serves as a significant indicator of stress, offering insights into its correlation with mental well-being. While HRV is non-invasive, its interpretation must integrate other stress assessments for a holistic understanding of an individual’s stress response. Monitoring HRV can help evaluate stress management strategies and interventions, aiding individuals in maintaining well-being.

2025

Addressing the advantages and limitations of using Aethalometer data to determine the optimal absorption Ångström exponents (AAEs) values for eBC source apportionment

Savadkoohi, Marjan; Gerras, Mohamed; Favez, Olivier; Petit, Jean-Eudes; Rovira, Jordi; Chen, Gang I.; Via, Marta; Platt, Stephen Matthew; Aurela, Minna; Chazeau, Benjamin; Brito, Joel F. De; Riffault, Véronique; Eleftheriadis, Kostas; Flentje, Harald; Gysel-Beer, Martin; Hueglin, Christoph; Rigler, Martin; Gregorič, Asta; Ivančič, Matic; Keernik, Hannes; Maasikmets, Marek; Liakakou, Eleni; Stavroulas, Iasonas; Luoma, Krista; Marchand, Nicolas; Mihalopoulos, Nikos; Petäjä, Tuukka; Prévôt, André S.H.; Daellenbach, Kaspar R.; Vodička, Petr; Timonen, Hilkka; Tobler, Anna; Vasilescu, Jeni; Dandocsi, Andrei; Mbengue, Saliou; Vratolis, Stergios; Zografou, Olga; Chauvigné, Aurélien; Hopke, Philip K.; Querol, Xavier; Alastuey, Andrés; Pandolfi, Marco

The apportionment of equivalent black carbon (eBC) to combustion sources from liquid fuels (mainly fossil; eBCLF) and solid fuels (mainly non-fossil; eBCSF) is commonly performed using data from Aethalometer instruments (AE approach). This study evaluates the feasibility of using AE data to determine the absorption Ångström exponents (AAEs) for liquid fuels (AAELF) and solid fuels (AAESF), which are fundamental parameters in the AE approach. AAEs were derived from Aethalometer data as the fit in a logarithmic space of the six absorption coefficients (470–950 nm) versus the corresponding wavelengths. The findings indicate that AAELF can be robustly determined as the 1st percentile (PC1) of AAE values from fits with R2 > 0.99. This R2-filtering was necessary to remove extremely low and noisy-driven AAE values commonly observed under clean atmospheric conditions (i.e., low absorption coefficients). Conversely, AAESF can be obtained from the 99th percentile (PC99) of unfiltered AAE values. To optimize the signal from solid fuel sources, winter data should be used to calculate PC99, whereas summer data should be employed for calculating PC1 to maximize the signal from liquid fuel sources. The derived PC1 (AAELF) and PC99 (AAESF) values ranged from 0.79 to 1.08, and 1.45 to 1.84, respectively. The AAESF values were further compared with those constrained using the signal at mass-to-charge 60 (m/z 60), a tracer for fresh biomass combustion, measured using aerosol chemical speciation monitor (ACSM) and aerosol mass spectrometry (AMS) instruments deployed at 16 sites. Overall, the AAESF values obtained from the two methods showed strong agreement, with a coefficient of determination (R2) of 0.78. However, uncertainties in both approaches may vary due to site-specific sources, and in certain environments, such as traffic-dominated sites, neither approach may be fully applicable.

2025

Status report of air quality in Europe for year 2023, using validated data

Targa, Jaume; Colina, María; Banyuls, Lorena; Ortiz, Alberto González; Soares, Joana

This report presents summarised information on the status of air quality in Europe in 2023, based on validated air quality monitoring data officially reported by the member and cooperating countries of the EEA. It aims at informing on the status of ambient air quality in Europe in 2023 and on the progress towards meeting the European air quality standards for the protection of health, as well as the WHO air quality guidelines. The report also compares the air quality status in 2023 with the previous years. The pollutants covered in this report are particulate matter (PM10 and PM2.5), tropospheric ozone (O3), nitrogen dioxide (NO2), benzo(a)pyrene (BaP), sulphur dioxide (SO2), carbon monoxide (CO), benzene (C6H6) and toxic metals (As, Cd, Ni, Pb). Measured concentrations above the European air quality standards for PM10, PM2.5, O3, and NO2 were reported by 18, 6, 20, and 9 reporting countries for 2022, respectively. Exceedances of the air quality standards for BaP, SO2, CO, and benzene were measured in, respectively, 9, 2, 2, and 0 reporting countries in 2023. Exceedances of European standards for toxic metals were reported by 5 stations for As, none for Cd, 1 for Pb and 2 for Ni.

ETC/HE

2025

Fluxes, residence times, and the budget of microplastics in the Curonian Lagoon

Abbasi, Sajjad; Hashemi, Neda; Sabaliauskaitė, Viktorija; Evangeliou, Nikolaos; Dzingelevičius, Nerijus; Balčiūnas, Arūnas; Dzingelevičienė, Reda

2025

Lipidome of Saharan dust aerosols

Violaki, Kalliopi; Panagiotopoulos, Christos; Rossi, Pierre; Abboud, Ernest; Kanakidou, Maria; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Nenes, Athanasios

2025

Multi-year black carbon observations and modeling close to the largest gas flaring and wildfire regions in the Western Siberian Arctic

Popovicheva, Olga; Chichaeva, Marina; Evangeliou, Nikolaos; Eckhardt, Sabine; Diapouli, Evangelia; Kasimov, Nikolay

The influence of aerosols on the Arctic system remains associated with significant uncertainties, particularly concerning black carbon (BC). The polar aerosol station “Island Bely” (IBS), located in the Western Siberian Arctic, was established to enhance aerosol monitoring. Continuous measurements from 2019 to 2022 revealed the long-term effects of light-absorbing carbon. During the cold period, the annual average light-absorption coefficient was 0.7 ± 0.7 Mm−1, decreasing by 2–3 times during the warm period. The interannual mean showed a peak in February (0.9 ± 0.8 Mm−1) then 10 times the lower minimum in June and exhibited high variability in August (0.7 ± 2.2 Mm−1). An increase of up to 1.5 at shorter wavelengths from April to September suggests contribution from brown carbon (BrC). The annual mean equivalent black carbon (eBC) demonstrated considerable interannual variability, with the lowest in 2020 (24 ± 29 ng m−3). Significant difference was observed between Arctic haze and Siberian wildfire periods, with record-high pollution levels in February 2022 (110 ± 70 ng m−3) and August 2021 (83 ± 249 ng m−3). Anthropogenic BC contributed 83 % to the total for the entire study period, and gas flaring, domestic combustion, transportation, and industrial emissions dominated. During the cold season, > 90 % of surface BC was attributed to anthropogenic sources, mainly gas flaring. In contrast, during the warm period, Siberian wildfires contributed to BC concentrations by 48 %. In August 2021, intense smoke from Yakutian wildfires was transported at high altitudes during the region's worst fire season in 40 years.

2025

Pollution

Bartonova, Alena

2025

Aerosol hygroscopicity influenced by seasonal chemical composition variations in the Arctic region

Kang, Hyojin; Jung, Chang Hoon; Lee, Bang Young; Krejci, Radovan; Heslin-Rees, Dominic; Aas, Wenche; Yoon, Young Jun

In this study, we quantified aerosol hygroscopicity parameter using aerosol microphysical observation data (κphy), analyzing monthly and seasonal trends in κphy by correlating it with aerosol chemical composition over 6 years from April 2007 to March 2013 at the Zeppelin Observatory in Svalbard, Arctic region. The monthly mean κphy value exhibited distinct seasonal variations, remaining high from winter to spring, reaching its minimum in summer, followed by an increase in fall, and maintaining elevated levels in winter. To verify the reliability of κphy, we employed the hygroscopicity parameter calculated from chemical composition data (κchem). The chemical composition and PM2.5 mass concentration required to calculate κchem was obtained through Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis data and the calculation of κchem assumed that Arctic aerosols comprise only five species: black carbon (BC), organic matter (OM), ammonium sulfate (AS), sea salt aerosol less than a diameter of 2.5 μm (SSA2.5), and dust aerosol less than a diameter of 2.5 μm (Dust2.5). The κchem had no distinct correlation but had a similar seasonal trend compared to κphy. The κchem value followed a trend of SSA2.5 and was much higher by a factor of 1.6 ± 0.3 than κphy on average, due to a large proportion of SSA2.5 mass concentration in MERRA-2 reanalysis data. This may be due to the overestimation of sea salt aerosols in MERRA-2 reanalysis. The relationship between monthly mean κphy and the chemical composition used to calculate κchem was also analyzed. The elevated κphy from October to February resulted from the dominant influence of SSA2.5, while the maximum κphy in March was concurrently influenced by increasing AS and Dust2.5 associated with long-range transport from mid-latitude regions during Arctic haze periods and by SSA mass concentration obtained from in-situ sampling, which remained high from the preceding winter. The relatively low κphy from April to September can be attributed to low SSA2.5 and the dominance of organic compounds in the Arctic summer. Either natural sources such as those of marine and terrestrial biogenic origin or long-range-transported aerosols may contribute to the increase in organic aerosols in summer, potentially influencing the reduction in κphy of atmospheric aerosols. To our knowledge, this is the first study to analyze the monthly and seasonal variation of aerosol hygroscopicity calculated using long-term microphysical data, and this result provides evidence that changes in monthly and seasonal hygroscopicity variation occur depending on chemical composition.

2025

Forskere sammenligner forurensningen fra duft­voks med gass­komfyrer og diesel­motorer

Håland, Alexander; Alswady-Hoff, Mayes (intervjuobjekter); Mehammer, Kristin Krog (journalist)

2025

Future CH4 as modelled by a fully coupled Earth system model: prescribed GHG concentrations vs. interactive CH4 sources and sinks

Im, Ulas; Tsigaridis, Kostas; Bauer, Susanne; Shindell, Drew; Oliviè, Dirk Jan Leo; Wilson, Simon; Sørensen, Lise Lotte; Langen, Peter; Eckhardt, Sabine

We have used the NASA Goddard Institute for Space Studies (GISS) Earth system model GISS-E2.1 to study the future budgets and trends of global and regional CH4 under different emission scenarios, using both the prescribed GHG concentrations as well as the interactive CH4 sources and sinks setup of the model, to quantify the model performance and its sensitivity to CH4 sources and sinks. We have used the Current Legislation (CLE) and the maximum feasible reduction (MFR) emission scenarios from the ECLIPSE V6b emission database to simulate the future evolution of CH4 sources, sinks, and levels from 2015 to 2050. Results show that the prescribed GHG version underestimates the observed surface CH4 concentrations during the period between 1995 and 2023 by 1%, with the largest underestimations over the continental emission regions, while the interactive simulation underestimates the observations by 2%, with the biases largest over oceans and smaller over the continents. For the future, the MFR scenario simulates lower global surface CH4 concentrations and burdens compared to the CLE scenario, however in both cases, global surface CH4 and burden continue to increase through 2050 compared to present day. In addition, the interactive simulation calculates slightly larger O3 and OH mixing ratios, in particular over the northern hemisphere, leading to slightly decreased CH4 lifetime in the present day. The CH4 forcing is projected to increase in both scenarios, in particular in the CLE scenario, from 0.53 W m−2 in the present day to 0.73 W m−2 in 2050. In addition, the interactive simulations estimate slightly higher tropospheric O3 forcing compared to prescribed simulations, due to slightly higher O3 mixing ratios simulated by the interactive models. While in the CLE, tropospheric O3 forcing continues to increase, the MFR scenario leads to a decrease in tropospheric O3 forcing, leading to a climate benefit. Our results highlight that in the interactive models, the response of concentrations are not necessarily linear with the changes in emissions as the chemistry is non-linear, and dependent on the oxidative capacity of the atmosphere. Therefore, it is important to have the CH4 sources and chemical sinks to be represented comprehensively in climate models.

2025

Anthropogenic Carbon Monoxide Emissions During 2014–2020 in China Constrained by In Situ Ground Observations

Jia, Mengwei; Jiang, Fei; Evangeliou, Nikolaos; Eckhardt, Sabine; Stohl, Andreas; Huang, Xin; Sheng, Yang; Feng, Shuzhuang; He, Wei; Wang, Hengmao; Wu, Mousong; Ju, Weimin; Ding, Aijun

2025

Bygger hytte av plast: – Dette er bra for miljøet

Herzke, Dorte (intervjuobjekt); Kolve, André Rajan; Ellefsen, Vegard Unger (journalister)

2025

Advancing Genotoxicity Assessment by Building a Global AOP Network

Demuynck, Emmanuel; Vanhaecke, Tamara; Thienpont, Anouck; Cappoen, Davie; Goethem, Freddy Van; Winkelman, L. M. T.; Beltman, Joost B.; Murugadoss, Sivakumar; Olsen, Ann-Karin Hardie; Marcon, Francesca; Bossa, Cecilia; Shaikh, Sanah M.; Nikolopoulou, Dimitra; Hatzi, Vasiliki; Pennings, Jeroen L A; Luijten, Mirjam; Adam-Guillermin, Christelle; Paparella, Martin; Audebert, Marc; Mertens, Birgit

2025

First results of the European activities for the EarthCARE validation in the framework of ACTRIS/ATMO-ACCESS

Baars, Holger; Marinou, Eleni; Mona, Lucia; Papanikolaou, Christina Anna; O'Connor, Ewan; Rusli, Stephanie; Koopman, Rob; Fjæraa, Ann Mari; Pfitzenmaier, Lukas; Toledo-Bittner, Felipe; Feuillard, Nathan; Nicolae, Doina

2025

Aging of Tire Particles in Deep-Sea Conditions: Interactions between Hydrostatic Pressure, Prokaryotic Growth and Chemical Leaching

Schmidt, Natascha; Foscari, Aurelio; Herzke, Dorte; Garel, Marc; Tamburini, Christian; Seiwert, Bettina; Reemtsma, Thorsten; Sempéré, Richard

Tire particles can enter the marine environment e.g. through direct discharge of road runoff, sewage systems or riverine inputs. Their fate in marine waters remains largely unknown, though the deep sea could be a final sink as for other marine litter. To simulate these conditions, we investigated in laboratory-controlled conditions the effects of high-hydrostatic pressure [20 MPa] vs atmospheric pressure [0.1 MPa] on the leaching of 17 organic compounds from cryo-milled tire tread particles (μm sized) and crumb rubber particles (mm sized) into natural seawater. We monitored the abundance of heterotrophic prokaryotes in the leachates over the 14 day exposure period under biotic conditions. Abiotic controls were employed to delineate the influence of prokaryotes on the fate of leached chemicals. Our results showed leaching of dissolved organic carbon and target chemicals under all experimental conditions, with higher concentrations of certain target chemicals under high-hydrostatic pressure conditions (e.g., 1,3-diphenylguanidine [DPG]: max. 703 (20 MPa) vs 119 μg/L (0.1 MPa) from cryo-milled tire tread particles under biotic conditions). Under abiotic conditions leaching was weaker for DPG and other chemicals, with contrasting trends for chemicals prone to biotransformation. In crumb rubber leachates chemical concentrations increased with time, but showed no significant differences between biotic/abiotic or high-hydrostatic/atmospheric pressure conditions. Prokaryotic abundance increased in all samples containing tire particles compared to seawater controls, indicating the use of the rubber and/or leached chemicals as an energy source.

2025

Luftkvaliteten blir bedre. Likevel jubler ikke forskerne

Platt, Stephen Matthew (intervjuobjekt); Storrønningen, Lilli (journalist)

2025

Arctic and Northern Latitude Peat and Non-peat Wildfire Aerosols During 2018-2024

Stebel, Kerstin; Schneider, Philipp; Kaiser, Johannes; Aun, Margit

2025

Modelling Arctic lower-tropospheric ozone: processes controlling seasonal variations

Gong, Wanmin; Beagley, Stephen R.; Toyota, Kenjiro; Skov, Henrik; Christensen, Jesper Heile; Lupu, Alex; Pendlebury, Diane; Zhang, Junhua; Im, Ulas; Kanaya, Yugo; Saiz-Lopez, Alfonso; Sommariva, Roberto; Effertz, Peter; Halfacre, John W.; Jepsen, Nis; Kivi, Rigel; Koenig, Theodore K.; Müller, Katrin; Nordstrøm, Claus; Petropavlovskikh, Irina; Shepson, Paul B.; Simpson, William R.; Solberg, Sverre; Staebler, Ralf M.; Tarasick, David W.; Malderen, Roeland Van; Vestenius, Mika

Abstract. Previous assessments on modelling Arctic tropospheric ozone (O3) have shown that most atmospheric models continue to experience difficulties in simulating tropospheric O3 in the Arctic, particularly in capturing the seasonal variations at coastal sites, primarily attributed to the lack of representation of surface bromine chemistry in the Arctic. In this study, two independent chemical transport models (CTMs), DEHM (Danish Eulerian Hemispheric Model) and GEM-MACH (Global Environmental Multi-scale – Modelling Air quality and Chemistry), were used to simulate Arctic lower-tropospheric O3 for the year 2015 at considerably higher horizontal resolutions (25 and 15 km, respectively) than the large-scale models in the previous assessments. Both models include bromine chemistry but with different mechanistic representations of bromine sources from snow- and ice-covered polar regions: a blowing-snow bromine source mechanism in DEHM and a snowpack bromine source mechanism in GEM-MACH. Model results were compared with a suite of observations in the Arctic, including hourly observations from surface sites and mobile platforms (buoys and ships) and ozonesonde profiles, to evaluate models' ability to simulate Arctic lower-tropospheric O3, particularly in capturing the seasonal variations and the key processes controlling these variations. Both models are found to behave quite similarly outside the spring period and are able to capture the observed overall surface O3 seasonal cycle and synoptic-scale variabilities, as well as the O3 vertical profiles in the Arctic. GEM-MACH (with the snowpack bromine source mechanism) was able to simulate most of the observed springtime ozone depletion events (ODEs) at the coastal and buoy sites well, while DEHM (with the blowing-snow bromine source mechanism) simulated much fewer ODEs. The present study demonstrates that the springtime O3 depletion process plays a central role in driving the surface O3 seasonal cycle in central Arctic, and that the bromine-mediated ODEs, while occurring most notably within the lowest few hundred metres of air above the Arctic Ocean, can induce a 5 %–7 % of loss in the total pan-Arctic tropospheric O3 burden during springtime. The model simulations also showed an overall enhancement in the pan-Arctic O3 concentration due to northern boreal wildfire emissions in summer 2015; the enhancement is more significant at higher altitudes. Higher O3 excess ratios (ΔO3/ΔCO) found aloft compared to near the surface indicate greater photochemical O3 production efficiency at higher altitudes in fire-impacted air masses. The model simulations further indicated an enhancement in NOy in the Arctic due to wildfires; a large portion of NOy produced from the wildfire emissions is found in the form of PAN that is transported to the Arctic, particularly at higher altitudes, potentially contributing to O3 production there.

2025

Publikasjon
År
Kategori