Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10084 publikasjoner. Viser side 393 av 404:

Publikasjon  
År  
Kategori

Validation of the snow depth in ERA6-Land prototypes over the Tibetan Plateau

Orsolini, Yvan; Senan, Retish; Rosnay, Patricia de

2025

EYE-CLIMA: A Horizon Europe project using atmospheric inversions to improve national estimates of greenhouse gas emissions

Winiwarter, Wilfried; Thompson, Rona Louise; Stohl, Andreas; Peylin, Philippe; Ciais, Philippe; Boesch, Hartmuth; Aalto, Tuula; Berchet, Antoine; Kanakidou, Maria; Peters, Glen Philip; Shchepashchenko, Dmitry; Chang, Jean-Pierre; Fuß, Roland; Pisso, Ignacio; Engelen, Richard; Arneth, Almuth; Buchmann, Nina; Reimann, Stefan; Platt, Stephen Matthew; Krishnankutty, Nalini

2025

Unprecedented shifts in aerosol pollution sources in China under a decade of clean air actions

Fang, Wenzheng; Evangeliou, Nikolaos; Eckhardt, Sabine; Xiao, Hang; Li, Haibo

China is a major hotspot of black carbon (BC) emissions, contributing to climate warming and risk to public health. Here, our dual-isotope-constrained observations indicate stringent air pollution controls have drastically reduced coal-burning in North China over the past decade, marking a transition to a “post-coal” era compared to earlier 2012–2014. However, biomass-burning fraction (fbb) for north/central/east winter hazes has doubled from earlier (north/east) ~20%, with significantly higher fbb during polluted winters. Comparisons between observation and transport modelling show good alignment in BC concentrations but substantial discrepancies in source attribution (i.e., fbb). Leveraging radiocarbon measurements, advanced atmospheric modelling, and a Bayesian approach, our study identifies biases stemming from misallocated residential fuel types in emission inventories. These findings underscore the untapped potential to mitigate BC emissions by targeting rural biomass burning, while providing critical insights into BC source evolution to refine emission inventories and formulate effective air quality policies for China and other nations facing severe air pollution.

2025

Divergent impacts of climate interventions on China’s north-south water divide

Zhang, Xiao; Fan, Yuanchao; Tjiputra, Jerry; Muri, Helene; Chen, Qiao

Abstract Solar radiation modification-based climate interventions may cause uneven regional hydrological changes while mitigating warming. Here, we investigate the effects of climate interventions on China’s North Drought-South Flood pattern using the Norwegian Earth System Model supplemented by volcanic data. Our results indicate that equatorial stratospheric aerosol injection could mitigate the north-south water divide by reducing inter-hemispheric and equator-to-North-pole temperature gradients, thereby modifying atmospheric circulation and the East Asian monsoon to increase precipitation and surface runoff in northern China while reducing them in the south, compared to the high emissions scenario. This mechanism is supported by observed precipitation changes following the Mount Pinatubo volcanic eruption. In contrast, marine cloud brightening may intensify southern flood risks, while cirrus cloud thinning and moderate emissions reduction might exacerbate northern droughts. Our findings reveal distinct regional hydroclimatic impacts of different climate interventions, highlighting potential synergies and trade-offs between their global intervention efficacy and regional water security.

2025

Tidal Amplification in the Lower Thermosphere During the 2003 October–November Solar Storms

Zhang, Jiarong; Orsolini, Yvan; Limpasuvan, Varavut; Liu, Han‐li; Oberheide, Jens

Abstract Using the National Center for Atmospheric Research's vertically extended version of the Whole Atmosphere Community Climate Model nudged with reanalyses, we examine the impact of the 2003 Halloween solar storms on atmospheric tides and planetary waves in the lower thermosphere (LT). One of the largest solar flares and fastest coronal mass ejections on record occurred on 30 October, resulting in significant energy transfer via Joule heating and auroral particle precipitation in the Earth's higher latitude thermosphere. In the simulation, that occurrence creates large zonally asymmetric heating perturbations, amplifying the diurnal migrating tide (DW1), semidiurnal migrating tide (SW2), as well as non‐migrating westward and eastward tides between 120 and 200 km. Large‐amplitude bursts of DW1 in the Northern Hemisphere and non‐migrating westward tides in the Southern Hemisphere lead to westward wave forcings, which strengthen the thermospheric wind. Planetary waves are also amplified, but their forcing is much weaker than the forcing exerted by tides in the LT. Non‐migrating tides are generated by nonlinear interactions between tides, or between tides and quasi‐stationary planetary waves, and in situ processes in the LT linked to Joule heating and auroral particle precipitation. The induced disruptions of the thermospheric mean meridional circulation reinforce the Spring thermospheric branch in the Southern Hemisphere at high latitudes and oppose the Fall branch in the Northern Hemisphere. Our examination could be relevant to understand the dynamical impact of recent geomagnetic storms that occurred in May 2024 and October 2024.

2025

Modulation of the Semi-Annual Oscillation by Stratospheric Sudden Warmings as Seen in the High-Altitude JAWARA Re-analyses

Zhang, Jiarong; Orsolini, Yvan; Sato, Kaoru

The semi-annual oscillation (SAO) dominates seasonal variability in the equatorial stratosphere and mesosphere. However, the seasonally dependent modulation of the SAO in the stratosphere (SSAO) and mesosphere (MSAO) by sudden stratospheric warmings (SSWs) in the Arctic has not been investigated in detail. In this study, we examine the seasonal evolution of the SAO during 16 major SSW events spanning 2004 to 2024 using the Japanese Atmospheric General Circulation Model for Upper Atmosphere Research Data Assimilation System Whole Neutral Atmosphere Re-analysis (JAWARA). Basic features of the SAO are well captured by JAWARA, as evidenced by the SSAO and MSAO appearing at around 50 km and 85 km, respectively. The different responses of the SAO to early and late winter SSWs are particularly strong during the Northern Hemisphere winter of 2023/24. Early winter SSWs tend to significantly intensify the westward SSAO, while late winter SSWs tend to weaken the eastward SSAO. Similarly, the eastward MSAO is amplified during early winter SSWs, whereas the westward MSAO is slightly weakened during late winter SSWs. The weak MSAO response is probably due to its smaller climatological magnitude. Modulation of the SAO by SSWs is related to meridional temperature changes during SSWs through the thermal wind balance. Our findings contribute to the understanding of coupling between the tropics and high latitudes, as well as interhemispheric coupling.

2025

Source apportionment of PM10 oxidative potential during the WeBaSOOP campaignes in Belgrade

Jovanović, M.; Petrović, B.; Davidović, M.; Stevanović, S.; Yttri, Karl Espen; Alastuey, A.; Bartonova, Alena; Jovašević-Stojanović, M.

2025

The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds

Jiao, Yi; Kramshøj, Magnus; Davie-Martin, Cleo Lisa; Elberling, Bo; Rinnan, Riikka

Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds. Results show that these soils can actively function as sinks of these compounds, despite their different physiochemical properties. Upper active layer possessed relatively higher uptake capacities; factors including soil moisture, organic matter, and microbial biomass carbon were identified as the main factors correlating with the uptake rates. Additionally, uptake coefficients for several compounds were calculated for their potential use in future model development. Correlation analysis and the varying coefficients indicate that the sink was likely biotic. The development of a deeper active layer under climate change may enhance the sink capacity and reduce the net emissions of volatile organic compounds from permafrost thaw.

2025

A scalable framework for harmonizing, standardization, and correcting crowd-sourced low-cost sensor PM2.5 data across Europe

Hassani, Amirhossein; Salamalikis, Vasileios; Schneider, Philipp; Stebel, Kerstin; Castell, Nuria

Citizen-operated low-cost air quality sensors (LCSs) have expanded air quality monitoring through community engagement. However, still challenges related to lack of semantic standards, data quality, and interoperability hinder their integration into official air quality assessments, management, and research. Here, we introduce FILTER, a geospatially scalable framework designed to unify, correct, and enhance the reliability of crowd-sourced PM2.5 data across various LCS networks. FILTER assesses data quality through five steps: range check, constant value detection, outlier detection, spatial correlation, and spatial similarity. Using official data, we modeled PM2.5 spatial correlation and similarity (Euclidean distance) as functions of geographic distance as benchmarks for evaluating whether LCS measurements are sufficiently correlated/consistent with neighbors. Our study suggests a −10 to 10 Median Absolute Deviation threshold for outlier flagging (360 h). We find higher PM2.5 spatial correlation in DJF compared to JJA across Europe while lower PM2.5 similarity in DJF compared to JJA. We observe seasonal variability in the maximum possible distance between sensors and reference stations for in-situ (remote) PM2.5 data correction, with optimal thresholds of ∼11.5 km (DJF), ∼12.7 km (MAM), ∼20 km (JJA), and ∼17 km (SON). The values implicitly reflect the spatial representativeness of stations. ±15 km relaxation for each season remains feasible when data loss is a concern. We demonstrate and validate FILTER's effectiveness using European-scale data originating from the two community-based monitoring networks, sensor.community and PurpleAir with QC-ed/corrected output including 37,085 locations and 521,115,762 hourly timestamps. Results facilitate uptake and adoption of crowd-sourced LCS data in regulatory applications.

2025

Klimaendringene

Muri, Helene

2025

Modeling the Impact of Pedestrianization on Urban Air Quality

O'Regan, Anna C.; Grythe, Henrik; Santos, Gabriela Sousa; Nyhan, Marguerite M.

2025

Slik kan mose vise luft­forurensing

Solbakken, Christine Forsetlund

2025

Is Antarctica Greening?

Colesie, Claudia; Gray, Andrew Møller; Walshaw, Charlotte V.; Bokhorst, Stef; Kerby, Jeffrey T.; Jawak, Shridhar Digambar; Sancho, Leopoldo G.; Convey, Peter

2025

Investigating lightweight and interpretable machine learning models for efficient and explainable stress detection

Ghose, Debasish; Chatterjee, Ayan; Balapuwaduge, Indika A.M.; Lin, Yuan; Dash, Soumya P.

Stress is a common human reaction to demanding circumstances, and prolonged and excessive stress can have detrimental effects on both mental and physical health. Heart rate variability (HRV) is widely used as a measure of stress due to its ability to capture variations in the time intervals between heartbeats. However, achieving high accuracy in stress detection through machine learning (ML), using a reduced set of statistical features extracted from HRV, remains a significant challenge. In this study, we aim to address these challenges by proposing lightweight ML models that can effectively detect stress using minimal HRV features and are computationally efficient enough for IoT deployment. We have developed ML models incorporating efficient feature selection techniques and hyper-parameter tuning. The publicly available SWELL-KW dataset has been utilized for evaluating the performance of our models. Our results demonstrate that lightweight models such as k-NN and Decision Tree can achieve competitive accuracy while ensuring lower computational demands, making them ideal for real-time applications. Promisingly, among the developed models, the k-nearest neighbors (k-NN) algorithm has emerged as the best-performing model, achieving an accuracy score of 99.3% using only three selected features. To confirm real-world deployability, we benchmarked the best model on an 8 GB NVIDIA Jetson Orin Nano edge device, where it retained 99.26% accuracy and completed training in 31 s. Furthermore, our study has incorporated local interpretable model-agnostic explanations to provide comprehensive insights into the predictions made by the k-NN-based architecture.

2025

Nordic precipitation trends and North Atlantic circulation patterns in NorESM2

Rosendahl, Andrea; Gjermundsen, Ada; Graff, Lise Seland; Oliviè, Dirk Jan Leo; Eckhardt, Sabine; Schulz, Michael

2025

Car tire particles and their additives: biomarkers for recent exposure in marine environments

Halsband, Claudia; Hägg, Fanny; Galtung, Kristin; Herzke, Dorte; Booth, Andy; Nikiforov, Vladimir

Car tire particles represent an important category of microplastics that is difficult to alleviate. The particles stem from abrasion during driving, so-called tire wear particles (TWPs), down-cycled end-oflife tire granulate, popular as low-cost infill on sports fields, or degradation products from discarded tires. The material contains a variety of additives and chemical residues from the manufacturing process, including metals, especially high concentrations of zinc, polycyclic aromatic hydrocarbons (PAHs), and benzothiazoles, but also para-phenylenediamines (PPDs) and numerous other organic chemicals. In urbanized areas, TWPs are emitted from roads, and granulates disperse from artifical sports fields and other urban surfaces to the environment, suggesting that runoff to coastal systems is likely and a route of exposure to marine organisms. Recent experimental studies show tire rubber
particles in marine animals from different functional groups in addition to uptake of tire-related organic chemicals into biological tissues. These include bivalves, crabs, and fish, representing different body sizes, marine habitats, and feeding modes, and thus varying exposure scenarios. Our findings from GC-HRMS SIM chromatography demonstrate that different marine species ingest tire rubber particles, and that several tire additives are taken up into tissues post-ingestion. Although the organic chemicals do not seem to bioaccumulate, they are specific and bioavailable chemicals in tire materials. Mapping of tire rubber particle distributions in coastal systems, dose-response toxicity
testing and risk assessments of environmental concentrations are thus warranted, also with a view to potential trophic transfer and implications for human health.

2025

Data Report 2023. Particulate matter, carbonaceous and inorganic compounds

Hjellbrekke, Anne-Gunn

This report presents an overview of annual statistical summaries and methods for sampling and analysis of particulate matter, carbonaceous and inorganic compounds measured under the EMEP monitoring programme in 2023.

NILU

2025

Global emissions and abundances of chemically and radiatively important trace gases from the AGAGE network

Western, Luke M.; Rigby, Matthew; Mühle, Jens; Krummel, Paul B.; Lunder, Chris Rene; O'Doherty, Simon; Reimann, Stefan; Vollmer, Martin K.; Young, Dickon; Adam, Ben; Fraser, Paul J.; Ganesan, Anita L.; Harth, Christina M.; Hermansen, Ove; Kim, Jooil; Langenfelds, Ray L.; Loh, Zoë M.; Mitrevski, Blagoj; Pitt, Joseph R.; Salameh, Peter K.; Schmidt, Roland; Stanley, Kieran; Stavert, Ann R.; Wang, Hsiang-Jui; Weiss, Ray F.; Prinn, Ronald G.

Measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) combined with a global 12-box model of the atmosphere have long been used to estimate global emissions and surface mean mole fraction trends of atmospheric trace gases. Here, we present annually updated estimates of these global emissions and mole fraction trends for 42 compounds through 2023 measured by the AGAGE network, including chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, nitrogen trifluoride, methane, nitrous oxide, and selected other compounds. The data sets are available at https://doi.org/10.5281/zenodo.15372480 (Western et al., 2025). We describe the methodology to derive global mole fraction and emissions trends, which includes the calculation of semihemispheric monthly mean mole fractions, the mechanics of the 12-box model and the inverse method that is used to estimate emissions from the observations and model. Finally, we present examples of the emissions and mole fraction data sets for the 42 compounds.

2025

HTAP3 Fires: towards a multi-model, multi-pollutant study of fire impacts

Whaley, Cynthia H.; Butler, Tim; adame, Jose A.; Ambulkar, Rupal; Arnold, Steve R.; Bucholz, Rebecca; Gaubert, Benjamin; Hamilton, Douglas S.; Huang, Min; Hung, Hayley; Kaiser, Johannes; Kaminski, Jacek W.; Knote, Christoph; Koren, Gerbrand; Kouassi, Jean-Luc; Lin, Meiyun; Liu, Tianjia; Ma, Jianmin; Manomaiphiboon, Kasemsan; Masso, Elise Bergas; McCarty, Jessica L.; Mertens, Mariano; Parrington, Mark; Peiro, Helene; Saxena, Pallavi; Sonwani, Saurabh; Surapipith, Vanisa; Tan, Damaris Y. T.; Tang, Wenfu; Tanpipat, Veerachai; Tsigaridis, Kostas; Wiedinmyer, Christine; Wild, Oliver; Xie, Yuanyu; Zuidema, Paquita

Open biomass burning has major impacts globally and regionally on atmospheric composition. Fire emissions include particulate matter, tropospheric ozone precursors, and greenhouse gases, as well as persistent organic pollutants, mercury, and other metals. Fire frequency, intensity, duration, and location are changing as the climate warms, and modelling these fires and their impacts is becoming more and more critical to inform climate adaptation and mitigation, as well as land management. Indeed, the air pollution from fires can reverse the progress made by emission controls on industry and transportation. At the same time, nearly all aspects of fire modelling – such as emissions, plume injection height, long-range transport, and plume chemistry – are highly uncertain. This paper outlines a multi-model, multi-pollutant, multi-regional study to improve the understanding of the uncertainties and variability in fire atmospheric science, models, and fires' impacts, in addition to providing quantitative estimates of the air pollution and radiative impacts of biomass burning. Coordinated under the auspices of the Task Force on Hemispheric Transport of Air Pollution, the international atmospheric modelling and fire science communities are working towards the common goal of improving global fire modelling and using this multi-model experiment to provide estimates of fire pollution for impact studies. This paper outlines the research needs, opportunities, and options for the fire-focused multi-model experiments and provides guidance for these modelling experiments, outputs, and analyses that are to be pursued over the next 3 to 5 years. The paper proposes a plan for delivering specific products at key points over this period to meet important milestones relevant to science and policy audiences.

2025

The ESA atmospheric Validation Data Centre (EVDC): Applications for EarthCARE

Castracane, Paolo; Dehn, Angelika; Dobrzanski, Jarek; Fjæraa, Ann Mari; McKinstry, Alastair

2025

A global assemblage of regional prescribed burn records — GlobalRx

Hsu, Alice; Jones, Matthew W.; Thurgood, Jane R.; Smith, Adam J. P.; Carmenta, Rachel; Abatzoglou, John T.; Anderson, Liana O.; Clarke, Hamish; Doerr, Stefan H.; Fernandes, Paulo M.; Kolden, Crystal A.; Santín, Cristina; Strydom, Tercia; Quéré, Corinne Le; Ascoli, Davide; Castellnou, Marc; Goldammer, Johann G.; Guiomar, Nuno Ricardo Gracinhas Nunes; Kukavskaya, Elena A.; Rigolot, Eric; Tanpipat, Veerachai; Varner, Morgan; Yamashita, Youhei; Baard, Johan; Barreto, Ricardo; Becerra, Javier; Brunn, Egbert; Bergius, Niclas; Carlsson, Julia; Cheney, Chad; Druce, Dave; Elliot, Andy; Evans, Jay; Falleiro, Rodrigo De Moraes; Prat-Guitart, Nuria; Hiers, J. Kevin; Kaiser, Johannes; Macher, Lisa; Morris, Dave; Park, Jane; Robles, César; Román-Cuesta, Rosa María; Rücker, Gernot; Senra, Francisco; Steil, Lara; Valverde, Jose Alejandro Lopez; Zerr, Emma

Abstract Prescribed burning (RxB) is a land management tool used widely for reducing wildfire hazard, restoring biodiversity, and managing natural resources. However, RxB can only be carried out safely and effectively under certain seasonal or weather conditions. Under climate change, shifts in the frequency and timing of these weather conditions are expected but analyses of climate change impacts have been restricted to select few regions partly due to a paucity of RxB records at global scale. Here, we introduce GlobalRx, a dataset including 204,517 RxB records from 1979–2023, covering 16 countries and 209 terrestrial ecoregions. For each record, we add a comprehensive suite of meteorological variables that are regularly used in RxB prescriptions by fire management agencies, such as temperature, humidity, and wind speed. We also characterise the environmental setting of each RxB, such as land cover and protected area status. GlobalRx enables the bioclimatic range of conditions suitable for RxB to be defined regionally, thus unlocking new potential to study shifting opportunities for RxB planning and implementation under future climate.

2025

Guidance on minimum information requirements (MIR) from designing to reporting human biomonitoring (HBM)

Jeddi, Maryam Zare; Galea, Karen S.; Ashley-Martin, Jillian; Nassif, Julianne; Pollock, Tyler; Poddalgoda, Devika; Kasiotis, Konstantinos M.; Machera, Kyriaki; Koch, Holger M.; López, Marta Esteban; Chung, Ming Kei; Kil, Jihyon; Jones, Kate; Covaci, Adrian; Bamai, Yu Ait; Fernandez, Mariana F.; Kase, Robert Pasanen; Louro, Henriqueta; Silva, Maria J.; Santonen, Tiina; Katsonouri, Andromachi; Castaño, Argelia; Quirós-Alcalá, Lesliam; Lin, Elizabeth Ziying; Pollitt, Krystal; Virgolino, Ana; Scheepers, Paul T.J.; Melnyk, Lisa Jo; Mustieles, Vicente; Portilla, Ana Isabel Cañas; Viegas, Susana; Goetz, Natalie von; Sepai, Ovnair; Bird, Emily; Göen, Thomas; Fustinoni, Silvia; Ghosh, Manosij; Dirven, Hubert; Kwon, Jung-Hwan; Carignan, Courtney; Mizuno, Yuki; Ito, Yuki; Xia, Yankai; Nakayama, Shoji F.; Makris, Konstantinos C.; Parsons, Patrick J.; Gonzales, Melissa; Bader, Michael; Dusinska, Maria; Menouni, Aziza; Duca, Radu Corneliu; Chbihi, Kaoutar; Jaafari, Samir El; Godderis, Lode; Nieuwenhuyse, An van; Qureshi, Asif; Ali, Imran; Trindade, Carla Costa; Teixeira, Joao Paulo; Bartonova, Alena; Tranfo, Giovanna; Audouze, Karine; Verpaele, Steven; LaKind, Judy; Mol, Hans; Bessems, Jos; Magagna, Barbara; Waras, Maisarah Nasution; Connolly, Alison; Nascarella, Marc; Yang, Wonho; Huang, Po-Chin; Lee, Jueun; Heussen, Henri; Goksel, Ozlem; Yunesian, Masud; Yeung, Leo W.Y.; Souza, Gustavo; Vekic, Ana Maria; Haynes, Erin N.; Hopf, Nancy B.

Human biomonitoring (HBM) provides an integrated chemical exposures assessment considering all routes and sources of exposure. The accurate interpretation and comparability of biomarkers of exposure and effect depend on harmonized, quality-assured sampling, processing, and analysis. Currently, the lack of broadly accepted guidance on minimum information required for collecting and reporting HBM data, hinders comparability between studies. Furthermore, it prevents HBM from reaching its full potential as a reliable approach for assessing and managing the risks of human exposure to chemicals.

The European Chapter of the International Society of Exposure Science HBM Working Group (ISES Europe HBM working group) has established a global human biomonitoring community network (HBM Global Network) to develop a guidance to define the minimum information to be collected and reported in HBM, called the “Minimum Information Requirements for Human Biomonitoring (MIR-HBM)”. This work builds on previous efforts to harmonize HBM worldwide.

The MIR-HBM guidance covers all phases of HBM from the design phase to the effective communication of results. By carefully defining MIR for all phases, researchers and health professionals can make their HBM studies and programs are robust, reproducible, and meaningful. Acceptance and implementation of MIR-HBM Guidelines in both the general population and occupational fields would improve the interpretability and regulatory utility of HBM data. While implementation challenges remain—such as varying local capacities, and ethical and legal differences at the national levels, this initiative represents an important step toward harmonizing HBM practice and supports an ongoing dialogue among policymakers, legal experts, and scientists to effectively address these challenges. Leveraging the data and insights from HBM, policymakers can develop more effective strategies to protect public health and ensure safer working environments.

2025

Publikasjon
År
Kategori