Gå til innhold
  • Send

  • Kategori

  • Sorter etter

  • Antall per side

Fant 10084 publikasjoner. Viser side 46 av 404:

Publikasjon  
År  
Kategori

Associations between environmental factors and incidence of cutaneous melanoma. Review.

Volkovova, K.; Bilanicova, D.; Bartonova, A.; Letasiova, S.; Dusinska, M.

2012

Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline

Li, Fei; Orsolini, Yvan; Wang, Huijun; Gao, Yongqi; He, Shengping

2018

Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline

Li, Fei; Orsolini, Yvan; Wang, Huijun; Gao, Yongqi; He, Shengping

The Arctic sea ice cover has been rapidly declining in the last two decades, concurrent with a shift in the Atlantic Multidecadal Oscillation (AMO) to its warm phase around 1996/1997. Here we use both observations and model simulations to investigate the modulation of the atmospheric impacts of the decreased sea ice cover in the Atlantic sector of the Arctic (AASIC) by the AMO. We find that the AASIC loss during a cold AMO phase induces increased Ural blocking activity, a southeastward‐extended snowpack, and a cold continent anomaly over Eurasia in December through northerly cold air advection and moisture transport from the Arctic. The increased Ural blocking activity and more extended Eurasian snowpack strengthen the upward propagation of planetary waves over the Siberian‐Pacific sector in the lower stratosphere and hence lead to a weakened stratospheric polar vortex and a negative Arctic Oscillation (AO) phase at the surface in February. However, corresponding to the AASIC loss during a warm AMO phase, one finds more widespread warming over the Arctic and a reduced snowpack over Northern Eurasia in December. The stratosphere‐troposphere coupling is suppressed in early winter and no negative AO anomaly is found in February. We suggest that the cold AMO phase is important to regulate the atmospheric response to AASIC decline, and our study provides insight to the ongoing debate on the connection between the Arctic sea ice and the AO.

2018

Atmopsheric Speciation of Mercury at Alert and Zeppelin. NILU F

Steffen, A.; Berg, T.; Cole.; A.; Pfaffhuber.; K.A.

2013

Atmosfæreforskning og overvåking ved Troll. Faktaark 016/N, E

Holmén, K.

2005

Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse i 1990. Statlig program for forurensningsovervåking. Rapport 523/93. TA-947/1993.

Steinnes, E.; Røyset, O.; Vadset, M.; Johansen, O.

1993

Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse i 1995. Statlig program for forurensningsovervåking. Rapport 691/97. TA-1436/1997.

Steinnes, E.; Berg, T.; Vadset, M.; Røyset, O.

1997

Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse i 2000. Statlig program for forurensningsovervåking. Rapport 838/01. TA-1842/2001.

Steinnes, E.; Berg, T.; Sjøbakk, T.E.; Uggerud, H.; Vadset, M.

2001

Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse i 2005. Statlig program for forurensningsovervåking. Rapport 980/2007. TA-2241/2007.

Steinnes, E.; Berg, T.; Uggerud, H.; Vadset, M.

2007

Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse i 2010. NILU OR

Steinnes, E.; Berg, T.; Uggerud, H.T.; Pfaffhuber, K.A.

Den geografiske fordelingen av atmosfærisk nedfall av tungmetaller i Norge er kartlagt i 2010 ved analyse av prøver av etasjemose innsamlet fra 464 lokaliteter fordelt over landet. Denne rapporten gir en presentasjon av resultatene samt en sammenlikning med resultater fra en tilsvarende serie av tidligere undersøkelser siden 1977. Undersøkelsen inngår i et internasjonalt program som omfatter store deler av Europa. Undersøkelsen gjelder i første rekke de ti metallene vanadium, krom, jern, nikkel, kopper, sink, arsen, kadmium, kvikksølv og bly som er prioritert i det europeiske programmet. I tillegg rapporteres data for ytterligere 42 grunnstoffer i mosen. Diskusjonen av de enkelte undersøkte stoffene gjelder i første rekke bidrag fra luftforurensning, men omfatter også en vurdering av eventuelle bidrag fra naturlige kilder til innhold i mosen, og hvordan bidrag fra disse kildene kan innvirke på tolkningen av resultatene.

2011

Atmosfæriske tilførsler av miljøgifter. Fisken og havet, 1b-2014

Braathen, O.A.

2014

Atmospheric black carbon over the North Atlantic and the Russian Arctic Seas in summer-autumn time.

Shevchenko, V. P.; Kopeikin, V. M.; Evangeliou, N.; Lisitzin, A. P.; Novigatsky, A. N.; Pankratova, N. V.; Starodymova, D. P.; Stohl, A.; Thompson, R.

2016

Atmospheric change in the Arctican update of focused campaigns under POLARCAT. NILU F

Burkhart, J.F.; Bates, T.; Brock, C.A.; Carmichael, G.; Clerbaux, C.; Crawford, J.H.; Dibb, J.E.; Elansky, N.; Ghan, S.; Hirdman, D.; Honrath, R.E.; Jacob, D.; Law, K.; Paris, J.; Quinn, P.; Schlager, H.; Singh, H.B.; Sodemann, H.; Stohl, A.

2009

Atmospheric chemistry of 2-aminoethanol (MEA).

Nielsen,C.J.; D'Anna, B.; Dye, C.; Graus, M.; Karl, M.; King, S.; Maguto, M.M.; Müller, M.; Schmidbauer, N.; Stenstrøm, Y.; Wisthaler, A.; Pedersen, S.

2011

Atmospheric composition change - global and regional quality.

Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; Blake, N.; Blake, R.S.; Carslaw, K.; Cooper, O.R.; Dentener, F.; Fowler, D.; Fragkou, E.; Frost, G.J.; Generoso, S.; Ginoux, P. et al.

2009

Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund

Platt, Stephen Matthew; Hov, Øystein; Berg, Torunn; Breivik, Knut; Eckhardt, Sabine; Eleftheriadis, Konstantinos; Evangeliou, Nikolaos; Fiebig, Markus; Fisher, Rebecca; Hansen, Georg Heinrich; Hansson, Hans-Christen; Heintzenberg, Jost; Hermansen, Ove; Heslin-Rees, Dominic; Holmén, Kim; Hudson, Stephen; Kallenborn, Roland; Krejci, Radovan; Krognes, Terje; Larssen, Steinar; Lowry, David; Myhre, Cathrine Lund; Lunder, Chris Rene; Nisbet, Euan; Bohlin-Nizzetto, Pernilla; Park, Ki-Tae; Pedersen, Christina Alsvik; Pfaffhuber, Katrine Aspmo; Röckmann, Thomas; Schmidbauer, Norbert; Solberg, Sverre; Stohl, Andreas; Ström, Johan; Svendby, Tove Marit; Tunved, Peter; Tørnkvist, Kjersti Karlsen; Veen, Carina van der; Vratolis, Stergios; Yoon, Young Jun; Yttri, Karl Espen; Zieger, Paul; Aas, Wenche; Tørseth, Kjetil

The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.

2022

Publikasjon
År
Kategori